RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2

RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2

Other Exercises

Question 1.
Verify that numbers given along side of the cubic polynomials below are their zeros. Also, verify the relationship between the zeros and coefficients in each case :
(i) f(x) = 2x3 – x2 – 5x + 2 ; \(\frac { 1 }{ 2 }\) , 1, -2
(ii) g(x) = x3 – 4x2 + 5x – 2 ; 2, 1, 1
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 1
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 2
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 3

Question 2.
Find a cubic polynomial with the sum, sum of product of its zeros taken two at a time and product of its zeros as 3, -1 and -3 respectively.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 4

Question 3.
If the zeros of the polynomial f(x) = 2x3 – 15x2 + 37x – 30 are in AP. Find them.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 5
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 6

Question 4.
Find the condition that the zeros of the polynomial f(x) = x3 + 3px2 + 3qx + r may be in AP.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 7
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 8

Question 5.
If the zeros of the polynomial f(x) = ax3 + 3bx2 + 3cx + d are in A.P., prove that 2b3 – 3abc + a2d = 0.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 9
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 10
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 11

Question 6.
If the zeros of the polynomial f(x) = x3 – 12x2 + 39x + k are in AP, find the value of k.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 12
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 13

Hope given RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1

RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1

Other Exercises

Question 1.
Find the zeros of each of the following quadratic polynomials and verify the relationship between the zeros and their co-efficients :
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 1
Solution:
(i) f(x) = x2 – 2x – 8
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 2
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 3
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 4
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 5
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 6
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 7
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 8
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 9
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 10
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 11
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 12
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 13
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 14
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 15
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 16
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 17
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 18

Question 2.
For each of the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 19
Solution:
(i) Given that, sum of zeroes (S) = – \(\frac { 8 }{ 3 }\)
and product of zeroes (P) = \(\frac { 4 }{ 3 }\)
Required quadratic expression,
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 20
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 21
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 22

Question 3.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – 5x + 4, find the value of \(\frac { 1 }{ \alpha } +\frac { 1 }{ \beta } -2\alpha \beta\).
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 23

Question 4.
If α and β are the zeros of the quadratic polynomial p(y) = 5y2 – 7y + 1, find the value of \(\frac { 1 }{ \alpha } +\frac { 1 }{ \beta }\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 24
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 25

Question 5.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – x – 4, find the value of \(\frac { 1 }{ \alpha } +\frac { 1 }{ \beta } -\alpha \beta\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 26

Question 6.
If α and β are the zeros of the quadratic polynomial f(x) = x2 + x – 2, find the value of \(\frac { 1 }{ \alpha } -\frac { 1 }{ \beta }\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 27
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 28

Question 7.
If one zero of the quadratic polynomial f(x) = 4x2 – 8kx – 9 is negative of the other, find the value of k.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 29

Question 8.
If the sum of the zeros of the quadratic polynomial f(t) = kt2 + 2t + 3k is equal to their product, find the value of k.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 30

Question 9.
If α and β are the zeros of the quadratic polynomial p(x) = 4x2 – 5x – 1, find the value of α2β + αβ2.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 31

Question 10.
If α and β are the zeros of the quadratic polynomial f(t) = t2 – 4t + 3, find the value of α4β3 + α3β4.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 32

Question 11.
If α and β are the zeros of the quadratic polynomial f (x) = 6x4 + x – 2, find the value of \(\frac { \alpha }{ \beta } +\frac { \beta }{ \alpha }\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 33
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 34

Question 12.
If α and β are the zeros of the quadratic polynomial p(s) = 3s2 – 6s + 4, find the value of \(\frac { \alpha }{ \beta } +\frac { \beta }{ \alpha } +2\left( \frac { 1 }{ \alpha } +\frac { 1 }{ \beta } \right) +3\alpha \beta\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 35
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 36

Question 13.
If the squared difference of the zeros of the quadratic polynomial f(x) = x2 + px + 45 is equal to 144, find the value of p
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 37

Question 14.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – px + q, prove that:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 38
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 39
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 40

Question 15.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – p(x + 1) – c, show that (α + 1) (β + 1) = 1 – c.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 41

Question 16.
If α and β are the zeros of the quadratic polynomial such that α + β = 24 and α – β = 8, find a quadratic polynomial having α and β as its zeros.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 42

Question 17.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – 1, find a quadratic polynomial whose zeros are \(\frac { 2\alpha }{ \beta }\) and \(\frac { 2\beta }{ \alpha }\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 43
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 44

Question 18.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – 3x – 2, find a quadratic polynomial whose zeros are \(\frac { 1 }{ 2\alpha +\beta }\) and \(\frac { 1 }{ 2\beta +\alpha }\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 45
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 46

Question 19.
If α and β are the zeroes of the polynomial f(x) = x2 + px + q, form a polynomial whose zeros are (α + β)2 and (α – β)2.
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 47
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 48

Question 20.
If α and β are the zeros of the quadratic polynomial f(x) = x2 – 2x + 3, find a polynomial whose roots are :
(i) α + 2, β + 2
(ii) \(\frac { \alpha -1 }{ \alpha +1 } ,\frac { \beta -1 }{ \beta +1 }\)
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 49
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 50
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 51

Question 21.
If α and β are the zeros of the quadratic polynomial f(x) = ax2 + bx + c, then evaluate :
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 52
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 53
Solution:
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 54
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 55
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 56
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 57
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 58
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 59
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 60
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 61
RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 62

 

Hope given RD Sharma Class 10 Solutions Chapter 2 Polynomials Ex 2.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS

RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS

Other Exercises

Question 1.
The exponent of 2 in the prime factorisation of 144, is
(a) 4
(b) 5
(c) 6
(d) 3
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 1

Question 2.
The LCM of two numbersls 1200. Which of the following cannot be their HCF ?
(a) 600
(b) 500
(c) 400
(d) 200
Solution:
(b) LCM of two number = 1200
Their HCF of these two numbers will be the factor of 1200
500 cannot be its HCF

Question 3.
If n = 23 x 34 x 44 x 7, then the number of consecutive zeroes in n, where n is a natural number, is
(a) 2
(b) 3
(c) 4
(d) 7
Solution:
(c) Because it has four factors n = 23 x 34 x 44 x 7
It has 4 zeroes

Question 4.
The sum of the exponents of the prime factors in the prime factorisation of 196, is
(a) 1
(b) 2
(c) 4
(d) 6
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 2

Question 5.
The number of decimal places after which the decimal expansion of the rational number \(\frac { 23 }{ { 2 }^{ 2 }\times 5 }\) will terminate, is
(a) 1
(b) 2
(c) 3
(d) 4
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 3

Question 6.
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 4
(a) an even number
(b) an odd number
(c) an odd prime number
(d) a prime number
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 5

Question 7.
If two positive integers a and b are expressible in the form a = pq2 and b = p2q ; p, q being prime numbers, then LCM (a, b) is
(a) pq
(b) p3q3
(c) p3q2
(d) p2q2
Solution:
(c) a and b are two positive integers and a =pq2 and b = p3q, where p and q are prime numbers, then LCM=p3q2

Question 8.
In Q. No. 7, HCF (a, b) is
(a) pq
(b) p3q3
(c) p3q2
(d) p2q2
Solution:
(a) a = pq2 and b =p3q where a and b are positive integers and p, q are prime numbers, then HCF =pq

Question 9.
If two positive integers tn and n arc expressible in the form m = pq3 and n = p3q2, where p, q are prime numbers, then HCF (m, n) =
(a) pq
(b) pq2
(c) p3q3
(d) p2q3
Solution:
(b) m and n are two positive integers and m = pq3 and n = pq2, where p and q are prime numbers, then HCF = pq2

Question 10.
If the LCM of a and 18 is 36 and the HCF of a and 18 is 2, then a =
(a) 2
(b) 3
(c) 4
(d) 1
Solution:
(c) LCM of a and 18 = 36
and HCF of a and 18 = 2
Product of LCM and HCF = product of numbers
36 x 2 = a x 18
a = \(\frac { 36\times 2 }{ 18 }\) = 4

Question 11.
The HCF of 95 and 152, is
(a) 57
(b) 1
(c) 19
(d) 38
Solution:
(c) HCF of 95 and 152 = 19
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 6

Question 12.
If HCF (26, 169) = 13, then LCM (26, 169) =
(a) 26
(b) 52
(f) 338
(d) 13
Solution:
(c) HCF (26, 169) = 13
LCM (26, 169) = \(\frac { 26\times 169 }{ 13 }\) = 338

Question 13.
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 7
(a) 1
(b) 2
(c) 3
(d) 4
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 8
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 9

Question 14.
The decimal expansion of the rational \(\frac { 14587 }{ 1250 }\) number will terminate after
(a) one decimal place
(b) two decimal place
(c) three decimal place
(d) four decimal place
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 10

Question 15.
If p and q are co-prime numbers, then p2 and q2 are
(a) co prime
(b) not co prime
(c) even
(d) odd
Solution:
(a) p and q are co-prime, then
p2 and q2 will also be coprime

Question 16.
Which of the following rational numbers have terminating decimal ?
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 11
(a) (i) and (ii)
(b) (ii) and (iii)
(c) (i) and (iii)
(d) (i) and (iv)
Solution:
(d) We know that a rational number has terminating decimal if the prime factors of its denominator are in the form 2m x 5n
\(\frac { 16 }{ 225 }\) and \(\frac { 7 }{ 250 }\) has terminating decimals

Question 17.
If 3 is the least prime factor of number a and 7 is the least prime factor of number b, then the least prime factor of a + b, is
(a) 2
(b) 3
(c) 5
(d) 10
Solution:
(a) 3 is the least prime factor of a
7 is the least prime factor of b, then
Sum of a a and b will be divisible by 2
2 is the least prime factor of a + b

Question 18.
\(3.\bar { 27 }\) is
(a) an integer
(b) a rational number
(c) a natural number
(d) an irrational number
Solution:
(b) \(3.\bar { 27 }\) is a rational number

Question 19.
The smallest number by which √27 should be multiplied so as to get a rational number is
(a) √27
(b) 3√3
(c) √3
(d) 3
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 12

Question 20.
The smallest rational number by which \(\frac { 1 }{ 3 }\) should be multiplied so that its decimal expansion terminates after one place of decimal, is
(a) \(\frac { 3 }{ 10 }\)
(b) \(\frac { 1 }{ 10 }\)
(c) 3
(d) \(\frac { 3 }{ 100 }\)
Solution:
(a) The smallest rational number which should be multiplied by \(\frac { 1 }{ 3 }\) to get a terminating
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 13

Question 21.
If n is a natural number, then 92n – 42n is always divisible by
(a) 5
(b) 13
(c) both 5 and 13
(d) None of these
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 14

Question 22.
If n is any natural number, then 6n – 5n always ends with
(a) 1
(b) 3
(c) 5
(d) 7
Solution:
(a) n is any natural number and 6n – 5n
We know that 6n ends with 6 and 5n ends with 5
6n – 5n will end with 6 – 5 = 1

Question 23.
The LCM and HCF of two rational numbers are equal, then the numbers must be
(a) prime
(b) co-prime
(c) composite
(d) equal
Solution:
(d) LCM and HCF of two rational numbers are equal Then those must be equal

Question 24.
If the sum of LCM and HCF of two numbers is 1260 and their LCM is 900 more than their HCF, then the product of two numbers is
(a) 203400
(b) 194400
(c) 198400
(d) 205400
Solution:
(b) Sum of LCM and HCF of two numbers = 1260
LCM = 900 more than HCF
LCM = 900 +HCF
But LCM = HCF = 1260
900 + HCF + HCF = 1260
=> 2HCF = 1260 – 900 = 360
=> HCF = 180
and LCM = 1260 – 180 = 1080
Product = LCM x HCF = 1080 x 180 = 194400
Product of numbers = 194400

Question 25.
The remainder when the square of any prime number greater than 3 is divided by 6, is
(a) 1
(b) 3
(c) 2
(d) 4
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 15

Question 26.
For some integer m, every even integer is of the form
(a) m
(b) m + 1
(c) 2m
(d) 2m + 1
Solution:
(c) We know that, even integers are 2, 4, 6, …
So, it can be written in the form of 2m Where, m = Integer = Z
[Since, integer is represented by Z]
or m = …, -1, 0, 1, 2, 3, …
2m = …, -2, 0, 2, 4, 6, …
Alternate Method
Let ‘a’ be a positive integer.
On dividing ‘a’ by 2, let m be the quotient and r be the remainder.
Then, by Euclid’s division algorithm, we have
a – 2m + r, where a ≤ r < 2 i.e., r = 0 and r = 1
=> a = 2 m or a = 2m + 1
When, a = 2m for some integer m, then clearly a is even.

Question 27.
For some integer q, every odd integer is of the form
(a) q
(b) q + 1
(c) 2q
(d) 2q + 1
Solution:
(d) We know that, odd integers are 1, 3, 5,…
So, it can be written in the form of 2q + 1 Where, q = integer = Z
or q = …, -1, 0, 1, 2, 3, …
2q + 1 = …, -3, -1, 1, 3, 5, …
Alternate Method
Let ‘a’ be given positive integer.
On dividing ‘a’ by 2, let q be the quotient and r be the remainder.
Then, by Euclid’s division algorithm, we have
a = 2q + r, where 0 ≤ r < 2
=> a = 2q + r, where r = 0 or r = 1
=> a = 2q or 2q + 1
When a = 2q + 1 for some integer q, then clearly a is odd.

Question 28.
n2 – 1 is divisible by 8, if n is
(a) an integer
(b) a natural number
(c) an odd integer
(d) an even integer
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 16
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 17
At k = -1, a = 4(-1)(-1 + 1) = 0 which is divisible by 8.
At k = 0, a = 4(0)(0 + 1) = 4 which is divisible by 8.
At k = 1, a = 4(1)(1 + 1) = 8 which is divisible by 8.
Hence, we can conclude from above two cases, if n is odd, then n2 – 1 is divisible by 8.

Question 29.
The decimal expansion of the rational number \(\frac { 33 }{ { 2 }^{ 2 }\times 5 }\) will terminate after
(a) one decimal place
(b) two decimal places .
(c) three decimal places
(d) more than 3 decimal places
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 18

Question 30.
If two positive integers a and b are written as a = x3y2 and b = xy3 ; x, y are prime numbers, then HCF (a, b) is
(a) xy
(b) xy2
(c) x3y3
(d) x2y2
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 19
[Since, HCF is the product of the smallest power of each common prime factor involved in the numbers]

Question 31.
The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(a) 10
(b) 100
(c) 504
(d) 2520
Solution:
(d) Factors of 1 to 10 numbers
1 = 1
2 = 1 x 2
3 = 1 x 3
4 = 1 x 2 x 2
5 = 1 x 5
6 = 1 x 2 x 3
7 = 1 x 7
8 = 1 x 2 x 2 x 2
9 = 1 x 3 x 3
10 = 1 x 2 x 5
LCM of number 1 to 10 = LCM (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
= 1 x 2 x 2 x 2 x 3 x 3 x 5 x 7 = 2520

Question 32.
The largest number which divides 70 and 125, leaving remainders 5 and 8, respectively, is
(a) 13
(b) 65
(c) 875
(d) 1750
Solution:
(a) Since, 5 and 8 are the remainders of 70 and 125, respectively. Thus, after subtracting these remainders from the numbers, we have the numbers 65 = (70 – 5), 117 = (125 – 8), which is divisible by the required number.
Now, required number = HCF of 65, 117
[For the largest number]
For this, 117 = 65 x 1 + 52 [Dividend = divisor x quotient + remainder]
=> 65 = 52 x 1 + 13
=> 52 = 13 x 4 + 0
HCF = 13
Hence, 13 is the largest number which divides 70 and 125, leaving remainders 5 and 8.

Question 33.
If the HCF of 65 and 117 is expressible in the form 65m – 117, then the value of m is
(a) 4
(b) 2
(c) 1
(d) 3
Solution:
(b) By Euclid’s division algorithm,
b = aq + r, 0 ≤ r < a [dividend = divisor x quotient + remainder]
=> 117 = 65 x 1 + 52
=> 65 = 52 x 1 + 13
=> 52 = 13 x 4 + 0
HCF (65, 117)= 13 …(i)
Also, given that HCF (65, 117) = 65m – 117 …..(ii)
From equations (i) and (ii),
65m – 117 = 13
=> 65m = 130
=> m = 2

Question 34.
The decimal expansion of the rational number \(\frac { 14587 }{ 1250 }\) will terminate after:
(a) one decimal place
(b) two decimal places
(c) three decimal places
(d) four decimal places
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQS 20
Hence, given rational number will terminate after four decimal places.

Question 35.
Euclid’s division lemma states that for two positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy
(a) 1 < r < b
(b) 0 < r ≤ b
(c) 0 ≤ r < b
(d) 0 < r < b
Solution:
(c) According to Euclid’s Division lemma, for a positive pair of integers there exists unique integers q and r, such that
a = bq + r, where 0 ≤ r < b

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers MCQSare helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

You can also download MCQ Questions For Class 10 Maths With Answers to help you to revise complete syllabus and score more marks in your examinations.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS

RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the questions :
Question 1.
State Euclid’s division lemma.
Solution:
Euclid’s division lemma:
Let a and b be any two positive integers, then there exist unique integers q and r such that
a = bq + r, 0 ≤ r < b
If b\a, then r = 0, otherwise x. satisfies the stronger inequality 0 < r < b.

Question 2.
State Fundamental Theorem of Arithmetic.
Solution:
Fundamental Theorem of Arithmetics :
Every composite number can be expressed (factorised) as a product of primes and this factorization is unique except for the order in which the prime factors occur.

Question 3.
Write 98 as product of its prime factors.
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 1

Question 4.
Write the exponent of 2 in the prime factorization of 144.
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 2

Question 5.
Write the sum of the exponents of prime factors in the prime factorization of 98
Solution:
98 = 2 x 7 x 7 = 21 x 72
Sum of exponents = 1 + 2 = 3

Question 6.
If the prime factorization of a natural number n is 23 x 32 x 52 x 7, write the number of consecutive zeros in n.
Solution:
n = 23 x 32 x 52 x 7
Number of zeros will be 52 x 22 = 102 two zeros

Question 7.
If the product of two numbers is 1080 and their H.C.F. is 30, find their L.C.M.
Solution:
Product of two numbers = 1080
H.C.F. = 30
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 3

Question 8.
Write the condition to be satisfied by q so that a rational number \(\frac { p }{ q }\) has a terminating decimal expansion. [C.B.S.E. 2008]
Solution:
In the rational number \(\frac { p }{ q }\) , the factorization of denominator q must be in form of 2m x 5n where m and n are non-negative integers.

Question 9.
Write the condition to be satisfied by q so that a rational number \(\frac { p }{ q }\) has a non-terminating decimal expansion.
Solution:
In the rational number \(\frac { p }{ q }\) , the factorization of denominator q, is not in the form of 2m x 5n where m and n are non-negative integers.

Question 10.
Complete the missing entries in the following factor tree.
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 4
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 5

Question 11.
The decimal expression of the rational number \(\frac { 43 }{ { 2 }^{ 4 }\times { 5 }^{ 3 } }\) will terminate after how many places of decimals. [C.B.S.E. 2009]
Solution:
The denominator of \(\frac { 43 }{ { 2 }^{ 4 }\times { 5 }^{ 3 } }\) is 24 x 53 which is in the form of 2m x 5n where m and n are positive integers
\(\frac { 43 }{ { 2 }^{ 4 }\times { 5 }^{ 3 } }\) has terminating decimals
The decimal expansion of \(\frac { 43 }{ { 2 }^{ 4 }\times { 5 }^{ 3 } }\) terminates after 4 (the highest power is 4) decimal places

Question 12.
Has the rational number \(\frac { 441 }{ { 2 }^{ 5 }\times { 5 }^{ 7 }\times { 7 }^{ 2 } }\) of a terminating or a non terminating decimal representation ? [CBSE 2010]
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 6

Question 13.
Write whether \(\frac { 2\surd 45+3\surd 20 }{ 2\surd 5 }\) on simplification gives a rational or an irrational number. [CBSE 2010]
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS 7

Question 14.
What is an algorithm ?
Solution:
Algorithm : An algorithm is a series of well defined slips which gives a procedure for solving a type of problem.

Question 15.
What is a lemma ?
Solution:
A lemma is a proven statement used for proving another statement.

Question 16.
If p and q are two prime numbers, then what is their HCF ?
Solution:
If p and q are two primes, then their HCF will be 1 as they have no common factor except 1.

Question 17.
If p and q are two prime numbers, then what is their LCM ?
Solution:
If p and q are two primes, their LCM will be their product.

Question 18.
What is the total number of factors of a prime number ?
Solution:
Total number of factors of a prime number are 2, first 1 and second the number itself.

Question 19.
What is a composite number ?
Solution:
A composite number is a number which can be factorised into more than two factors.

Question 20.
What is the HCF of the smallest composite number and the smallest prime number ?
Solution:
We know that 2 is the smallest prime number and 4 is the smallest composite number
HCF of 2 and 4 = 2

Question 21.
HCF of two numbers is always a factor of their LCM (True / False).
Solution:
True.

Question 22.
π is an irrational number (True / False).
Solution:
True as value of π is neither terminating nor repeating.

Question 23.
The sum of two prime numbers is always a prime number (True / False).
Solution:
False. Sum of two prime numbers can be a composite number
e.g. 3 and 5 are prime numbers but their sum 3 + 5 = 8 is a composite number.

Question 24.
The product of any three consecutive natural numbers is divisible by 6 (True / False).
Solution:
True.

Question 25.
Every even integer is of the form 2m, where m is an integer (True / False).
Solution:
True, as 2m is divisible by 2.

Question 26.
Every odd integer is of the form 2m – 1, where m is an integer (True / False).
Solution:
True, as 2m is an even number but if we subtract 1 from it, it will be odd number.

Question 27.
The product of two irrational numbers is an irrational number (True / False).
Solution:
False, as it is not always possible that the product of two irrational number be also an irrational number, it may be a rational number
for example
√3 x √3 = 3, √7 x √7 = 7

Question 28.
The sum of two irrational numbers is an irrational number (True / False).
Solution:
False, as it is not always possible that the sum of two irrational is also an irrational number, it may be rational number also.
For example
(2 + √3) + (2 – √3) = 2 + √3 + 2 – √3 = 4

Question 29.
For what value of n, 2n x 5n ends in 5.
Solution:
In 2n x 5n ,
There is no such value of n, which satisifies the given condition.

Question 30.
If a and b are relatively prime numbers, then what is their HCF ?
Solution:
a and b are two prime numbers
Their HCF =1

Question 31.
If a and b are relatively prime numbers, then what is their LCM ?
Solution:
a and b are two prime numbers
Their LCM = a x b

Question 32.
Two numbers have 12 as their HCF and 350 as their LCM (True / False).
Solution:
HCF of two numbers = 12
and LCM is 350
False, as the HCF of two numbers is a factor of their LCM and 12 is not a factor of 350

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1

RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two
Variables Ex 3.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1

Other Exercises

Question 1.
Akhila went to a fair in her village. She wanted to enjoy rides on the Giant Wheel and play Hoopla (a game in which you throw a rig on the items kept in the stall, and if the ring covers any object completely you get it). The number of times she played Hoopla is half the number of rides she had on the Giant Wheel. Each ride costs Rs. 3, and a game of Hoopla costs Rs. 4. If she spend Rs. 20 in the fair, represent this situation algebraically and graphically.
Solution:
Let number of rides on the wheel = x
and number of play of Hoopla = y
According to the given conditions x = 2y ⇒ x – 2y = 0 ….(i)
and cost of ride on wheel at the rate of Rs. 3 = 3x
and cost on Hoopla = 4y
and total cost = Rs. 20
3x + 4y = 20 ….(ii)
Now we shall solve these linear equations graphically as under
We take three points of each line and join them to get a line in each case the point of intersection will be the solution
From equation (i)
x = 2y

X 4 0 6
y 2 0 3

y = 2, then x = 2 x 2 = 4
y = 0, then x = 2 x 0 = 0
y = 3, then x = 2 x 3 = 6
Now, we plot these points on the graphs and join them to get a line
Similarly in equation (ii)
3x + 4y = 20 ⇒ 3x = 20 – 4y
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 1
Now we plot these points and get another line by joining them
These two lines intersect eachother at the point (4, 2)
Its solution is (4, 2)
Which is a unique Hence x = 4, y = 2
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 2

Question 2.
Aftab tells his daughter, “Seven years ago, I w as seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” Is not this interesting ? Represent this situation algebraically and graphically.
Solution:
Seven years ago
Let age of Aftab’s daughter = x years
and age of Aftab = y years
and 3 years later
Age of daughter = x + 10 years
and age of Aftab = y + 10 years
According to the conditions,
y = 7x ⇒ 7x – y = 0 ……….(i)
y + 10 = 3 (x + 10)
=> y + 10 = 3x + 30
3x – y = 10 – 30 = -20
3x – y = -20 ….(ii)
Equations are
7x – y = 0
3 x – y = -20
Now we shall solve these linear equations graphically as under
7x – y = 0 ⇒ y = 7x

X 0 1 -1
y 0 7 -7

If x = 0, y = 7 x 0 = 0
If x = 1, y = 7 x 1=7
If x = -1, y = 7 x (-1) = -7
Now plot these points on the graph and join
then
3x – y = -20
y = 3x + 20

X -1 -2 -3
y 17 14 11

If x = -1, y = 3 x (-1) + 20 = -3 + 20= 17
If x = -2, y = 3 (-2) + 20 = -6 + 20 = 14
If x = -3, y = 3 (-3) + 20 = -9 + 20= 11
Now plot the points on the graph and join them we see that lines well meet at a point on producing at (5, 35).
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 3

Question 3.
The path of a train A is given by the equation 3x + 4y – 12 = 0 and the path of another train B is given by the equation 6x + 8y – 48 = 0. Represent this situation graphically.
Solution:
Path of A train is 3x + 4y – 12 = 0
and path of B train is 6x + 8y – 48 = 0
Graphically, we shall represent these on the graph as given under 3x + 4y- 12 = 0
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 4
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 5
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 6

Question 4.
Gloria is walking along the path joining (-2, 3) and (2, -2), while Suresh is walking along the path joining (0, 5) and (4, 0). Represent this situation graphically.
Solution:
Plot the points (-2, 3) and (2, -2) and join them to get a line
and also plot the points (0, 5), (4, 0) and joint them to get another line as shown on the graph
We see that these two lines are parallel to each other
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 7

Question 5.
On comparing the ratios , and without drawing them, find out whether the lines representing following pairs of linear equations intersect at a point, are parallel or coincide :
(i) 5x – 4y + 8 = 0
7x + 6y – 9 = 0
(ii) 9x + 3y +12 = 0
18x + 6y + 24 = 0
(iii) 6x – 3y +10 = 0
2x – y + 9 = 0
Solution:
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 8
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 9
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 10

Question 6.
Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representation of the pair so formed is :
(i) intersecting lines
(ii) parallel lines
(iii) coincident lines.
Solution:
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 11
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 12

Question 7.
The cost of 2kg of apples and 1 kg of grapes on a day was found to be Rs. 160. After a month, the cost of 4kg of apples and 2kg of grapes is Rs. 300. Represent the situation algebraically and geo-metrically.
Solution:
Let cost of 1kg of apples = Rs. x
and cost of 1kg of grapes = Rs. y
Now according to the condition, the system of equation will be
2x + y = 160
4x + 2y = 300
Now 2x + y = 160
y = 160 – 2x

X 20 40 60
y 120 80 40

If x = 20, then y = 160 – 2 x 20 = 160 – 40 = 120
If x = 40, then y = 160 – 2 x 40 = 160 – 80 = 80
If x = 60, then y = 160 – 2 x 60 = 160 – 120 = 40
Now plot the points and join them and 4x + 2y = 300
=> 2x + y = 150
=> y = 150 – 2x

X 40 50 60
y 70 50 30

If x = 40, then y = 150 – 2 x 40 = 150 – 80 = 70
If x = 50, then y = 150 – 2 x 50 = 150 – 100 = 50
If x = 60, then y = 150 – 2 x 60 = 150 – 120 = 30
Now plot the points and join them We see that these two lines are parallel
RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 13

 

Hope given RD Sharma Class 10 Solutions Chapter 3 Pair of Linear Equations in Two Variables Ex 3.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS

RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS. You must go through NCERT Solutions for Class 10 Maths to get better score in CBSE Board exams along with RS Aggarwal Class 10 Solutions.

Mark the correct alternative in each of the following :
Question 1.
If α, β are the zeros of the polynomial f(x) = x2 + x + 1, then \(\frac { 1 }{ \alpha } +\frac { 1 }{ \beta }\) =
(a) 1
(b) -1
(c) 0
(d) None of these
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 1

Question 2.
If α, β are the zeros of the polynomial p(x) = 4x2 + 3x + 7, then \(\frac { 1 }{ \alpha } +\frac { 1 }{ \beta }\) is equal to
(a) \(\frac { 7 }{ 3 }\)
(b) – \(\frac { 7 }{ 3 }\)
(c) \(\frac { 3 }{ 7 }\)
(d) – \(\frac { 3 }{ 7 }\)
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 2

Question 3.
If one zero of the polynomial f(x) = (k2 + 4) x2 + 13x + 4k is reciprocal of the other, then k =
(a) 2
(b) -2
(c) 1
(d) -1
Solution:
(a) f (x) = (k2 + 4) x2 + 13x + 4k
Here a = k2 + 4, b = 13, c = 4k
One zero is reciprocal of the other
Let first zero = α
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 3
k = 2

Question 4.
If the sum of the zeros of the polynomial f(x) = 2x3 – 3kx2 + 4x – 5 is 6, then value of k is
(a) 2
(b) 4
(c) -2
(d) -4
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 4

Question 5.
If α and β are the zeros of the polynomial f(x) = x2 + px + q, then a polynomial having α and β is its zeros is
(a) x2 + qx + p
(b) x2 – px + q
(c) qx2 + px + 1
(d) px2 + qx + 1
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 5

Question 6.
If α, β are the zeros of polynomial f(x) = x2 – p (x + 1) – c, then (α + 1) (β + 1) =
(a) c – 1
(b) 1 – c
(c) c
(d) 1 + c
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 6

Question 7.
If α, β are the zeros of the polynomial f(x) = x2 – p(x + 1) – c such that (α + 1) (β + 1) = 0, then c =
(a) 1
(b) 0
(c) -1
(d) 2
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 7
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 8

Question 8.
If f(x) = ax2 + bx + c has no real zeros and a + b + c < 0, then
(a) c = 0
(b) c > 0
(c) c < 0
(d) None of these
Solution:
(d) f(x) = ax2 + bx + c
Zeros are not real
b2 – 4ac < 0 ….(i)
but a + b + c < 0
b < – (a + c)
Squaring both sides b2 < (a + c)2
=> (a + c)2 – 4ac < 0 {From (i)}
=> (a – c)2 < 0
=> a – c < 0
=> a < c

Question 9.
If the diagram in figure shows the graph of the polynomial f(x) = ax2 + bx + c, then
(a) a > 0, b < 0 and c > 0
(b) a < 0, b < 0 and c < 0
(c) a < 0, b > 0 and c > 0
(d) a < 0, b > 0 and c < 0
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 9
Solution:
(a) Curve ax2 + bx + c intersects x-axis at two points and curve is upward.
a > 0, b < 0 and c> 0

Question 10.
Figure shows the graph of the polynomial f(x) = ax2 + bx + c for which
(a) a < 0, b > 0 and c > 0
(b) a < 0, b < 0 and c > 0
(c) a < 0, b < 0 and c < 0
(d) a > 0, b > 0 and c < 0
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 10
Solution:
(b) Curve ax2 + bx + c intersects x-axis at two points and curve is downward.
a < 0, b < 0 and c > 0

Question 11.
If the product of zeros of the polynomial f(x) = ax3 – 6x2 + 11x – 6 is 4, then a =
(a) \(\frac { 3 }{ 2 }\)
(b) – \(\frac { 3 }{ 2 }\)
(c) \(\frac { 2 }{ 3 }\)
(d) – \(\frac { 2 }{ 3 }\)
Solution:
(a) f(x) = ax3 – 6x2 + 11x – 6
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 11

Question 12.
If zeros of the polynomial f(x) = x3 – 3px2 + qx – r are in AP, then
(a) 2p3 = pq – r
(b) 2p3 = pq + r
(c) p3 = pq – r
(d) None of these
Solution:
(a) f(x) = x3 – 3px2 + qx – r
Here a = 1, b = -3p, c = q, d= -r
Zeros are in AP
Let the zeros be α – d, α, α + d
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 12

Question 13.
If the product of two zeros of the polynomial f(x) = 2x3 + 6x2 – 4x + 9 is 3, then its third zero is
(a) \(\frac { 3 }{ 2 }\)
(b) – \(\frac { 3 }{ 2 }\)
(c) \(\frac { 9 }{ 2 }\)
(d) – \(\frac { 9 }{ 2 }\)
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 13

Question 14.
If the polynomial f(x) = ax2 + bx – c is divisible by the polynomial g(x) = ax2 + bx + c, then ab =
(a) 1
(b) \(\frac { 1 }{ c }\)
(c) – 1
(d) – \(\frac { 1 }{ c }\)
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 14
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 15

Question 15.
In Q. No. 14, ac =
(a) b
(b) 2b
(c) 2b2
(d) -2b
Solution:
(b) In the previous questions
Remainder = 0
(b – ac + ab2) = 0
b + ab2 = ac
=> ac = b (1 + ab) = b (1 + 1) = 2b

Question 16.
If one root of the polynomial f(x) = 5x2 + 13x + k is reciprocal of the other, then the value of k is
(a) 0
(b) 5
(c) \(\frac { 1 }{ 6 }\)
(d) 6
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 16

Question 17.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then \(\frac { 1 }{ \alpha } +\frac { 1 }{ \beta } +\frac { 1 }{ \gamma }\) =
(a) – \(\frac { b }{ d }\)
(b) \(\frac { c }{ d }\)
(c) – \(\frac { c }{ d }\)
(d) \(\frac { c }{ a }\)
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 17

Question 18.
If α, β, γ are the zeros of the polynomial f(x) = ax3 + bx2 + cx + d, then α2 + β2 + γ2 =
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 18
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 19
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 20

Question 19.
If α, β, γ are the zeros of the polynomial f(x) = x3 – px2 + qx – r, then \(\frac { 1 }{ \alpha \beta } +\frac { 1 }{ \beta \gamma } +\frac { 1 }{ \gamma \alpha }\) =
(a) \(\frac { r }{ p }\)
(b) \(\frac { p }{ r }\)
(c) – \(\frac { p }{ r }\)
(d) – \(\frac { r }{ p }\)
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 21

Question 20.
If α, β are the zeros of the polynomial f(x) = ax2 + bx + c, then \(\frac { 1 }{ { \alpha }^{ 2 } } +\frac { 1 }{ { \beta }^{ 2 } }\) =
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 22
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 23
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 24

Question 21.
If two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero, then the third zero is
(a) \(\frac { -d }{ a }\)
(b) \(\frac { c }{ a }\)
(c) \(\frac { -b }{ a }\)
(d) \(\frac { b }{ a }\)
Solution:
(c) Two of the zeros of the cubic polynomial ax3 + bx2 + cx + d are each equal to zero
Let α, β and γ are its zeros, then
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 25
Third zero will be \(\frac { -b }{ a }\)

Question 22.
If two zeros of x3 + x2 – 5x – 5 are √5 and – √5 then its third zero is
(a) 1
(b) -1
(c) 2
(d) -2
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 26

Question 23.
The product of the zeros of x3 + 4x2 + x – 6 is
(a) – 4
(b) 4
(c) 6
(d) – 6
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 27

Question 24.
What should be added to the polynomial x2 – 5x + 4, so that 3 is the zero of the resulting polynomial ?
(a) 1
(b) 2
(c) 4
(d) 5
Solution:
(b) 3 is the zero of the polynomial f(x) = x2 – 5x + 4
x – 3 is a factor of f(x)
Now f(3) = (3)2 – 5 x 3 + 4 = 9 – 15 + 4 = 13 – 15 = -2
-2 is to be subtracting or 2 is added

Question 25.
What should be subtracted to the polynomial x2 – 16x + 30, so that 15 is the zero of the resulting polynomial ?
(a) 30
(b) 14
(b) 15
(d) 16
Solution:
(c) 15 is the zero of polynomial f(x) = x2 – 16x + 30
Then f(15) = 0
f(15) = (15)2 – 16 x 15 + 30 = 225 – 240 + 30 = 255 – 240 = 15
15 is to be subtracted

Question 26.
A quadratic polynomial, the sum of whose zeroes is 0 and one zero is 3, is
(a) x2 – 9
(b) x2 + 9
(c) x2 + 3
(d) x2 – 3
Solution:
(a) In a quadratic polynomial
Let α and β be its zeros
and α + β = 0
and one zero = 3
3 + β = 0 ⇒ β = -3 .
Second zero = -3
Quadratic polynomial will be
(x – 3) (x + 3) ⇒ x2 – 9

Question 27.
If two zeroes of the polynomial x3 + x2 – 9x – 9 are 3 and -3, then its third zero is
(a) -1
(b) 1
(c) -9
(d) 9
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 28
=> γ = -1
Third zero = -1

Question 28.
If √5 and – √5 are two zeroes of the polynomial x3 + 3x2 – 5x – 15, then its third zero is
(a) 3
(b) – 3
(c) 5
(d) – 5
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 29

Question 29.
If x + 2 is a factor x2 + ax + 2b and a + b = 4, then
(a) a = 1, b = 3
(b) a = 3, b = 1
(c) a = -1, b = 5
(d) a = 5, b = -1
Solution:
(b) x + 2 is a factor of x2 + ax + 2b and a + b = 4
x + 2 is one of the factor
x = – 2 is its one zero
f(-2) = 0
=> (-2)2 + a (-2) + 2b = 0
=> 4 – 2a + 2b = 0
=> 2a – 2b = 4
=> a – b = 2
But a + b = 4
Adding we get, 2a = 6 => a = 3
and a + b = 4 => 3 + b = 4 => b = 4 – 3 = 1
a = 3, b = 1

Question 30.
The polynomial which when divided by – x2 + x – 1 gives a quotient x – 2 and remainder 3, is
(a) x3 – 3x2 + 3x – 5
(b) – x3 – 3x2 – 3x – 5
(c) – x3 + 3x2 – 3x + 5
(d) x3 – 3x2 – 3x + 5
Solution:
(c) Divisor = – x2 + x – 1, Quotient = x – 2 and
Remainder = 3, Therefore
Polynomial = Divisor x Quotient+Remainder
= (-x2 + x – 1) (x – 2) + 3
= – x3 + x2 – x + 2x2 – 2x + 2 + 3
= – x3 + 3x2 – 3x + 5

Question 31.
The number of polynomials having zeroes -2 and 5 is
(a) 1
(b) 2
(c) 3
(d) more than 3
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 30
Hence, the required number of polynomials are infinite i.e., more than 3.

Question 32.
If one of the zeroes of the quadratic polynomial (k – 1)x2 + kx + 1 is -3, then the value of k is
(a) \(\frac { 4 }{ 3 }\)
(b) – \(\frac { 4 }{ 3 }\)
(c) \(\frac { 2 }{ 3 }\)
(d) – \(\frac { 2 }{ 3 }\)
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 31

Question 33.
The zeroes of the quadratic polynomial x2 + 99x + 127 are
(a) both positive
(b) both negative
(c) both equal
(d) one positive and one negative
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 32
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 33

Question 34.
If the zeroes of the quadratic polynomial x2 + (a + 1) x + b are 2 and -3, then
(a) a = -7, b = -1
(b) a = 5, b = -1
(c) a = 2, b = -6
(d) a = 0, b = -6
Solution:
(d)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 34

Question 35.
Given that one of the zeroes of the cubic polynomial ax3 + bx2 + cx + d is zero, the product of the other two zeroes is
(a) – \(\frac { c }{ a }\)
(b) \(\frac { c }{ a }\)
(c) 0
(d) – \(\frac { b }{ a }\)
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 35

Question 36.
The zeroes of the quadratic polynomial x2 + ax + a, a ≠ 0,
(a) cannot both be positive
(b) cannot both be negative
(c) area always unequal
(d) are always equal
Solution:
(a) Let p(x) = x2 + ax + a, a ≠ 0
On comparing p(x) with ax2 + bx + c, we get
a = 1, b = a and c = a
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 36
So, both zeroes are negative.
Hence, in any case zeroes of the given quadratic polynomial cannot both the positive.

Question 37.
If one of the zeroes of the cubic polynomial x3 + ax2 + bx + c is -1, then the product of other two zeroes is
(a) b – a + 1
(b) b – a – 1
(c) a – b + 1
(d) a – b – 1
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 37
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 38
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 39
=> α β = -a + b + 1
Hence, the required product of other two roots is (-a + b + 1)

Question 38.
Given that two of the zeroes of the cubic polynomial ax3 + bx2 + cx + d are 0, the third zero is
(a) – \(\frac { b }{ a }\)
(b) \(\frac { b }{ a }\)
(c) \(\frac { c }{ a }\)
(d) – \(\frac { d }{ a }\)
Solution:
(a) Two of the zeroes of the cubic polynomial
ax3 + bx2 + cx + d = 0, 0
Let the third zero be d
Then, use the relation between zeroes and coefficient of polynomial, we have
d + 0 + 0 = – \(\frac { b }{ a }\)
⇒ d = – \(\frac { b }{ a }\)

Question 39.
If one zero of the quadratic polynomial x2 + 3x + k is 2, then the value of k is
(a) 10
(b) -10
(c) 5
(d) -5
Solution:
(b) Let the given quadratic polynomial be P(x) = x2 + 3x + k
It is given that one of its zeros is 2
P(2) = 0
=> (2)2 + 3(2) + k = 0 => 4 + 6 + k = 0
=> k + 10 = 0 => k = -10

Question 40.
If the zeroes of the quadratic polynomial ax2 + bx + c, c ≠ 0 are equal, then
(a) c and a have opposite signs
(b) c and b have opposite signs
(c) c and a have the same sign
(d) c and b have the same sign
Solution:
(c) The zeroes of the given quadratic polynomial ax2 + bx + c, c ≠ 0 are equal. If coefficient of x2 and constant term have the same sign
i.e., c and a have the same sign. While b i.e., coefficient of x can be positive/negative but not zero.
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 40

Question 41.
If one of the zeroes of a quadratic polynomial of the form x2 + ax + b is the negative of the other, then it
(a) has no linear term and constant term is negative.
(b) has no linear term and the constant term is positive.
(c) can have a linear term but the constant term is negative.
(d) can have a linear term but the constant term is positive.
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 41
Given that, one of the zeroes of a quadratic polynomial p(x) is negative of the other.
αβ < 0
So, b < 0 [from Eq. (i)]
Hence, b should be negative Put a = 0, then,
p(x) = x2 + b = 0 => x2 = – b
=> x = ± √-b [ b < 0]
Hence, if one of the zeroes of quadratic polynomial p(x) is the negative of the other, then it has no linear term i.e., a = 0 and the constant term is negative i.e., b < 0. Alternate Method Let f(x) = x2 + ax + b and by given condition the zeroes are a and -a. Sum of the zeroes = α – α = a => a = 0
f(x) = x2 + b, which cannot be linear and product of zeroes = α (-α) = b
=> – α2 = b
which is possible when, b < 0.
Hence, it has no linear term and the constant tenn is negative.

Question 42.
Which of the following is not the graph of a quadratic polynomial?
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 42
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 43
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 44
RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS 45
Solution:
(d) For any quadratic polynomial ax2+ bx + c, a 0, the graph of the corresponding equation y = ax2 + bx + c has one of the two shapes either open upwards like ∪ or open downwards like ∩ depending on whether a > 0 or a < 0. These curves are called parabolas. So, option (d) cannot be possible.
Also, the curve of a quadratic polynomial crosses the X-axis on at most two points but in option (d) the curve crosses the X-axis on the three points, so it does not represent the quadratic polynomial.

Hope given RD Sharma Class 10 Solutions Chapter 2 Polynomials MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5

Other Exercises

Question 1.
Show that the following numbers are irrational
(i) \(\frac { 1 }{ \surd 2 }\)
(ii) 7 √5
(iii) 6 + √2
(iv) 3 – √5
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 1
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 2
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 3
But it contradics that because √5 is irrational
3 – √5 is irrational

Question 2.
Prove that following numbers are irrationals :
(i) \(\frac { 2 }{ \surd 7 }\)
(ii) \(\frac { 3 }{ 2\surd 5 }\)
(iii) 4 + √2
(iv) 5 √2
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 4
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 5
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 6
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 7
5 √2 is an irrational number

Question 3.
Show that 2 – √3 is an irrational number. [C.B.S.E. 2008]
Solution:
Let 2 – √3 is not an irrational number
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 8
√3 is a rational number
But it contradicts because √3 is an irrational number
2 – √3 is an irrational number
Hence proved.

Question 4.
Show that 3 + √2 is an irrational number.
Solution:
Let 3 + √2 is a rational number
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 9
and √2 is irrational
But our suppositon is wrong
3 + √2 is an irrational number

Question 5.
Prove that 4 – 5√2 is an irrational number. [CBSE 2010]
Solution:
Let 4 – 5 √2 is not are irrational number
and let 4 – 5 √2 is a rational number
and 4 – 5 √2 = \(\frac { a }{ b }\) where a and b are positive prime integers
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 10
√2 is a rational number
But √2 is an irrational number
Our supposition is wrong
4 – 5 √2 is an irrational number

Question 6.
Show that 5 – 2 √3 is an irrational number.
Solution:
Let 5 – 2 √3 is a rational number
Let 5 – 2 √3 = \(\frac { a }{ b }\) where a and b are positive integers
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 11
and √3 is a rational number
Our supposition is wrong
5 – 2 √3 is a rational number

Question 7.
Prove that 2 √3 – 1 is an irrational number. [CBSE 2010]
Solution:
Let 2 √3 – 1 is not an irrational number
and let 2 √3 – 1 a ration number
and then 2 √3 – 1 = \(\frac { a }{ b }\) where a, b positive prime integers
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 12
√3 is a rational number
But √3 is an irrational number
Our supposition is wrong
2 √3 – 1 is an irrational number

Question 8.
Prove that 2 – 3 √5 is an irrational number. [CBSE 2010]
Solution:
Let 2 – 3 √5 is not an irrational number and let 2 – 3 √5 is a rational number
Let 2 – 3 √5 = \(\frac { a }{ b }\) where a and b are positive prime integers
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 13
\(\Longrightarrow \frac { 2b-a }{ 3b } =\surd 5\)
√5 is a rational
But √5 is an irrational number
Our supposition is wrong
2 – 3 √5 is an irrational

Question 9.
Prove that √5 + √3 is irrational.
Solution:
Let √5 + √3 is a rational number
and let √5 + √3 = \(\frac { a }{ b }\) where a and b are co-primes
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 14
√3 is a rational number
But it contradics as √3 is irrational number
√5 + √3 is irrational

Question 10.
Prove that √2 + √3 is an irrational number.
Solution:
Let us suppose that √2 + √3 is rational.
Let √2 + √3 = a, where a is rational.
Therefore, √2 = a – √3
Squaring on both sides, we get
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 15
which is a contradiction as the right hand side is a rational number while √3 is irrational.
Hence, √2 + √3 is irrational.

Question 11.
Prove that for any prime positive integer p, √p is an irrational number.
Solution:
Suppose √p is not a rational number
Let √p be a rational number
and let √p = \(\frac { a }{ b }\)
Where a and b are co-prime number
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 16
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 17
But it contradicts that a and b are co-primes
Hence our supposition is wrong
√p is an irrational

Question 12.
If p, q are prime positive integers, prove that √p + √q is an irrational number
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 18
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 19
Hence proved.

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.5 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4

Other Exercises

Question 1.
Find the L.C.M. and H.C.F. of the following pairs of integers and verify that L.C.M. x H.C.F. = Product of the integers.
(i) 26 and 91
(ii) 510 and 92
(iii) 336 and 54
Solution:
(i) 26 and 91
26 = 2 x 13
91 = 7 x 13
H.C.F. = 13
and L.C.M. = 2 x 7 x 13 = 182
Now, L.C.M. x H.C.F. = 182 x 13 = 2366
and 26 x 91 = 2366
L.C.M. x H.C.F. = Product of integers
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 1
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 2

Question 2.
Find the L.C.M. and H.C.F. of the following integers by applying the prime factorisation method :
(i) 12, 15 and 21
(ii) 17, 23 and 29
(iii) 8, 9 and 25
(iv) 40, 36 and 126
(v) 84, 90 and 120
(vi) 24,15 and 36
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 3
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 4
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 5
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 6

Question 3.
Given that HCF (306, 657) = 9, Find LCM (306, 657). [NCERT]
Solution:
HCF of 306, 657 = 9
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 7

Question 4.
Can two numbers have 16 as their H.C.F. and 380 as their L.C.M. ? Give reason.
Solution:
H.C.F. of two numbers = 16
and their L.C.M. = 380
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 8
We know the H.C.F. of two numbers is a factor of their L.C.M. but 16 is not a factor of 380 or 380 is not divisible by 16
It can not be possible.

Question 5.
The H.C.F. of two numbers is 145 and their L.C.M. is 2175. If one number is 725, find the other.
Solution:
First number = 725
Let second number = x
Their H.C.F. = 145
and L.C.M. = 2175
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 9
Second number = 435

Question 6.
The H.C.F. of two numbers is 16 and their product is 3072. Find their L.C.M.
Solution:
H.C.F. of two numbers = 16
and product of two numbers = 3072
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 10

Question 7.
The L.C.M. and H.C.F. of two numbers are 180 and 6 respectively. If one of the number is 30, find the other number.
Solution:
First number = 30
Let x be the second number
Their L.C.M. = 180 and H.C.F. = 6
We know that
first number x second number = L.C.M. x H.C.F.
30 x x = 180 x 6
⇒ x = \(\frac { 180\times 6 }{ 30 }\) = 36
Second number = 36

Question 8.
Find the smallest number which when increased by 17 is exactly divisible by both 520 and 468.
Solution:
L.C.M. of 520 and 468
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 11
= 2 x 2 x 9 x 10 x 13 = 4680
The number which is increased = 17
Required number 4680 – 17 = 4663

Question 9.
Find the smallest number which leaves remainders 8 and 12 when divided by 28 and 32 respectively.
Solution:
Dividing by 28 and 32, the remainders are 8 and 12 respectively
28 – 8 = 20
32 – 12 = 20
Common difference = 20
Now, L.C.M. of 28 and 32
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 12
= 2 x 2 x 7 x 8 = 224
Required smallest number = 224 – 20 = 204

Question 10.
What is the smallest number that, when divided by 35, 56 and 91 leaves remainders of 7 in each case ?
Solution:
L.C.M. of 35, 56, 91
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 13
= 5 x 7 x 8 x 13 = 3640
Remainder in each case = 7
The required smallest number = 3640 + 7 = 3647

Question 11.
A rectangular courtyard is 18 m 72 cm long and 13 m 20 cm broad. It is to be paved with square tiles of same size. Find the least possible number of such tiles.
Solution:
Length of rectangle = 18 m 72 cm = 1872 cm
and breadth = 13 m 20 cm = 1320 cm
Side of the greatest size of square tile = H.C.F. of 1872 and 1320
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 14
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 15

Question 12.
Find the greatest number of 6 digits exactly divisible by 24, 15 and 36.
Solution:
Greatest number of 6 digits = 999999
Now L.C.M. of 24, 15 and 36
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 16
We get quotient = 2777
and remainder = 279
Required number = 999999 – 279 = 999720

Question 13.
Determine the number nearest to 110000 but greater than 100000 which is exactly divisible by each of 8, 15 and 21.
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 17
Required number will be = 110000 – 800 =109200

Question 14.
Find the least number that is divisible by ail the numbers between 1 to 10 (both inclusive).
Solution:
The required least number which is divisible by 1 to 10 will be the L.C.M. of 1 to 10
L.C.M. of 1 to 10
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 18

Question 15.
A circular field has a circumference of 360 km. Three cyclists start together and can cycle 48, 60 and 72 km a day, round the field. When will they meet again ?
Solution:
Circumference of a circular field = 360 km
Three cyclist start together who can cycle 48, 60 and 72 km per day round the field
L.C.M. of 48, 60, 72
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 19
They will meet again after 720 km distance

Question 16.
In a morning walk, three persons step off together, their steps measure 80 cm, 85 cm and 90 cm respectively. What is the minimum distance each should walk so that they can cover the distance in complete steps ?
Solution:
Measures of steps of three persons = 80 cm, 85 cm and 90 cm
Minimum required distance covered by them = L.C.M. of 80 cm, 85 cm, 90 cm
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 20
= 2 x 5 x 8 x 9 x 17
= 12240 cm
= 122.40 m
= 122 m 40 cm

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3

Other Exercises

Question 1.
Express each of the following integers as a product of its prime factors :
(i) 420
(ii) 468
(iii) 945
(iv) 7325
Solution:
(i) 420
=2 x 2 x 3 x 5 x 7
= 22 x 3 x 5 x 7
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3 1
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3 2
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3 3

Question 2.
Determine the prime factorization of each of the following positive integer :
(i) 20570
(ii) 58500
(iii) 45470971
Solution:
(i) 20570
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3 4
20570 = 2 x 5 x 11 x 11 x 17 = 2 x 5 x 112 x 17
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3 5

Question 3.
Explain why 7 x 11 x 13 + 13 and 7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 are composite numbers ?
Solution:
We know that a composite number is that number which can be factorize. It has more factors other than itself and one
Now, 7 x 11 x 13 + 13 = 13 (7 x 11 + 1) = 13 x 78
Which is composite number
Similarly,
7 x 6 x 5 x 4 x 3 x 2 x 1 + 5 = 5(7 x 6 x 4 x 3 x 2 x 1 + 1)
= 5 x 1009
Which is a composite number
Hence proved

Question 4.
Check whether 6n can end with the digit 0 for any natural number n.
Solution:
No, 6n can’t end with the digit 0 as the number ending 0 can be factorise of the type
2n x 5m only but 6n = (2 x 3)n = 2n x 3n
Which does not has 5m as factors.

Question 5.
Explain why 3 x 5 x 7 + 7 is a composite number. [NCERT Exemplar]
Solution:
We have, 3 x 5 x 7 + 7 = 105 + 7 = 112
Now, 112 = 2 x 2 x 2 x 2 x 7 = 24 x 7
So, it is the product of prime factors 2 and 7. i.e., it has more than two factors.
Hence, it is a composite number.

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2

Other Exercises

Question 1.
Define H.C.F. of two positive integers and find the H.C.F. of the following pairs of numbers.
(i) 32 and 54
(ii) 18 and 24
(iii) 70 and 30
(iv) 56 and 88
(v) 475 and 495
(vi) 75 and 243
(vii) 240 and 6552
(viii) 155 and 1385
(ix) 100 and 190
(x) 105 and 120
Solution:
Definition : The greatest among the common divisor of two or more integers is the Greatest Common Divisor (G.C.D.) or Highest Common Factor (H.C.F.) of the given integers.
(i) HC.F. of 32 and 54
Factors 32 = 1, 2, 4, 8, 16, 32
and factors of 54 = 1, 2, 3, 6, 9, 18, 27, 54
H.C.F. = 2
(ii) H.C.F. of 18 and 24
Factors of 18 = 1, 2, 3, 6, 9, 18
and factors of 24 = 1, 2, 3, 4, 6, 8, 12, 24
Highest common factor = 6
H.C.F. = 6
(iii) H.C.F. of 70 and 30
Factors of 70 = 1, 2, 5, 7, 10, 14, 35, 70
and factors of 30 = 1, 2, 3, 5, 6, 10, 15, 30
H.C.F. = 10
(iv) H.C.F. of 56 and 88
Factors of 56 = 1, 2, 4, 7, 8, 14, 28, 56
and factors of 88 = 1, 2, 4, 8, 11, 22, 44, 88
H.C.F. = 8
(v) H.C.F. of 475 and 495
Factors of 475 = 1, 5, 25, 19, 95, 475
and factors of 495 = 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495
H.C.F. = 5
(vi) H.C.F. of 75 and 243
Factors of 75 = 1, 3, 5, 15, 25, 75
Factors of 243 = 1, 3, 9, 27, 81, 243
H.C.F. = 3
(vii) H.C.F. of 240 and 6552
Factors of 240 = 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 48, 60, 80, 120, 240
Factors of 6552 = 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 18, 21, 24, 26, 28, 36, 39, 42, 52, 56, 63, 72, 91, 104, 117, 126, 156, 168, 182, 234,252, 273, 312, 364, 488, 504, 546, 728, 819, 936, 1092, 1638, 2184, 3276, 6552
H.C.F. = 24
(viii) H.C.F. of 155 and 1385
Factors of 155 = 1, 5, 31, 155
Factors of 1385 = 1, 5, 277, 1385
H.C.F. = 5
(ix) 100 and 190
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 1

Question 2.
Use Euclid’s division algorithm to find the H.C.F. of
(i) 135 and 225
(ii) 196 and 38220
(iii) 867 and 255
(iv) 184, 230 and 276
(v) 136,170 and 255
Solution:
(i) H.C.F. of 135 and 225
135 < 225
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 2
225 = 135 x 1 + 90
135 = 90 x 1 +45
45 = 45 x 2 + 0
Last remainder = 0
and last divisor = 45
H.C.F. = 45
(ii) H.C.F. of 196 and 38220
196 < 38220
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 3
38220 = 196 x 195 + 0
Last remainder = 0
and last divisor = 196
H.C.F. = 196
(iii) H.C.F. 867 and 255
255 < 867
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 4
867 = 255 x 3 + 102
255 = 102 x 2 + 51
102 = 51 x 2 + 0
Last remainder = 0
and last divisor = 51
H.C.F. = 51
(iv) H.C.F. of 184, 230 and 276
Let us find the highest common factor (H.C.F.) of 184 and 230
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 5
Hence, H.C.F. of 184 and 230 = 46
Now, find the H.C.F. of 276 and 46
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 6
Hence, H.C.F. of 276 and 46 = 46
Required H.C.F. of 184, 230 and 276 = 46
(v) H.C.F. of 136, 170 and 255
Let us find the highest common factor (H.C.F.) of 136 and 70
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 7
Hence, H.C.F. of 136 and 170 = 34
Now, find the H.C.F. of 34 and 255
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 8
Hence, highest common factor of 34 and 255 = 17
Required H.C.F. of 136, 170 and 255 = 17

Question 3.
Find the H.C.F. of the following pairs of integers and express it as a linear combinations of them.
(i) 963 and 657
(ii) 592 and 252
(iii) 506 and 1155
(iv) 1288 and 575
Solution:
(i) 963 and 657
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 9
(ii) HCF of 592 and 252
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 10
76x + 88y
Where x = 7, y = -6
(iii) 506 and 1155
H.C.F. = 11
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 11
(iv) 1288 and 575
H.C.F. = 23
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 12
= 575 x 9 + 1288 x (-4)
= ax + by
x = 9, y = -4

Question 4.
Find the largest number which divides 615 and 963 leaving remainder 6 in each case.
Solution:
The given numbers are 615 and 963
Remainder in each case = 6
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 13
615 – 6 = 609 and 963 – 6 = 957 are divisible by the required number which is the H.C.F. of 609 and 957 = 87
Hence the required largest number = 87

Question 5.
If the H.C.F. of 408 and 1032 is expressible in the form 1032m – 408 x 5, find m.
Solution:
408, 1032
H.C.F. = 24
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 14
Which is in the form of 1032m – 408 x 5 comparing, we get m = 2

Question 6.
If the H.C.F. of 657 and 963 is expressible in the form 657x + 963 x (-15), find x.
Solution:
657 and 963
H.C.F. = 9
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 15

Question 7.
An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march ?
Solution:
The required number of columns will be the H.C.F. of 616 and 32
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 16
Using Euclid’s division
We get H.C.F. = 4
Number of columns = 4

Question 8.
A merchant has 120 litres of oil of one kind, 180 litres of another kind and 240 litres of third kind. He wants to sell the oil by filling the three kinds of oil in tins of equal capacity. What should be the greatest capacity of such a tin ?
Solution:
Quantity of oil of one kind =120l
and quantity of second kind = 180l
and third kind of oil = 240l
Maximum capacity of oil in each tin = H.C.F. of 120l, 180l and 240l
H.C.F. of 120 and 180 = 60
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 17

Question 9.
During a sale, colour pencils were being sold in packs of 24 each and crayons in packs of 32 each. If you want full packs of both and the same number of pencils and crayons, how many of each would you need to buy ?
Solution:
Number of pencils in each pack = 24
and number of crayons pack = 32
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 18
Highest number of pencils and crayons in packs will be = H.C.F. of 24 and 32 = 8
Number of pencil’s pack = \(\frac { 24 }{ 8 }\) = 3
and number of crayon’s pack = \(\frac { 32 }{ 8 }\) = 4

Question 10.
144 cartons of Coke Cans and 90 Cartons of Pepsi Cans, are to be stacked in a Canteen. If each stack is of the same height and is to contain cartons of the same drink what would be the greatest number of cartons each stack would have?
Solution:
Number of Coke Cans Cartons = 144
and number Pepsi Cartons = 90
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 19
Required greatest number of cartons of each = H.C.F. of 144 and 90 = 18

Question 11.
Find the greatest number which divides 285 and 1249 leaving remainders 9 and 7 respectively.
Solution:
The given numbers are 285 and 1249 Remainder are 9 and 7 respectively
285 – 9 = 276
and 1249 – 7 = 1242 are divisible by required number
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 20
Required number = H.C.F. of 276 and 1242
Now, H.C.F. of 276 and 1242 = 138
Required number = 138

Question 12.
Find the largest number which exactly divides 280 and 1245 leaving remainders 4 and 3, respectively.
Solution:
The given numbers are 280 and 1245 Remainder are 4 and 3 respectively
280 – 4 = 276 and 1245 – 3 = 1242 are divisible by a number
The required number = H.C.F. of 276 and 1242
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 21
H.C.F. of 276 and 1242 = 138
Hence required number =138

Question 13.
What is the largest number that divides 626, 3127 and 15628 and leaves remainders of 1, 2 and 3 respectively.
Solution:
Given numbers are 626, 3127 and 15628 and remainders are 1, 2 and 3 respectively
626 – 1 = 625
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 22
3127 – 2 = 3125 and 15628 – 3 = 15625 are divisible by a required greatest number
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 23
The greatest number will be the H.C.F. of 625, 3125 and 15625
H.C.F. of 625 and 3125 = 625
and H.C.F. of 625 and 15625 = 625
The required number = 625

Question 14.
Find the greatest numbers that will divide 445, 572 and 699 leaving remainders 4, 5 and 6 respectively.
Solution:
Given numbers are 445, 572 and 699
and remainders are 4, 5, 6 respectively
445 – 4 = 441
572 – 5 = 567
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 24
699 – 6 = 693 are exactly divisible by a certain number which is the H.C.F. of these numbers
H.C.F. of 441 and 567 = 63
and H.C.F. of 63 and 693 = 63
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 25
The required number = 63

Question 15.
Find the greatest number which divides 2011 and 2623 leaving remainders 9 and 5 respectively.
Solution:
The given numbers are 2011 are 2623 and remainders are 9 and 5 respectively
2011 – 9 = 2002 and 2623 – 5 = 2618 are divisible by a greatest number which is the H.C.F. of 2002 and 2618
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 26
H.C.F. = 2002 and 2618 = 154
The required number= 154

Question 16.
Using Euclid’s division algorithm, find the largest number that divides 1251, 9377 and 15628 leaving remainders 1, 2 and 3 respectively. [NCERT Exemplar]
Solution:
Since, 1,2 and 3 are the remainders of 1251, 9377 and 15628, respectively.
Thus, after subtracting these remainders from the numbers.
We have the numbers, 1251 – 1 = 1250, 9377 – 2 = 9375 and 15628 – 3 = 15625
which is divisible by the required number.
Now, required number = HCF of 1250, 9375 and 15625 [for the largest number]
By Euclid’s division algorithm,
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 27

Question 17.
Two brands of chocolates are available in packs of 24 and 15 respectively. If I need to buy an equal number of chocolates of both kinds, what is the least number of boxes of each kind I would need to buy ?
Solution:
Number of chocolates of first kind = 24 and of second kind = 15
Number of chocolates to be bought equally of both kinds = H.C.F. of 24 and 15
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 28
= 3 chocolates
Least number of boxes of first kind = \(\frac { 24 }{ 3 }\) = 8
and of second kind = \(\frac { 15 }{ 3 }\) = 5

Question 18.
A mason has to fit a bathroom with square marble tiles of the largest possible size. The size of the bathroom is 10 ft. by 8 ft. What would be the size in inches of the tile required that has to be cut and how many such tiles are required ?
Solution:
Size of bathroom = 10 ft. x 8 ft.
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 29
Largest size of tile = H.C.F. of 10 ft. and 8 ft. = 2 ft.
= 2 x 12 = 24 inches (1 ft. = 12 inches)

Question 19.
15 pastries and 12 biscuit packets have been donated for a school fete. These are to be packed in several smaller identical boxes with the same number of pastries and biscuit packets in each. How many biscuit packets and how many pastries will each box contain ?
Solution:
Number of pastries = 15
and number of biscuit packets =12
The number of pastries and pack of biscuits to be packed in smaller identical boxes
H.C.F. of 15 and 12
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 30
H.C.F. = 3
Each box will contain = \(\frac { 15 }{ 3 }\) pastries and \(\frac { 12 }{ 3 }\) pack of biscuits
= 5 pastries and 4 pack of biscuits

Question 20.
105 goats, 140 donkeys and 175 cows have to be taken across a river. There is only one boat which will have to make many trips in order to do so. The lazy boatman has his own conditions for transporting them. He insists that he will take the same number of animals in every trip and they have to be of the same kind. He will naturally like to take the largest possible number each time. Can you tell how many animals went in each trip ?
Solution:
The required number of animals will be the H.C.F. of 105 goats, 140 donkeys, 175 cows
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 31
H.C.F. of 175 and 140 = 35
and H.C.F. of 35 and 105 = 35
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 32
The required number of animals = 35

Question 21.
The length, breadth and height of a room are 8m 25 cm, 6 m 75 cm and 4 m 50 cm respectively. Determine the longest rod which can measure the three dimensions of the room exactly.
Solution:
Length = 8m 25 cm = 825 cm
Breadth = 6 m 75 cm = 675 cm
Height = 4 m 50 cm = 450 cm
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 33
The required measure will be the H.C.F. of these three dimensions
H.C.F. of 825 and 675 = 75
and H.C.F. of 75 and 450 = 75
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 34
The required length = 75 cm

Question 22.
Express the H.C.F. of 468 and 222 as 468x + 222y where x, y are integers in two different ways.
Solution:
468 and 222
H.C.F. = 6
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 35
6 = (222 – 24 x 9)
= 222 – (468 – 222 x 2) x 9
= 222 – 468 x 9 + 222 x 18
= 222 x 19 + 468 x (-9)
= 468 (9) + 222 x 19
Which is in the form of 468x + 222y
Similarly we can write it in the following form also
6 = 468 x 213 +222 x (-449)

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1

RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1

Other Exercises

Question 1.
If a and b are two odd positive integers such that a > b, then prove that one of the two numbers \(\frac { a+b }{ 2 }\) and \(\frac { a-b }{ 2 }\) is odd and the other is even.
Solution:
a and b are two odd numbers such that a > b
Let a = 2n + 1, then b = 2n + 3
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 1

Question 2.
Prove that the product of two consecutive positive integers is divisible by 2.
Solution:
Let n and n + 1 are two consecutive positive integer
We know that n is of the form n = 2q and n + 1 = 2q + 1
n (n + 1) = 2q (2q + 1) = 2 (2q2 + q)
Which is divisible by 2
If n = 2q + 1, then
n (n + 1) = (2q + 1) (2q + 2)
= (2q + 1) x 2(q + 1)
= 2(2q + 1)(q + 1)
Which is also divisible by 2
Hence the product of two consecutive positive integers is divisible by 2

Question 3.
Prove that the product of three consecutive positive integer is divisible by 6.
Solution:
Let n be the positive any integer Then
n(n + 1) (n + 2) = (n2 + n) (n + 2)
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 2
Which is also divisible by 6
Hence the product of three consecutive positive integers is divisible by 6

Question 4.
For any positive integer n, prove that n3 – n is divisible by 6.
Solution:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 3
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 4
Which is divisible by 6
Hence we can similarly, prove that n2 – n is divisible by 6 for any positive integer n.
Hence proved.

Question 5.
Prove that if a positive integer is of the form 6q + 5, then it is of the form 3q + 2 for some integer q, but not conversely.
Solution:
Let n = 6q + 5, where q is a positive integer
We know that any positive integer is of the form 3k or 3k + 1 or 3k + 2, 1
q = 3k or 3k + 1 or 3k + 2
If q = 3k, then n = 6q + 5
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 5

Question 6.
Prove that the square of any positive integer of the form 5q + 1 is of the same form.
Solution:
Let a be any positive integer
Then a = 5m + 1
a2 = (5m + 1 )2 = 25m2 + 10m + 1
= 5 (5m2 + 2m) + 1
= 5q + 1 where q = 5m2 + 2m
Which is of the same form as given
Hence proved.

Question 7.
Prove that the square of any positive, integer is of the form 3m or, 3m + 1 but not of the form 3m + 2.
Solution:
Let a be any positive integer
Let it be in the form of 3m or 3m + 1
Let a = 3q, then
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 6
Hence proved.

Question 8.
Prove that the square of any positive integer is of the form 4q or 4q + 1 for some integer q.
Solution:
Let a be the positive integer and
Let a = 4m
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 7
Hence proved.

Question 9.
Prove that the square of any positive integer is of the form 5q, 5q + 1, 5q + 4 for some integer q.
Solution:
Let a be the positive integer, and
Let a = 5m, then
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 8

Question 10.
Show that the square of an odd positive integer is of the form 8q + 1, for some integer q.
Solution:
Let n is any positive odd integer
Let n = 4p + 1, then
(4p + 1)2 = 16p2 + 8p + 1
n2 = 8p (2p + 1) + 1
= 8q + 1 where q = p(2p + 1)
Hence proved.

Question 11.
Show that any positive odd integer is of the form 6q + 1 or 6q + 3 or 6q + 5, where q is some integer.
Solution:
Let n be any positive odd integer and
let n = 6q + r
=> 6q + r, b = 6, and 0 ≤ r < 6
or r = 0, 1, 2, 3, 4, 5
If n = 6q = 2 x 3q
But it is not odd
When n = 6q + 1 which is odd
When n = 6q + 2 which is not odd = 2 (3q+ 1)
When n = 6q + 3 which is odd
When n = 6q + 4 = 2 (3q + 2) which is not odd
When n = 6q + 5, which is odd
Hence 6q + 1 or 6q + 3 or 6q + 5 are odd numbers.

Question 12.
Show that the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m. [NCERT Exemplar]
Solution:
Let a be an arbitrary positive integer, then by Euclid’s division algorithm, corresponding to the positive integers a and 6, there exist non-negative integers q and r such that
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 9
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 10
Hence, the square of any positive integer cannot be of the form 6m + 2 or 6m + 5 for any integer m.

Question 13.
Show that the cube of a positive integer is of the form 6q + r, where q is an integer and r = 0, 1, 2, 3, 4, 5. [NCERT Exemplar]
Solution:
Let a be an arbitrary positive integer. Then, by Euclid’s division algorithm, corresponding to the positive integers ‘a’ and 6, there exist non-negative integers q and r such that
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 11
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 12
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 13
Hence, the cube of a positive integer of the form 6q + r, q is an integer and r = 0, 1, 2, 3, 4, 5 is also of the forms 6m, 6m + 1, 6m + 3, 6m + 3, 6m + 4 and 6m + 5 i.e., 6m + r.

Question 14.
Show that one and only one out of n, n + 4, n + 8, n + 12 and n + 16 is divisible by 5, where n is any positive integer.
[NCERT Exemplar]
Solution:
Given numbers are n, (n + 4), (n + 8), (n + 12) and (n + 16), where n is any positive integer.
Then, let n = 5q, 5q + 1, 5q + 2, 5q + 3, 5q + 4 for q ∈N [By Euclid’s algorithm]
Then, in each case if we put the different values of n in the given numbers. We definitely get one and only one of given numbers is divisible by 5.
Hence, one and only one out of n, n + 4, n + 8, n + 12 and n + 16 is divisible by 5.
Alternate Method
On dividing on n by 5, let q be the quotient and r be the remainder.
Then n = 5q + r, where 0 ≤ r < 5. n = 5q + r, where r = 0, 1, 2, 3, 4
=> n = 5q or 5q + 1 or 5q + 2 or 5q + 3 or 5q + 4
Case I: If n = 5q, then n is only divisible by 5. .
Case II: If n = 5q + 1, then n + 4 = 5q + 1 + 4 = 5q + 5 = 5(q + 1), which is only divisible by 5.
So, in this case, (n + 4) is divisible by 5.
Case III : If n = 5q + 3, then n + 2 = 5q + 3 + 12 = 5q + 15 = 5(q + 3), which is divisible by 5.
So, in this case (n + 12) is only divisible by 5.
Case IV : If n = 5q + 4, then n + 16 = 5q + 4 + 16 = 5q + 20 = 5(q + 4), which is divisible by 5.
So, in this case, (n + 16) is only divisible by 5.
Hence, one and only one out of n, n + 4, n + 8, n + 12 and n + 16 is divisible by 5, where n is any positive integer.

Question 15.
Show that the square of an odd positive integer can be of the form 6q + 1 or 6q + 3 for some integer ? [NCERT Exemplar]
Solution:
We know that any positive integer can be of the form 6m, 6m + 1, 6m + 2, 6m + 3, 6m + 4 or 6m + 5, for some integer m.
Thus, an odd positive integer can be of the form 6m + 1, 6m + 3, or 6m + 5 Thus we have:
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 14
Thus, the square of an odd positive integer can be of the form 6q + 1 or 6q + 3.

Question 16.
A positive integer is of the form 3q + 1, q being a natural number. Can you write its square in any form other than 3m + 1, 3m or 3m + 2 for some integer m? Justify your answer.
Solution:
No, by Euclid’s Lemma, b = aq + r, 0 ≤ r < a
Here, b is any positive integer
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 15

Question 17.
Show that the square of any positive integer cannot be of the form 3m + 2, where m is a natural number.
Solution:
By Euclid’s lemma, b = aq + r, 0 ≤ r ≤ a
Here, b is any positive integer,
a = 3, b = 3q + r for 0 ≤ r ≤ 2
So, any positive integer is of the form 3k, 3k + 1 or 3k + 2
RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 16
Which is in the form of 3m + 1. Hence, square of any positive number cannot be of the form 3m + 2.

 

Hope given RD Sharma Class 10 Solutions Chapter 1 Real Numbers Ex 1.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.