NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3

NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 5
Chapter Name Triangles
Exercise Ex 5.3
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3

Question 1.
∆ABC and ∆DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see figure). If AD is extended to intersect BC at P, show that
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 1
(i) ∆ABD = ∆ACD
(ii) ∆ABP = ∆ACP
(iii) AP bisects ∠A as well as ∠D
(iv) AP is the perpendicular bisector of BC.
Solution:
Given ∆ABC and ∆DBC are two isosceles triangles having common
base BC, suchthat AB=AC and DB=OC.
To prove:
(i) ∆ABD = ∆ACD
(ii) ∆ABP = ∆ACP
(iii) AP bisects ∠A as well as ∠D
(iv) AP is the perpendicular bisector of BC.
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 2
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 3

Question 2.
AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC
(ii) AD bisects ∠A
Solution:
In ∆ ABD and ∆ ACD, we have
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 4
AB = AC (Given)
∠ADB = ∠ADC = 90° (∵ Given AD ⊥BC)
AD = AD (Common)
∴ ∆ ABD ≅ ∆ ACD (By RHS congruence axiom)
BD=DC (By CPCT)
⇒ AD bisects BC.
∠ BAD = ∠ CAD (By CPCT)
∴ AD bisects ∠A .

Question 3.
Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and OR and median PN of ∆PQR (see figure). Show that
(i) ∆ABC ≅ ∆PQR
(ii) ∆ABM ≅ ∆PQN
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 5
Solution:
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 6

Question 4.
BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.
Solution:
In ∆BEC and ∆CFB, we have
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 7

Question 5.
ABC is an isosceles triangle with AB = AC. Draw AP ⊥ BC to show that ∠B = ∠C.
Solution:
In ∆ABP and ∆ACP, We have
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 img 8
AB = AC (Given)
AP = AP (Common)
and ∠APB = ∠APC = 90° (∵ AP ⊥ BC)
∴ ∆ABP ≅ ∆ACP (By RHS congruence axiom)
⇒ ∠B = ∠C (By CPCT)

We hope the NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.3, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2

NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 5
Chapter Name Triangles
Exercise Ex 5.2
Number of Questions Solved 8
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2

Question 1.
In an isosceles triangle ABC, with AB = AC, the bisectors of ∠B and ∠C intersect each other at 0. Join A to 0. Show that
(i) OB = OC
(ii) AO bisects ∠A
Solution:
(i) In ∆ ABC, we have
AB = AC (Given)
⇒ ∠B = ∠C
(∵ Angles opposite to equal sides are equal)
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 1

Question 2.
In ∆ ABC, AD is the perpendicular bisector of BC (see figure). Show that ∆ ABC is an isosceles triangle in which AB = AC.
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 2
Solution:
In ∆ABD and ∆ACD, we have ,
DB = DC
∠ ADB = ∠ ADC (∵ D bisect SC)
and AD = AD (Common)
∴ ∆ ABD ≅ ∆ACD (By SAS congruence axiom)
⇒ AB = AC (By CPCT)
Renee,∆ ABC is an isosceles triangle.

Question 3.
ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see figure). Show that these altitudes are equal.
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 3
Solution:
In ∆ ABE and ∆ ACF, we have
∠ AEB = ∠ AFC (BE ⊥ AC, CF ⊥ AS, each 90°)
∠ A = ∠ A (Common)
and AS = AC (Given)
∴ ∆ABE ≅ ∆ACF (By AAS congruence axiom)
⇒ BE = CF (By CPCT)

Question 4. .
ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see figure). Show that
(i) ∆ABE = ∆ACF
(ii) AB = AC i.e., ABC is an isosceles triangle.
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 4
Solution:
In ∆ABE and ∆ACF, we have
∠ AEB = ∠ AFC (Each 90°)
∠ BAE = ∠ CAF (Common)
and BE =CF (Given)
∴ ∆ABE ≅ ∆ACF (By AAS congruence axiom)
∴ AB = AC
So, ∆ABC is isosceles.

Question 5.
ABC and DBC are isosceles triangles on the same base BC (see figure). Show that ∠ ABD = ∠ACD.
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 5
Solution:
In ∆ABC, we have
AB=AC (∵ AABC is an isosceles triangle)
∴ ∠ ABC = ∠ ACB …(i)
(∵ Angles opposite to equal sides are equal)
In ∆ DBC, we have
BD = CD (∵ ADBC is an isosceles triangle)
∴ ∠ DBC = ∠ DCB …(ii)
(∵ Angles opposite to equal sides are equal)
On adding Eqs. (i) and (ii), we have .
∠ ABC + ∠ DBC = ∠ ACB + ∠ DCS
⇒ ∠ ABD = ∠ ACD

Question 6.
∆ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure). Show that ∠ BCD is a right angle.
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 6
Solution:
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 7

Question 7.
ABC is a right angled triangle in which ∠ A = 90° and AB = AC, find ∠ B and ∠ C.
Solution:
We have, ∠A = 90° (Given)
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 8

AB = AC (Given)
⇒ ∠B = ∠C
(∵ Angles opposite to equal sides are equal)
Now, we have
∠A+∠B+∠C = 180° (By ∆ property)
90° + ∠B+ ∠B = 180°
⇒ 2 ∠B = 90°
⇒ ∠B = 45°
∴ ∠B = ∠C = 45°

Question 8.
Show that the angles of an equilateral triangle are 60° each.
Solution:
Let ∆ ABC be an equilateral triangle, such that
NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 img 9
AB = BC = CA (By property)
Now, AB = AC
⇒ ∠B = ∠C …..(i)
(∵Angles opposite to equal sides are equal)
Similarly, CB = CA
⇒∠A = ∠B …(ii)
(∵ Angles opposite to equal sides are equal)
From Eqs. (i) and (ii), we have
∠A=∠B=∠C …(iii)
Now, ∠A+ ∠B+ ∠C = 180° (By ∆ property)
∠A + ∠A + ∠A = 180° [From Eq. (iii)]
3 ∠A = 180°
∠A = 60°
Hence, ∠ A = ∠B = ∠C = 60°

We hope the NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 5 Triangles Ex 5.2, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3

NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 4
Chapter Name Lines and Angles
Exercise Ex 4.3
Number of Questions Solved 6
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3

Question 1.
In figure, sides QP and RQ of APQR are produced to points S and T, respectively. If ∠SPR = 135° and ∠PQT = 110°, find ∠PRQ.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 1
Solution:
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 2
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 3

Question 2.
In figure, ∠X – 62°, ∠XYZ = 54°, if YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of ∆XYZ, find ∠OZY and ∠YOZ.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 4
Solution:
In ∆XYZ,
∵ ∠X+ ∠Y+ ∠Z = 180°
(Sum of all angles of triangle is equal to
∴ 62° + ∠Y + ∠Z = 180° [YZX = 62° (Given)]
⇒ ∠Y + ∠Z = 118° .
⇒ \(\frac { 1 }{ 2 }\)∠Y + \(\frac { 1 }{ 2 }\) ∠Z = \(\frac { 1 }{ 2 }\) x 118°
⇒ ∠OYZ + ∠OZY = 59°
(∵ YO and ZO are the bisectors of ∠XYZ and ∠XZY)
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 5
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 6

Question 3.
In figure, if AB || DE, ∠BAC = 35° and ∠CDE = 539 , find ∠DCE.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 7
Solution:
We have AB || DE
⇒ ∠AED= ∠ BAE (Alternate interior angles)
Now, ∠ BAE = ∠ BAC
⇒ ∠ BAE = 35° [ ∵ ∠ BAC = 35° (Given) ]
∴ ∠ AED = 35°
In ∆DCE,
∵ ∠DCE + ∠CED+ ∠EDC= 180° ( ∵Sum of all angles of triangle is equal to 180°)
⇒ ∠ DCE + 35°+ 53° = 180° ( ∵∠ AED = ∠ CED = 35°)
⇒ ∠ DCE = 180° – (35° + 53°)
⇒ ∠ DCE = 92°

Question 4.
In figure, if lines PQ and RS intersect at point T, such that ∠ PRT = 40°, ∠ RPT = 95° and ∠TSQ = 75°, find ∠ SQT.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 8
Solution:
∵∠PTS = ∠RPT + ∠PRT (Exterior angle = Sum of interior opposite angles)
∠ PTS = 95° + 40° [∵ ∠PPT = 95° (Given)]
⇒ ∠ PTS = 135° [and ∠PRT = 40°]
Also, ∠ TSQ + ∠ SQT = ∠ PTS (Exterior angle = Sum of interior opposite angles)
⇒ 75°+ ∠ SQT = 135°
⇒ ∠ SQT = 60° [∵ ∠ TSQ = 75° (Given)]

Question 5.
In figure, if PQ ⊥ PS, PQ||SR, ∠SQR = 2S° and ∠QRT = 65°, then find the values of x and y.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 9
Solution:
Here, PQ || SR
⇒ ∠ PQR = ∠ OPT (Alternate interior angles)
⇒ x + 28° = 65° ⇒ x = 37°
Now, in right angled ASPQ, we have ∠P = 90°
∴ ∠P + x + y = 180° (∵ Sum of all angles of a triangle is equal to 180°)
⇒ 90°+ 37°+ y= 180°
⇒ 127°+ y=180°
⇒ y = 53°

Question 6.
In figure, the side QR of A PQR is produced to a point S. If the bisectors of ∠PQR and ∠PRS meet at point T, then prove that
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 10
Solution:
In ∆ PQP,
∵ ∠QPR + ∠PQR = ∠PRS …(i)
(∵ Sum of interior opposite angles = Exterior angle)
Now, in ∆ TOR,
∵ ∠QTR + ∠TQR = ∠TRS …..(ii)
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 img 11

We hope the NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.3, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2

NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 4
Chapter Name Lines and Angles
Exercise Ex 4.2
Number of Questions Solved 6
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2

Question 1.
In figure, find the values of x and y and then show that AB || CD.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 1
Solution:
∵ x + 50° = 180° (Linear pair)
⇒ x = 130°
∴ y = 130° (Vertically opposite angle)
Here, ∠x = ∠COD = 130°
These are corresponding angles for lines AB and CD.
Hence, AB || CD

Question 2.
In figure, if AB || CD, CD || EF and y: z = 3:7, find x.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 2
Solution:
Given
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 3
⇒ Let y = 3k, z = 7k
x = ∠CHG (Corresponding angles)…(i)
∠CHG = z (Alternate angles)…(ii)
From Eqs. (i) and (ii), we get
x = z …….(iii)
Now, x+y = 180°
(Internal angles on the same side of the transversal)
⇒ z+y = 180° [From Eq. (iii)]
7k + 3k = 180°
⇒ 10k = 180°
⇒ k = 18
∴ y = 3 x 18° = 54°
and z = 7x 18°= 126°
∴ x = z
Now, x + y = 180°
(Internal angles on the same side of the transversal)
⇒ z + y = 180° [From Eq. (iii)]
7k + 3k = 180°
⇒ 10k = 180°
⇒ k = 18
∴ y = 3 x 18° = 54°
and z = 7x 18°= 126°
x = z
⇒ x = 126°

Question 3.
In figure, if AB || CD, EF ⊥ CD and ∠GED = 126°, find ∠AGE, ∠GEF and ∠FGE.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 4
Solution:
∵ ∠AGE = ∠GED (Alternate interior angles)
But ∠GED = 126°
⇒ ∠AGE = 126° ….(i)
∴ ∠GEF + ∠FED= 126°
⇒ ∠GEF + 90° =126° (∵ EF ⊥ CD)
⇒ ∠GEF = 36°
Also, ∠AGE + ∠FGE = 180° (Linear pair axiom)
⇒ 126° + ∠FGE =180°
⇒ ∠FGE = 54°

Question 4.
In figure, if PQ || ST, ∠ PQR = 110° and ∠ RST = 130°, find ∠QRS.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 5
Solution:
Drawing a tine parallel to ST through R.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 6
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 7

Question 5.
In figure, if AB || CD, ∠APQ = 50° and ∠PRD = 127°, find x and y.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 8
Solution:
We have, AB || CD
⇒ ∠APQ = ∠PQR (Alternate interior angles)
⇒ 50° = x
⇒ x = 50°
Now, ∠PQR + ∠QPR = 127°
(Exterior angle is equal to sum of interior opposite angles of a triangle)
⇒ 50°+ ∠QPR = 127°
⇒ y = 77°.

Question 6.
In figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 9
Solution:
NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 img 10

We hope the NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 4 Lines and Angles Ex 4.2, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid’s Geometry Ex 3.2

NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid’s Geometry Ex 3.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid’s Geometry Ex 3.2.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 3
Chapter Name Introduction to Euclid’s Geometry
Exercise Ex 3.2
Number of Questions Solved 2
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid’s Geometry Ex 3.2

Question 1.
How would you rewrite Euclid’s fifth postulate so that it would be easier to understand?
Solution:
Two distinct intersecting lines cannot be parallel to the same line.

Question 2.
Does Euclid’s fifth postulate imply the existence of parallel lines? Explain.
Solution:
Yes.
According to Euclid’s fifth postulate when line x falls on line y and z such that ∠1+ ∠2< 180°. Then, line y and line z on producing further will meet in the side of ∠1 arid ∠2 which is less than 180°.
NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid's Geometry Ex 3.2 img 1
We find that the lines which are not according to Euclid’s fifth postulate. i.e., ∠1 + ∠2 = 180°, do not intersect.

We hope the NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid’s Geometry Ex 3.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 3 Introduction to Euclid’s Geometry Ex 3.2, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 2
Chapter Name Polynomials
Exercise Ex 2.4
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4

Question 1.
Determine which of the following polynomials has (x +1) a factor.
(i) x3+x2+x +1
(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3 – x2 – (2 +√2 )x + √2
Solution:
The zero of x + 1 is -1.
(i) Let p (x) = x3 + x2 + x + 1
Then, p (-1) = (-1)3 + (-1)2 + (-1) + 1 .
= -1 + 1 – 1 + 1
⇒ p (- 1) = 0
So, by the Factor theorem (x+ 1) is a factor of x3 + x2 + x + 1.
(ii) Let p (x) = x4 + x3 + x2 + x + 1
Then, P(-1) = (-1)4 + (-1)3 + (-1)2 + (-1)+1
= 1 – 1 + 1 – 1 + 1
⇒ P (-1) = 1
So, by the Factor theorem (x + 1) is not a factor of x4 + x3 + x2 + x+ 1.
(iii) Let p (x) = x4 + 3x3 + 3x2 + x + 1 .
Then, p (-1)= (-1)4 + 3 (-1)3 + 3 (-1)2 + (- 1)+ 1
= 1- 3 + 3 – 1 + 1
⇒ p (-1) = 1
So, by the Factor theorem (x + 1) is not a factor of x4 + 3x3 + 3x2 + x+ 1.
(iv) Let p (x) = x3 – x2 – (2 + √2) x + √2
Then, p (- 1) =(- 1)3- (-1)2 – (2 + √2)(-1) + √2
= -1 – 1+ 2 +√2+√2
= 2√2
So, by the Factor theorem (x + 1) is not a factor of
x3 – x2 – (2 + √2) x + √2.

Question 2.
Use the Factor Theorem to determine whether g (x) is a factor of p (x) in each of the following cases
(i) p (x)= 2x3 + x2 – 2x – 1, g (x) = x + 1
(ii) p(x)= x3 + 3x2 + 3x + X g (x) = x + 2
(iii) p (x) = x3 – 4x2 + x + 6, g (x) = x – 3
Solution:
(i) The zero of g (x) = x + 1 is x= -1.
Then, p (-1) = 2 (-1)3+ (-1)2 – 2 (-1)-1 [∵ p(x) = 2x3 + x2 – 2x -1]
= -2 + 1 + 2 – 1
⇒ P (- 1)= 0
Hence, g (x) is a factor of p (x).

(ii)
The zero of g (x) = x + 2 is – 2.
Then, p (- 2) = (- 2)3 + 3 (- 2)2 +3 (- 2) + 1 [∵ p(x) = x3 + 3x2 + 3x + 1]
= – 8 + 12 – 6 + 1
⇒ p(-2) = -1
Hence, g (x) is not a factor of p (x).

(iii)
The zero of g (x) = x – 3 is 3.
Then, p (3) = 33 – 4 (3)2+3 + 6 [∵ p(x) = x3-4x2 + x+6]
= 27 – 36+ 3 +6
⇒ p(3) = 0
Hence, g (x) is a factor of p (x).

Question 3.
Find the value of k, if x – 1 is a factor of p (x) in each of the following cases
(i) p (x) = x2 + x + k
(ii) p (x) = 2x2 + kx + √2
(iii) p (x) = kx2 – √2 x + 1
(iv) p (x) = kx2 – 3x + k
Solution:
The zero of x – 1 is 1.
(i) (x – 1) is a factor of p (x),then p(1)= 0 (By Factor theorem)
⇒ 12 + 1 + k = 0 [∵ p(x) = x2 + x + k]
⇒ 2 + k =0
⇒ k = -2
(ii) ∵ (x -1) is a factor of p (x), then p (1) = 0 (By Factor theorem)
⇒ 2(1)2 + k(1)+√2= 0 [∵p(x) = 2x2 + kx+ -√2]
⇒ 2 + k + √2 = 0
⇒ k = – (2 + √2)
(iii) ∵ (x-1) is a factor of p (x), then p (1) = 0 (By Factor theorem)
⇒ k (1)2 – √2 + 1 = 0 [∵p(x) = kx2 – √2x + 1]
⇒ k = (√2 – 1)
(iv) ∵ (x-1) is a factor of p (x), then p (1) = 0 (By Factor theorem)
⇒ k(1)2 – 3 + k = 0 [∵p(x) = kx2 – 3x + k]
⇒ 2k-3 = 0
⇒ k = \(\frac { 3 }{ 2 }\)

Question 4.
Factorise
(i) 12x2 – 7x +1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x – 6
(iv) 3x2 – x – 4
Solution:
(i) 12x2 – 7x + 1 = 12x2 – 4x- 3x + 1 (Splitting middle term)
= 4x (3x – -0 -1 (3x-1)
= (3x -1) (4x -1)
(ii)2x2 + 7x + 3 = 2x2 + 6x + x + 3 (Splitting middle term)
= 2x (x + 3) +1 (x + 3) = (x + 3) (2x+ 1)
(iii) 6x2 + 5x – 6= 6x2 + 9x- 4x- 6 (Splitting middle term)
= 3x(2x+3)-2(2x+3)=(2x+3)(3x-2)
(iv) 3x2 – x- 4= 3x2-4x+3x-4 (Splitting middle term)
= x (3x – 4) + 1 (3x – 4)= (3x- 4) (x + 1)

Question 5.
Factorise
(i) x3 – 2x2 – x + 2
(ii) x3 – 3x2 – 9x – 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 – 2y – 1
Solution:
(i) Let p (x) = x3 – 2x2 – x+ 2, constant term of p (x) is 2.
Factors of 2 are ± 1 and ± 2.
Now, p (1) = 13 – 2 (1)2 – 1 + 2
=1- 2 – 1 + 2
p(1) = 0
By trial, we find that p (1) = 0, so (x – 1) is a factor of p (x).
So, x3 – 2x2 – x+ 2
= x3 – x2 – x2 + x – 2x + 2
= x2 ( x -1)- x (x – 1)-2 (x – 1)
= (x – 1)(x2 – x – 2)
= (x – 1)(x2 – 2x+x-2)
= (x – 1) [x (x – 2) + 1 (x – 2)]
= (x – 1) (x – 2)(x + 1)

(ii)
Let p(x) = x3 – 3x2 – 9x – 5
By trial, we find that p(5) = (5)3 – 3(5)2 – 9(5) – 5
=125 – 75 – 45 – 5 = 0
So, (x – 5) is a factor of p(x).
So, x3 – 3x2 – 9x – 5
= x3-5x2 + 2x2-10x+x-5
= x2(x – 5)+2x(x – 5)+1(x – 5)
= (x – 5) (x2 + 2x + 1)
= (x – 5) (x2 + x + x + 1)
= (x – 5) [x (x + 1)+ 1 (x+ 1)]
= (x – 5) (x + 1) (x + 1)
= (x – 5)(x+1)2

(iii)
Let p (x) = x3 + 13x2 + 32x + 20
By trial, we find that p (-1) = (-1)3 + 13(-1)2 + 32 (-1) + 20
= -1+13 – 32 + 20 = -33 + 33 = 0
So (x + 1) is a factor of p (x).
So, x3 + 13x2 + 32x + 20
= x3+ x2 + 12x2 + 12x+ 20x+ 20
=x2(x+ 1) + 12x(x+ 1)+ 20 (x+ 1)
= (x+1)(x2+12x+20)
= (x+ 1) (x2+ 10x + 2x+ 20)
= (x+1)[x(x+10)+2(x+10)]
= (x+ 1) (x+ 10) (x + 2)

(iv)
Let p (y) = 2y3 + y2 – 2y -1
By trial we find that p(1) = 2 (1)3 + (1)2 – 2(1) – 1 = 2 + 1 – 2 -1 = 0
So (y -1) is a factor of p (y).
So, 2y3 + y2 – 2y -1
= 2y3 – 2y2+ 3y2 – 3y + y – 1
= 2y2(y – 1) + 3y(y – 1)+1(y – 1)
= (y – 1) (2y2 + 3y + 1)
= (y – 1)(2y2 + 2y +y+1)
= (y – 1 [2y (y + 1) + 1 (y + 1)]
= (y – 1)(y+1)(2y+1)

We hope the NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.4, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 2
Chapter Name Polynomials
Exercise Ex 2.3
Number of Questions Solved 3
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3

Question 1.
Find the remainder when x3 + 3x2 + 3x + 1 is divided by
(i) x + 1
(ii) x – \(\frac { 1 }{ 2 }\)
(iii) x
(iv) x + π
(v) 5 + 2x
Solution:
Let p (x) = x3 + 3x2 + 3x + 1
(i) The zero of x+ 1 is – 1. (∵ x+ 1 = 0= x = -1)

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3 img 1

Question 2.
Find the remainder when x3-ax2 +6x-ais divided by x – a.
Solution:
The zero of x – a is a. (∵ x – a = 0 =» x= a)
Let p (x) = x3 – ax2 + 6x – a
So, p (a) = a3 – a (a)2 + 6a – a = a3 – a3 + 5a
⇒ p (a) = 5a
∴ Required remainder = 5a (By Remainder theorem)

Question 3.
Check whether 7 + 3x is a factor of 3x3+7x.
Solution:
Let f(x) = 3x3+7x
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3 img 2

We hope the NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.3, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 2
Chapter Name Polynomials
Exercise Ex 2.2
Number of Questions Solved 4
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2

Question 1.
Find the value of the polynomial 5x -4x2 + 3 at
(i) x = 0
(ii) x = – 1
(iii) x = 2
Solution:
Let p (x) = 5x – 4x2+ 3
(i) The value of p (x) = 5x – 4x2+ 3 at x= 0 is
p(0) = 5 x 0 – 4 x 02+3
⇒ P (0) = 3
(ii) The value of p (x) = 5x – 4x2 + 3 at x = -1 is
p(-1) = 5(-D-4(-1)2 + 3 = – 5 -4 + 3
⇒ P(-1) = -6
(iii) The value of p (x) = 5x- 4x2 + 3 at x = 2 is
p (2) = 5 (2)- 4 (2)2 + 3= 10- 16+ 3
⇒ P (2) = – 3

Question 2.
Find p (0), p (1) and p (2) for each of the following polynomials.
(i) p(y) = y2 – y +1
(ii) p (t) = 2 +1 + 2t2 -t3
(iii) P (x) = x3

(iv) p (x) = (x-1) (x+1)
Solution:
(i) p (y) = y2 -y +1
∴ p(0) = 02-0+1
⇒ p(0) = 1
p(1) = 12-1+ 1
⇒ p(1) = 1
and p (2) = 22 – 2 + 1 =4-2+1
⇒ P (2) = 3
(ii) p (t) = 2 + t + 2t2 -13
p(0) = 2+ 0+ 2 x 02– 03
⇒ P (0) = 2
p (1) = 2 + 1 + 2 x 12 – 13
⇒ p (1) = 3 + 2 – 1
⇒ p(1) = 4
and p (2) = 2 + 2 + 2 x 22 – 23
=4+8-8
⇒ P (2) = 4
(iii) P(x) = x3
⇒ p (0) = 03 ⇒ p (0) = 0 ⇒ p (1) = 13
⇒ P (1) = 1
and p (2) = 23 ⇒ p (2) = 8
(iv) p(x) = (x-1)(x+ 1)
p(0) = (0-1)(0+1)
⇒ P (0) = – 1
p (1) = (1 – 1) (1 + 1)
P (1) = 0
and p (2) = (2-1) (2+1)
P (2) = 3

Question 3.
Verify whether the following are zeroes of the polynomial, indicated against them.
(i)p(x) = 3x + 1,x = –\(\frac { 1 }{ 3 }\)

(ii)p (x) = 5x – π, x = \(\frac { 4 }{ 5 }\)
(iii) p (x) = x2 – 1, x = x – 1
(iv) p (x) = (x + 1) (x – 2), x = – 1,2
(v) p (x) = x2, x = 0
(vi) p (x) = lx + m, x = – \(\frac { m }{ l }\)
(vii) P (x) = 3x2 – 1, x = – \(\frac { 1 }{ \sqrt { 3 } }\),\(\frac { 2 }{ \sqrt { 3 } }\)
(viii) p (x) = 2x + 1, x = \(\frac { 1 }{ 2 }\)
Solution:
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.1 img 1
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.1 img 2
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.1 img 3
NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.1 img 4

Question 4.
Find the zero of the polynomial in each of the following cases
(i) p(x)=x+5
(ii) p (x) = x – 5
(iii) p (x) = 2x + 5
(iv) p (x) = 3x – 2
(v) p (x) = 3x
(vi) p (x)= ax, a≠0
(vii) p (x) = cx + d, c≠ 0 where c and d are real numbers.
Solution:
(i) We have, p (x)= x+ 5
Now, p (x) = 0
⇒ x+ 5 = 0
⇒ x = -5
∴ – 5 is a zero of the polynomial p (x).
(ii) We have, p (x) = x – 5
Now, p (x) = 0
⇒ x – 5 = 0
⇒ x = 5
∴ 5 is a zero of the polynomial p (x).
(iii) We have, p (x) = 2x + 5
Now, P (x)= 0
⇒ 2x+ 5= 0
⇒ x = –\(\frac { 5 }{ 2 }\)
∴ –\(\frac { 5 }{ 2 }\) is a zero of the polynomial p (x).
(iv) We have, p (x)= 3x- 2
Now p(x) = 0
⇒ 3x- 2 = 0
⇒ x= \(\frac { 2 }{ 3 }\)
∴ \(\frac { 2 }{ 3 }\) is a zero of the polynomial p (x).
(v) We have, p (x) = 3x
Now, p (x)= 0
⇒ 3x=0
⇒ x =0
∴ 0 is a zero of the polynomial p (x).
(vi) We have, p (x)= ax, a ≠ 0
Now, p (x)= 0 ⇒ ax= 0
⇒ x= 0
∴ 0 is.a zero of the polynomial p (x).
(vii) We have, p (x) = cx + d,c ≠ 0
Now, p (x) = 0
⇒ cx + d = 0
x = – \(\frac { d }{ c }\)
∴ – \(\frac { d }{ c }\) is a zero of the polynomial p (x).

We hope the NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 2 Polynomials Ex 2.2, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 1
Chapter Name Number Systems
Exercise Ex 1.6
Number of Questions Solved 3
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6

Question 1.
Find:
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 img 1
Solution:

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 img 2

Question 2.
Find:
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 img 3
Solution:
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 img 4

Question 3.
Simplify:
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 img 5
Solution:

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6 img 6

We hope the NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.6, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 1
Chapter Name Number Systems
Exercise Ex 1.5
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5

Question 1.
Classify the following numbers as rational or irrational.
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 img 1
Solution:
(i) Irrational ∵ 2 is a rational number and √5 is an irrational number.
∴ 2.√5 is an irrational number.
(∵The difference of a rational number and an irrational number is irrational)
(ii) 3 + \( \sqrt{23} \) – \( \sqrt{23} \) = 3 (rational)
(iii) \(\frac { 2\sqrt { 7 } }{ 7\sqrt { 7 } }\) (rational)
(iv) \(\frac { 1 }{ \sqrt { 2 } }\)(irrational) ∵ 1 ≠ 0 is a rational number and \( \sqrt{2} \)≠ 0 is an irrational number.
∴ \(\frac { 1 }{ \sqrt { 2 } }\) is an irrational number. 42
(∵ The quotient of a non-zero rational number with an irrational number is irrational).
(v) 2π (irrational) ∵ 2 is a rational number and π is an irrational number.
∴ 2x is an irrational number. ( ∵The product of a non-zero rational number with an irrational number is an irrational)

Question 2.
Simplify each of the following expressions
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 img 2
Solution:
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 img 3

Question 3.
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is π = \(\frac { c }{ d }\). This seems to contradict the fact that n is irrational. How will you resolve this contradiction?
Solution:
Actually \(\frac { c }{ d }\) = \(\frac { 22 }{ 7 }\),which is an approximate value of π.

Question 4.
Represent \( \sqrt{9.3} \) on the number line.
Solution:
Firstly we draw AB = 9.3 units. Now, from S, mark a distance of 1 unit. Let this point be C. Let O be the mid-point of AC. Now, draw aemi – circle with centre O and radius OA. Let us draw a line perpendicular to AC passing through point B and intersecting the semi-circle at point D.
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 img 4
∴ The distance BD = \( \sqrt{9.3} \)
Draw an arc with centre B and radius BD, which intersects the number line at point E, then the point E represents \( \sqrt{9.3} \) .

Question 5.
Rationalise the denominator of the following
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 img 5
Solution:
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5 img 6

We hope the NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.5, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 1
Chapter Name Number Systems
Exercise Ex 1.4
Number of Questions Solved 2
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4

Question 1.
Visualise 3.765 on the number line, using successive magnification.
Solution:
We know that, 3.765 lies between 3 and 4. So, let us divide the part of the number line between 3 and 4 into 10 equal parts and look at the portion between 3.7 and 3.8 through a magnifying glass. Now 3.765 lies between 3.7 and 3.8 [Fig. (i)]. Now, we imagine to divide this again into ten equal parts. The first mark will represent 3.71, the next 3.72 and soon. To see this clearly,we magnify this as shown in [Fig. (ii)].

Again 3.765 lies between 3.76 and 3.77 [Fig. (ii)]. So, let us focus on this portion of the number line [Fig. (iii)] and imagine to divide it again into ten equal parts [Fig. (iii)]. Here, we can visualise that 3.761 is the first mark and 3.765 is the 5th mark .in these subdivisions. We call this process of visualisation of representation of numbers on the number line through a magnifying glass as the process of successive magnification.

So, we get seen that it is possible by sufficient successive magnifications of visualise the position (or representation) of a real number with a terminating decimal expansion on the number line.
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4 img 1

Question 2.
Visualise 4.\(\bar { 26 }\) on the number line, upto 4 decimal places.
Solution:
We adopt process by successive magnification and successively decreasethe lengths of the portion of the number line in which 4.\(\bar { 26 }\) is located. Since 4.\(\bar { 26 }\) is located between 4 and 5 and is divided into 10 equal parts [Fig. (i)]. In further, we locate 4.26between 4.2 and 4.3 [Fig. (ii)].

To get more accurate visualisation of the representation, we divide this portion into 10 equal parts and use a magnifying glass to visualise that 4.\(\bar { 26 }\) lies between 4.26 and 4.27. To visualise 4.\(\bar { 26 }\) more clearly we divide again between 4.26 and 4.27 into 10 equal parts and visualise the repsentation of 4.\(\bar { 26 }\) between 4.262 and 4.263 [Fig. (iii)].

Now, for a much better visualisation between 4.262 and 4.263 is agin divided into 10 equal parts [Fig. (iv)]. Notice that 4.\(\bar { 26 }\) is located closer to 4.263 then to 4.262 at 4.2627.
NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4 img 2

Remark: We can adopt the process endlessly in this manner and simultaneously imagining the decrease in the length of the number line in which 4.\(\bar { 26 }\) is located.

We hope the NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4, help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 1 Number Systems Ex 1.4, drop a comment below and we will get back to you at the earliest.