MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Limits and Derivatives Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 13 MCQ With Answers

Maths Class 11 Chapter 13 MCQs On Limits and Derivatives

Limits Class 11 MCQ Question 1.
The value of the limit Limx→0 (cos x)cot2 x is
(a) 1
(b) e
(c) e1/2
(d) e-1/2

Answer

Answer: (d) e-1/2
Hint:
Given, Limx→0 (cos x)cot² x
= Limx→0 (1 + cos x – 1)cot² x
= eLimx→0 (cos x – 1) × cot² x
= eLimx→0 (cos x – 1)/tan² x
= e-1/2


Limits And Derivatives Class 11 MCQ Question 2.
The value of limit Limx→0 {sin (a + x) – sin (a – x)}/x is
(a) 0
(b) 1
(c) 2 cos a
(d) 2 sin a

Answer

Answer: (c) 2 cos a
Hint:
Given, Limx→0 {sin (a + x) – sin (a – x)}/x
= Limx→0 {2 × cos a × sin x}/x
= 2 × cos a × Limx→0 sin x/x
= 2 cos a


MCQ On Limits Class 11 Question 3.
Limx→-1 [1 + x + x² + ……….+ x10] is
(a) 0
(b) 1
(c) -1
(d) 2

Answer

Answer: (b) 1
Hint:
Given, Limx→-1 [1 + x + x² + ……….+ x10]
= 1 + (-1) + (-1)² + ……….+ (-1)10
= 1 – 1 + 1 – ……. + 1
= 1


Limits MCQ Class 11 Question 4.
The value of Limx→01 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2

Answer

Answer: (c) 2
Hint:
Given, Limx→0 (1/x) × sin-1 {2x/(1 + x²)
= Limx→0 (2× tan-1 x)/x
= 2 × 1
= 2


Limits And Derivatives Class 11 MCQ Questions Question 5.
Limx→0 log(1 – x) is equals to
(a) 0
(b) 1
(c) 1/2
(d) None of these

Answer

Answer: (a) 0
Hint:
We know that
log(1 – x) = -x – x²/2 – x³/3 – ……..
Now,
Limx→0 log(1 – x) = Limx→0 {-x – x²/2 – x³/3 – ……..}
⇒ Limx→0 log(1 – x) = Limx→0 {-x} – Limx→0 {x²/2} – Limx→0 {x³/3} – ……..
⇒ Limx→0 log(1 – x) = 0


MCQ On Limits And Derivatives Class 11 Question 6.
Limx→0 {(ax – bx)/ x} is equal to
(a) log a
(b) log b
(c) log (a/b)
(d) log (a×b)

Answer

Answer: (c) log (a/b)
Hint:
Given, Limx→0 {(ax – bx)/ x}
= Limx→0 {(ax – bx – 1 + 1)/ x}
= Limx→0 {(ax – 1) – (bx – 1)}/ x
= Limx→0 {(ax – 1)/x – (bx – 1)/x}
= Limx→0 (ax – 1)/x – Limx→0 (bx – 1)/x
= log a – log b
= log (a/b)


Class 11 Limits MCQ Question 7.
The value of limy→0 {(x + y) × sec (x + y) – x × sec x}/y is
(a) x × tan x × sec x
(b) x × tan x × sec x + x × sec x
(c) tan x × sec x + sec x
(d) x × tan x × sec x + sec x

Answer

Answer: (d) x × tan x × sec x + sec x
Hint:
Given, limy→0 {(x + y) × sec (x + y) – x×sec x}/y
= limy→0 {x sec (x + y) + y sec (x + y) – x×sec x}/y
= limy→0 [x{ sec (x + y) – sec x} + y sec (x + y)]/y
= limy→0 x{ sec (x + y) – sec x}/y + limy→0 {y sec (x + y)}/y
= limy→0 x{1/cos (x + y) – 1/cos x}/y + limy→0 {y sec (x + y)}/y
= limy→0 [{cos x – cos (x + y)} × x/{y×cos (x + y)×cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 [{2sin (x + y/2) × sin(y/2)} × 2x/{2y×cos (x + y)×cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 {sin (x + y/2) × limy→0 {sin(y/2)/(2y/2)} × limy→0 { x/{y×cos (x + y)×cos x}] + sec x
= sin x × 1 × x/cos² x + sec x
= x × tan x × sec x + sec x
So, limy→0 {(x + y) × sec (x + y) – x×sec x}/y = x × tan x × sec x + sec x


Class 11 Maths Chapter 13 MCQ Question 8.
Limy→∞ {(x + 6)/(x + 1)}(x+4) equals
(a) e
(b) e³
(c) e5
(d) e6

Answer

Answer: (c) e5
Hint:
Given, Limy→∞ {(x + 6)/(x + 1)}(x + 4)
= Limy→∞ {1 + 5/(x + 1)}(x + 4)
= eLimy→∞ 5(x + 4)/(x + 1)
= eLimy→∞ 5(1 + 4/x)/(1 + 1/x)
= e5(1 + 4/∞)/(1 + 1/∞)
= e5/(1 + 0)
= e5


Limits MCQs With Answers Question 9.
The derivative of [1+(1/x)] /[1-(1/x)] is
(a) 1/(x-1)²
(b) -1/(x-1)²
(c) 2/(x-1)²
(d) -2/(x-1)²

Answer

Answer: (d) A
Hint:
Let y = [1+(1/x)] /[1-(1/x)]
then dy/dx = [{1-(1/x)}*(-1/x²)]/[{1+(1/x)}*(1/x²)]
= (1/x²) [(1/x) -1 – 1 – (1/x)]/[1-(1/x)]²
= [-2/x²]/[(x-1)/x]²
= -2/(x-1)²


Limits And Derivatives MCQ Question 10.
The expansion of log(1 – x) is
(a) x – x²/2 + x³/3 – ……..
(b) x + x²/2 + x³/3 + ……..
(c) -x + x²/2 – x³/3 + ……..
(d) -x – x²/2 – x³/3 – ……..

Answer

Answer: (d) -x – x²/2 – x³/3 – ……..
Hint:
log(1 – x) = -x – x²/2 – x³/3 – ……..


MCQs Of Limits Class 11 Question 11.
If f(x) = x × sin(1/x), x ≠ 0, then Limx→0 f(x) is
(a) 1
(b) 0
(c) -1
(d) does not exist

Answer

Answer: (b) 0
Hint:
Given, f(x) = x × sin(1/x)
Now, Limx→0 f(x) = Limx→0 x × sin(1/x)
⇒ Limx→0 f(x) = 0


Ch 13 Maths Class 11 MCQ Question 12.
The value of Limn→∞ {1² + 2² + 3² + …… + n²}/n³ is
(a) 0
(b) 1
(c) -1
(d) n

Answer

Answer: (a) 0
Hint:
Given, Limn→∞ {1² + 2² + 3² + …… + n²}/n³
= Limn→∞ [{n×(n + 1)×(2n + 1)}/6]/{n(n + 1)/2}²
= Limn→∞ [{n×n×n ×(1 + 1/n)×(2 + 1/n)}/6]/{n × n ×(1 + 1/n)/2}²
= Limn→∞ [{n³ ×(1 + 1/n)×(2 + 1/n)}/6]/{n² ×(1 + 1/n)/2}²
= Limn→∞ [{(1 + 1/n)×(2 + 1/n)}/6]/[n4 × {(1 + 1/n)/2}²]
⇒ Limn→∞ [{(1 + 1/n)×(2 + 1/n)}/6]/[n × {(1 + 1/n)/2}²]
= [{(1 + 1/∞)×(2 + 1/∞)}/6]/[∞×{(1 + 1/∞)/2}²
= [{(1 + 0)×(2 + 0)}/6]/∞ {since 1/∞ = 0}
= {(1 × 2)/6}/∞
= (2/6)/∞
= (1/3)/∞
= 0
So, Limn→∞ {1² + 2² + 3² + …… + n²}/n³ = 0


MCQ Of Limits And Derivatives Class 11 Question 13.
The value of Limn→∞ (sin x/x) is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (a) 0
Hint:
Limn→∞ (sin x/x) = Limy→0 {y × sin (1/y)} = 0


Class 11 Maths Limits MCQ Question 14.
The value of Limx→0 ax is
(a) 0
(b) 1
(c) 1/2
(d) 3/2

Answer

Answer: (b) 1
Hint:
We know that
ax = 1 + x/1! × (log a) + x²/2! × (log a)² + x³/3! × (log a)³ + ………..
Now,
Limx→0 ax = Limx→0 {1 + x/1! × (log a) + x²/2! × (log a)² + x³/3! × (log a)³ + …}
⇒ Limx→0 ax = Limx→0 1 + Limx→0 {x/1! × (log a)} + Limx→0 {x² /2! × (log a)²}+ ………
⇒ Limx→0 ax = 1


MCQ Of Limits Class 11 Question 15.
Let f(x) = cos x, when x ≥ 0 and f(x) = x + k, when x < 0 Find the value of k given that Limx→0 f(x) exists.
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (b) 1
Hint:
Given, Limx→0 f(x) exists
⇒ Limx→0 – f(x) = Limx→0 + f(x)
⇒ Limx→0 (x + k) = Limx→0 cos x
⇒ k = cos 0
⇒ k = 1


MCQ On Limits Class 11 Pdf Question 16.
The value of Limx→0 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2

Answer

Answer: (c) 2
Hint:
Given, Limx→0 (1/x) × sin-1 {2x/(1 + x²)
= Limx→0 (2 × tan-1 x)/x
= 2 × 1
= 2


Limit Class 11 MCQ Question 17.
Limx→0 sin (ax)/bx is
(a) 0
(b) 1
(c) a/b
(d) b/a

Answer

Answer: (c) a/b
Hint:
Given, Limx→0 sin (ax)/bx
= Limx→0 [{sin (ax)/ax} × (ax/bx)]
⇒ (a/b) Limx→0 sin (ax)/ax
= a/b


Class 11 Maths Ch 13 MCQ Question 18.
The value of the limit Limx→0 {log(1 + ax)}/x is
(a) 0
(b) 1
(c) a
(d) 1/a

Answer

Answer: (c) a
Hint:
Given, Limx→0 {log(1 + ax)}/x
= Limx→0 {ax – (ax)² /2 + (ax)³ /3 – (ax)4 /4 + …….}/x
= Limx→0 {ax – a² x² /2 + a³ x³ /3 – a4 x4 /4 + …….}/x
= Limx→0 {a – a² x /2 + a³ x² /3 – a4 x³ /4 + …….}
= a – 0
= a


MCQs On Limits Class 11 Question 19.
If f(x) = (x + 1)/x then df(x)/dx is
(a) 1/x
(b) -1/x
(c) -1/x²
(d) 1/x²

Answer

Answer: (c) -1/x²
Hint:
Given, f(x) = (x + 1)/x
Now, df(x)/dx = d{(x + 1)/x}/dx
= {1 × x – (x + 1)×1}/x²
= (x – x – 1)/x²
= -1/x²


Class 11 Maths Chapter 13 MCQ With Answers Question 20.
Limx→0 (e – cos x)/x² is equals to
(a) 0
(b) 1
(c) 2/3
(d) 3/2

Answer

Answer: (d) 3/2
Hint:
Given, Limx→0 (e – cos x)/x²
= Limx→0 (e – cos x -1 + 1)/x²
= Limx→0 {(e – 1)/x² + (1 – cos x)}/x²
= Limx→0 {(e – 1)/x² + Limx→0 (1 – cos x)}/x²
= 1 + 1/2
= (2 + 1)/2
= 3/2


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Limits and Derivatives MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ: