RD Sharma Class 8 Solutions Chapter 20 Mensuration I (Area of a Trapezium and a Polygon) Ex 20.3

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3

Other Exercises

Question 1.
Find the area of the pentagon shown in the figure if AD = 10 cm, AG = 8 cm, AH = 6 cm, AF = 5 cm and BF = 5 cm, CG = 7 cm and EH = 3
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 1
Solution:
In the figure, here are three triangles and one trapezium.
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 2
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 3
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 4

Question 2.
Find the area enclosed by each of the following figures as the sum of the areas of a rectangle and a trapezium:
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 5
Solution:
(i) In the figure ABCDEF,
Join CF, then, the figure consists one square and one trapezium ABCF is a square whose side = 18 cm
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 6
Area of the square = 18 x 18 cm² = 324 cm²
Area of trapezium FCDE = \(\frac { 1 }{ 2 }\) (CF + ED) x 8 cm²
= \(\frac { 1 }{ 2 }\) (18 + 7) x 8
= \(\frac { 1 }{ 2 }\) x 25 x 8 cm²
= 100 cm²
Total area of fig. ABCDEF = 324 + 100 = 424 cm²
(ii) In the figure ABCDEF,
Join BE.
The figure consists of one rectangle BCDE and one trapezium ABEF
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 7
Area of rectangle BCDE = BC x CD = 20 x 15 = 300 cm²
Area of trapezium ABEF,
= \(\frac { 1 }{ 2 }\) (BE + AF) x height
= \(\frac { 1 }{ 2 }\) (15 + 6) x 8 cm²
= \(\frac { 1 }{ 2 }\) x 21 x 8 cm²
= 84 cm²
Area of the figure ABCDEF = 300 + 84 = 384 cm²
(iii) In the figure ABCDEFGH,
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 8
HC= AB = EF = 6 cm
AH = BC = 4 cm
DE = GF = 5 cm
Join HC.
In right ∆CDE,
ED² = CD² + CE²
⇒ (5)² = (4)² + (CE)²
⇒ 25 = 16 + (CE)²
⇒ (CE)² = 25 – 16 = 9 = (3)²
CE = 3 cm
The figure consist a rectangle and a trapezium
Area of rectangle ABCH = AB x BC = 6 x 4 = 24 cm²
Area of trapezium GDEF,
= \(\frac { 1 }{ 2 }\) (GD + EF) x CE 1
= \(\frac { 1 }{ 2 }\) (GH + HC + CD + EF) x CE
= \(\frac { 1 }{ 2 }\) (4 + 6 + 4 + 6) x 3 cm²
= \(\frac { 1 }{ 2 }\) x 20 x 3 cm²
= 30 cm²
Total area of the figure ABCDEFGH = 24 + 30 = 54 cm²

Question 3.
There is a pentagonal shaped park as shown in the figure. Jyoti and Kavita divided it in two different ways.
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 9
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 10
Find the area of this park using both ways. Can you suggest some another way of finding its area ?
Solution:
In first case, the figure ABCDE is divided into 2 trapezium of equal area.
Now area of trapezium DFBC
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 11
Total area of the pentagon ABCDE = 2 x 168.75 = 337.5 m²
In second case, the figure ABCDE is divided into two parts, namely one square and other triangle.
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 12
Total area of pentagon ABCDE = 225 + 112.5 = 337.5 m²

Question 4.
Find the area of the following polygon, if AL = 10 cm, AM = 20 cm, AN = 50 cm, AO = 60 cm and AD = 90 cm.
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 13
Solution:
In the figure ABCDEF,
AD = 90 cm
BL = 30 cm
AO = 60 cm
CN = 40 cm
AN = 50 cm
EO = 60 cm
AM = 20 cm
FM = 20 cm
AL = 10 cm
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 14
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 15
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 16
Area of ABCDEF = (150 + 800 + 900 + 200 + 1400 + 1600) cm² = 5050 cm²

Question 5.
Find the area of the following regular hexagon:
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 17
Solution:
In the regular hexagon MNOPQR There are two triangles and one rectangle.
Join MQ, MO and RP
NQ = 23 cm,
NA = BQ = \(\frac { 10 }{ 2 }\) = 5 cm
MR = OP = 13 cm
RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 18
In right ∆BDQ,
PQ² = BQ² + BP²
⇒ (13)² = (5)² + BP²
⇒ 169 = 25 + BP²
⇒ BP² = 169 – 25 = 144 = (12)²
BP = 12 cm
PR = MO = 2 x 12 = 24 cm
Now area of rectangle RPOM = RP x PO = 24 x 13 = 312 cm²
Area of ∆PRQ = \(\frac { 1 }{ 2 }\) x PR x BQ
= \(\frac { 1 }{ 2 }\) x 24 x 5 = 60 cm²
Similarly area ∆MON = 60 cm²
Area of the hexagon MNOPQR = 312 + 60 + 60 = 432 cm²

Hope given RD Sharma Class 8 Solutions Chapter 20 Mensuration I Ex 20.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.