Linkage – Eye Colour In Drosophila And Seed Colour In Maize

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Linkage – Eye Colour In Drosophila And Seed Colour In Maize

The genes which determine the character of an individual are carried by the chromosomes. The genes for diffrent characters may be present either in the same chromosome or in different chromosomes. When the genes are present in diffrent chromosomes, they assort independently according to Mendel’s Law of Independent Assortment. Biologists came across certain genetic characteristics that did not assort out independently in other organisms after Mendel’s work.

One such case was reported in Sweet pea (Lathyrus odoratus) by William Bateson and Reginald C. Punnet in 1906. They crossed one homozygous strain of sweet peas having purple flowers and long pollen grains with another homozygous strain having red flowers and round pollen grains.

All the F1 progenies had purple flower and long pollen grains indicating purple flower long pollen (PL/PL) was dominant over red flower round pollen (pl/pl). When they crossed the F1 with double recessive parent (test cross) in results, F2progenies did not exhibit in 1:1:1:1 ratio as expected with independent assortment.

A greater number of F2 plants had purple flowers and long pollen or red flowers and round pollen. So they concluded that genes for purple colour and long pollen grain and the genes for red colour and round pollen grain were found close together in the same homologous pair of chromosomes. These genes do not allow themselves to be separated. So they do not assort independently. This type of tendency of genes to stay together during separation of chromosomes is called Linkage.
Linkage - Eye Colour In Drosophila And Seed Colour In Maize img 1

Genes located close together on the same chromosome and inherited together are called linked genes. But the two genes that are suffiently far apart on the same chromosome are called unlinked genes or syntenic genes (Figure 3.3). Such condition is known as synteny.

It is to be diffrentiated by the value of recombination frequency. If the recombination frequency value is more than 50 % the two genes show unlinked when the recombination frequency value is less than 50 %, they show linked. Closely located genes show strong linkage, while genes widely located show weak linkages.

Coupling and Repulsion theory

The two dominant alleles or recessive alleles occur in the same homologous chromosomes, tend to inherit together into same gamete are called coupling or cis confiuration (Figure: 3.5). If dominant or recessive alleles are present on two different, but homologous chromosomes they inherit apart into diffrent gamete are called
Linkage - Eye Colour In Drosophila And Seed Colour In Maize img 2
Linkage - Eye Colour In Drosophila And Seed Colour In Maize img 3
Linkage - Eye Colour In Drosophila And Seed Colour In Maize img 4

Kinds of Linkage

T.H. Morgan found two types of linkage. They are complete linkage and incomplete linkage depending upon the absence or presence of new combination of linked genes.

Complete Linkage
If the chances of separation of two linked genes are not possible those genes always remain together as a result, only parental combinations are observed. The linked genes are located very close together on the same chromosome such genes do not exhibit crossing over. This phenomenon is called complete linkage. It is rare but has been reported in male Drosophila.

Incomplete Linkage
If two linked genes are sufficiently apart, the chances of their separation are possible. As a result, parental and non-parental combinations are observed. The linked genes exhibit some crossing over. This phenomenon is called incomplete linkage. This was observed in maize. It was reported by Hutchinson.

Linkage Groups

The groups of linearly arranged linked genes on a chromosome are called Linkage groups. In any species the number of linkage groups corresponds to the number haploid set of chromosomes. Example:
Linkage - Eye Colour In Drosophila And Seed Colour In Maize img 5

Linkage and crossing over are two processes that have opposite effects. Linkage keeps particular genes together but crossing over mixes them. The differences are given below.
Linkage - Eye Colour In Drosophila And Seed Colour In Maize img 6

Chromosomal Theory 0f Inheritance

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Chromosomal Theory Of Inheritance

G. J. Mendel (1865) studied the inheritance of well-defined characters of pea plant but for several reasons it was unrecognized till 1900. Three scientists (de Vries, Correns and Tschermak) independently rediscovered Mendel’s results on the inheritance of characters. Various cytologists also observed cell division due to advancements in microscopy. This led to the discovery of structures inside nucleus.

In eukaryotic cells, worm-shaped structures formed during cell division are called chromosomes (colored bodies, visualized by staining). An organism which possesses two complete basic sets of chromosomes are known as diploid. A chromosome consists of long, continuous coiled piece of DNA in which genes are arranged in linear order.

Each gene has a definite position (locus) on a chromosome. These genes are hereditary units. Chromosomal theory of inheritance states that Mendelian factors (genes) have specific locus (position) on chromosomes and they carry information from one generation to the next generation.

Historical development of chromosome theory

The important cytological fidings related to the chromosome theory of inheritance are given below.

Wilhelm Roux (1883):
postulated that the chromosomes of a cell are responsible for transferring heredity.

Montgomery (1901):
Was first to suggest occurrence of distinct pairs of chromosomes and he also concluded that maternal chromosomes pair with paternal chromosomes only during meiosis.

T. Boveri (1902):
supported the idea that the chromosomes contain genetic determiners, and he was largely responsible for developing the chromosomal theory of inheritance.

W.S. Sutton (1902):
A young American student independently recognized a parallelism (similarity) between the behaviour of chromosomes and Mendelian factors during gamete formation. Sutton and Boveri (1903) independently proposed the chromosome theory of inheritance. Sutton united the knowledge of chromosomal segregation with Mendelian principles and called it chromosomal theory of inheritance.

Salient features of the Chromosomal

Somatic cells of organisms are derived from the zygote by repeated cell division (mitosis). These consist of two identical sets of chromosomes. One set is received from female parent (maternal) and the other from male parent (paternal). These two chromosomes constitute the homologous pair.

Chromosomes retain their structural uniqueness and individuality throughout the life cycle of an organism. Each chromosome carries specific determiners or Mendelian factors which are now termed as genes.

The behaviour of chromosomes during the gamete formation (meiosis) provides evidence to the fact that genes or factors are located on chromosomes.

Comparison between gene and chromosome behaviour

Around twentieth century cytologists established that, generally the total number of chromosomes is constant in all cells of a species. A diploid eukaryotic cell has two haploid sets of chromosomes, one set from each parent. All somatic cells of an organism carry the same genetic complement. The behaviour of chromosomes during meiosis not only explains Mendel’s principles but leads to new and different approaches to study about heredity.
Chromosomal Theory Of Inheritance img 1
Chromosomal Theory Of Inheritance img 2
Chromosomal Theory Of Inheritance img 3

Extra Chromosomal Inheritance – Cytoplasmic Inheritance In Chloroplast

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Extra Chromosomal Inheritance – Cytoplasmic Inheritance In Chloroplast

DNA is the universal genetic material. Genes located in nuclear chromosomes follow Mendelian inheritance. But certain traits are governed either by the chloroplast or mitochondrial genes. This phenomenon is known as extra nuclear inheritance.

It is a kind of Non-Mendelian inheritance. Since it involves cytoplasmic organelles such as chloroplast and mitochondrion that act as inheritance vectors, it is also called Cytoplasmic inheritance. It is based on independent, self-replicating extra chromosomal unit called plasmogene located in the cytoplasmic organelles, chloroplast and mitochondrion.

Chloroplast Inheritance

It is found in 4 o’ Clock plant (Mirabilis jalapa). In this, there are two types of variegated leaves namely dark green leaved plants and pale green leaved plants.

When the pollen of dark green leaved plant (male) is transferred to the stigma of pale green leaved plant (female) and pollen of pale green leaved plant is transferred to the stigma of dark green leaved plant, the F1 generation of both the crosses must be identical as per Mendelian inheritance. But in the reciprocal cross the F1 plant differs from each other. In each cross, the F1 plant reveals the character of the plant which is used as female plant.
Extra Chromosomal Inheritance - Cytoplasmic Inheritance In Chloroplast img 1

This inheritance is not through nuclear gene. It is due to the chloroplast gene found in the ovum of the female plant which contributes the cytoplasm during fertilization since the male gamete contribute only the nucleus but not cytoplasm.
Extra Chromosomal Inheritance - Cytoplasmic Inheritance In Chloroplast img 2

Recently it has been discovered that cytoplasmic genetic male sterility is common in many plant species. This sterility is maintained by the inflence of both nuclear and cytoplasmic genes. There are commonly two types of cytoplasm N (normal) and S (sterile).

The genes for these are found in mitochondrion. There are also restores of fertility (Rf) genes. Even though these genes are nuclear genes, they are distinct from genetic male sterility genes of other plants. Because the Rf genes do not have any expression of their own, unless the sterile cytoplasm is present. Rf genes are required to restore fertility in S cytoplasm which is responsible for sterility.

So the combination of N cytoplasm with rfrf and S cytoplasm with RfRf produces plants with fertile pollens, while S cytoplasm with rfrf produces only male sterile plants.

Atavism

Atavism is a modifiation of a biological structure whereby an ancestral trait reappears after having been lost through reemergence of sexual reproduction in the flowering plant Hieracium pilosella is the best example for Atavism in plants.

Polygenic Inheritance In Wheat Kernel Colour, Pleiotropy – Pisum Sativum

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Polygenic Inheritance In Wheat Kernel Colour, Pleiotropy – Pisum Sativum

Polygenic inheritance – Several genes combine to affct a single trait.

A group of genes that together determine (contribute) a characteristic of an organism is called polygenic inheritance. It gives explanations to the inheritance of continuous traits which are compatible with Mendel’s Law.

The first experiment on polygenic inheritance was demonstrated by Swedish Geneticist H. Nilsson – Ehle (1909) in wheat kernels. Kernel colour is controlled by two genes each with two alleles, one with red kernel colour was dominant to white. He crossed the two pure breeding wheat varieties dark red and a white.

Dark red genotypes R1R1R2R2 and white genotypes are r1r1r2r2. In the F1 generation medium red were obtained with the genotype R1r1R2r2. F1 wheat plant produces four types of gametes R1R2, R1r2, r1R2, r1r2.
The intensity of the red colour is determined by the number of R genes in the F2 generation.

Four R genes:

A dark red kernel colour is obtained. Three R genes: Medium – dark red kernel colour is obtained. Two R genes: Medium-red kernel colour is obtained. One R gene: Light red kernel colour is obtained. Absence of R gene: Results in White kernel colour.

The R gene in an additive manner produces the red kernel colour. The number of each phenotype is plotted against the intensity of red kernel colour which produces a bell shaped curve. This represents the distribution of phenotype. Other example: Height and skin colour in humans are controlled by three pairs of genes.
Polygenic Inheritance In Wheat Kernel Colour, Pleiotropy - Pisum Sativum img 1

Conclusion:

Finally the loci that was studied by Nilsson – Ehle were not linked and the genes assorted independently. Later, researchers discovered the third gene that also affect the kernel colour of wheat. The three independent pairs of alleles were involved in wheat kernel colour. Nilsson – Ehle found the ratio of 63 red : 1 white in F2 generation – 1 : 6 : 15 : 20 : 15 : 6 : 1 in F2 generation.
Polygenic Inheritance In Wheat Kernel Colour, Pleiotropy - Pisum Sativum img 2

From the above results Nilsson – Ehle showed that the blending inheritance was not taking place in the kernel of wheat. In F2 generation plants have kernels with wide range of colour variation. This is due to the fact that the genes are segregating and recombination takes place.

Another evidence for the absence of blending inheritance is that the parental phenotypes dark red and white appear again in F2. There is no blending of genes, only the phenotype. The cumulative effect of several pairs of gene interaction gives rise to many shades of kernel colour. He hypothesized that the two loci must contribute additively to the kernel colour of wheat. The contribution of each red allele to the kernel colour of wheat is additive.

Interaction Of Genes – Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Interaction Of Genes – Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis

Interactions take place between the alleles of the same gene i.e., alleles at the same locus is called intragenic or intralocus gene interaction. It includes the following:

  1. Incomplete dominance
  2. Codominance
  3. Multiple alleles
  4. Pleiotropic genes are common examples for intragenic interaction.

Incomplete dominance – No blending of genes

The German Botanist Carl Correns’s (1905) Experiment – In 4 O’ clock plant, Mirabilis jalapa when the pure breeding homozygous red (R1R1) parent is crossed with homozygous white (R2R2), the phenotype of the F1 hybrid is heterozygous pink (R1R2). The F1 heterozygous phenotype differs from both the parental
homozygous phenotype.

This cross did not exhibit the character of the dominant parent but an intermediate colour pink. When one allele is not completely dominant to another allele it shows incomplete dominance. Such allelic interaction is known as incomplete dominance.

Such allelic interaction is known as incomlete dominance. F1 generation produces intermediate phenotype pink coloured flower. When pink coloured plants of F1 generation were interbred in F2 both phenotypic and genotypic ratios were found to be identical as 1 : 2 : 1(1 red : 2 pink : 1 white). Genotypic ratio is 1 R1R1 : 2 R1R2 : 1 R1R2. From this we conclude that the alleles themselves remain discrete and unaltered proving the Mendel’s Law of Segregation.

The phenotypic and genotypic ratios are the same. There is no blending of genes. In the F2 generation R1 and R2 genes segregate and recombine to produce red, pink and white in the ratio of 1 : 2 : 1. R1 allele codes for an enzyme responsible for the formation of red pigment. R2 allele codes for defective enzyme. R1 and R2 genotypes produce only enough red pigments to make the flower pink.

Two R1R1 are needed for producing red flowers. Two R2R2 genes are needed for white flowers. If blending had taken place, the original pure traits would not have appeared and all F2 plants would have pink flowers. It is very clear that Mendel’s particulate inheritance takes place in this cross which is confirmed by the reappearance of original phenotype in F2.
Interaction Of Genes - Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis img 1

Codominance (1 : 2 : 1)

This pattern occurs due to simultaneous (joint) expression of both alleles in the heterozygote – The phenomenon in which two alleles are both expressed in the heterozygous individual is known as codominance. Example: Red and white flowers of Camellia, inheritance of sickle cell haemoglobin, ABO blood group system in humanbeings. In humanbeings, IA and IB alleles of I gene are codominant which follows Mendels law of segregation.

The codominance was demonstrated in plants with the help of electrophoresis or chromatography for protein or flvonoid substance. Example: Gossypium hirsutum and Gossypium sturtianum, their F1 hybrid (amphiploid) was tested for seed proteins by electrophoresis. Both the parents have different banding patterns for their seed proteins. In hybrids, additive banding pattern was noticed. Their hybrid shows the presence of both the types of proteins similar to their parents.

The heterozygote genotype gives rise to a phenotype distinctly different from either of the homozygous genotypes. The F1 heterozygotes produce a F2 progeny in a phenotypic and genotypic ratios of 1 : 2 : 1.

Lethal genes

An allele which has the potential to cause the death of an organism is called a “Lethal Allele”. In 1907, E. Baur reported a lethal gene in snapdragon (Antirrhinum sp.). It is an example for recessive lethality. In snapdragon there are three kinds of plants.

  1. Green plants with chlorophyll. (CC)
  2. Yellowish green plants with carotenoids are referred to as pale green, golden or aurea plants (Cc)
  3. White plants without any chlorophyll. (cc)

The genotype of the homozygous green plants is CC. The genotype of the homozygous white plant is cc.

The aurea plants have the genotype Cc because they are heterozygous of green and white plants. When two such aurea plants are crossed the F1 progeny has identical phenotypic and genotypic ratio of 1 : 2 : 1 (viz. 1 Green (CC) : 2 Aurea (Cc) : 1 White (cc)) Since the white plants lack chlorophyll pigment, they will not survive. So the F2 ratio is modifid into 1 : 2. In this case the homozygous recessive genotype (cc) is lethal.
Interaction Of Genes - Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis img 2

The term “lethal” is applied to those changes in the genome of an organism which produces effects severe enough to cause death. Lethality is a condition in which the death of certain genotype occurs prematurely. The fully dominant or fully recessive lethal allele kills the carrier individual only in its homozygous condition. So the F2 genotypic ratio will be 2 : 1 or 1 : 2 respectively.

Pleiotropy – A single gene affects multiple traits

In Pleiotropy, the single gene affcts multiple traits and alter the phenotype of the organism. The Pleiotropic gene inflences a number of characters simultaneously and such genes are called pleiotropic gene were crossed with a variety of peas having white flowers, light coloured seeds and no spot on the axils of the leaves, the three traits for flwer colour, seed colour and a leaf axil spot all were inherited together as a single unit. Another example is: sickle cell anemia.

Intergenic gene interactions

Interlocus interactions take place between the alleles at different loci i.e between alleles of diffrent genes. It includes the following:

Dominant Epistasis

It is a gene interaction in which two alleles of a gene at one locus interfere and suppress or mask the phenotypic expression of a different pair of alleles of another gene at another locus. Th gene that suppresses or masks the phenotypic expression of a gene at another locus is known as epistatic.

The gene whose expression is interfered by non-allelic genes and prevents from exhibiting its character is known as hypostatic. When both the genes are present together, the phenotype is determined by the epistatic gene and not by the hypostatic gene.

In the summer squash the fruit colour locus has a dominant allele ‘W’ for white colour and a recessive allele ‘w’ for coloured fruit. ‘W’ allele is dominant that masks the expression of any colour. In another locus hypostatic allele ‘G’ is for yellow fruit and its recessive allele ‘g’ for green fruit. In the first locus the white is dominant to colour where as in the second locus yellow is dominant to green.

When the white fruit with genotype WWgg is crossed with yellow fruit with genotype wwGG, the F1 plants have white fruit and are heterozygous (WwGg). When F1 heterozygous plants are crossed they give rise to F2 with the phenotypic ratio of 12 white : 3 yellow : 1 green
Interaction Of Genes - Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis img 3

Since W is epistatic to the alleles ‘G’ and ‘g’, the white which is dominant, masks the effect of yellow or green. Homozygous recessive ww genotypes only can give the coloured fruits (4/16). Double recessive ‘wwgg’ will give green fruit (1/16). The Plants having only ‘G’ in its genotype (wwGg or wwGG) will give the yellow fruit(3/16).

Intra – genic or allelic interaction

Interaction Of Genes - Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis img 4
Interaction Of Genes - Intragenic And Intergenic Incomplete Dominance, Lethal Genes, Epistasis img 5

Monohybrid, Dihybrid, Cross, Backcross And Testcross

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Monohybrid, Dihybrid, Cross, Backcross And Testcross

Monohybrid inheritance is the inheritance of a single character i.e. plant height. It involves the inheritance of two alleles of a single gene. When the F1 generation was selfed Mendel noticed that 787 of 1064 F2 plants were tall, while 277 of 1064 were dwarf. The dwarf trait disappeared in the F1 generation only to reappear in the F2 generation.

The term genotype is the genetic constitution of an individual. The term phenotype refers to the observable characteristic of an organism. In a genetic cross the genotypes and phenotypes of offspring, resulting from combining gametes during fertilization can be easily understood with the help of a diagram called Punnett’s Square named after a British Geneticist Reginald C.Punnett.

It is a graphical representation to calculate the probability of all possible genotypes of offsprings in a genetic cross. The Law of Dominance and the Law of Segregation give suitable explanation to Mendel’s monohybrid cross.
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 1

Reciprocal cross:

In one experiment, the tall pea plants were pollinated with the pollens from a true-breeding dwarf plants, the result was all tall plants. When the parental types were reversed, the pollen from a tall plant was used to pollinate a dwarf pea plant which gave only tall plants.

The result was the same – All tall plants. Tall (img 1) x Dwarf (img 2) and Tall (img 3) x Dwarf (img 4) matings are done in both ways which are called reciprocal crosses. The results of the reciprocal crosses are the same. So it was concluded that the trait is not sex dependent. The results of Mendel’s monohybrid crosses were not sex dependent.

The gene for plant height has two alleles:
Tall (T) x Dwarf (t). The phenotypic and genotypic analysis of the crosses has been shown by Checker board method or by Forkline method.

Mendel’s analytical and empirical approach

Mendel chose two contrasting traits for each character. So it seemed logical that two distinct factors exist. In F1 the recessive trait and its factors do not disappear and they are hidden or masked only to reappear in ¼ of the F2 generation. He concluded that tall and dwarf alleles of F1 heterozygote segregate randomly into gametes.

Mendel got 3:1 ratio in F2 between the dominant and recessive trait. He was the fist scientist to use this type of quantitative analysis in a biological experiment. Mendel’s data is concerned with the proportions of offspring.

Mendel’s analytical approach is truly an outstanding scientifi achievement. His meticulous work and precisely executed breeding experiments proposed that discrete particulate units of heredity are present and they are transmitted from one generation to the other.

Now they are called as genes. Mendel’s experiments were well planned to determine the relationships which govern hereditary traits. This rationale is called an empirical approach. Laws that were arrived from an empirical approach is known as empirical laws.

Test cross

Test cross is crossing an individual of unknown genotype with a homozygous recessive. In Mendel’s monohybrid cross all the plants are tall in F1 generation. In F2 tall and dwarf plants in F3 and F4 generations.
So he concluded that the genotype of dwarf was homozygous (tt). The genotypes of tall plants TT or Tt from F1 and F2 cannot be predicted.

But how we can tell if a tall plant is homozygous or heterozygous? To determine the genotype of a tall plant Mendel crossed the plants from F2 with the homozygous recessive dwarf plant. This he called a test cross. The progenies of the test cross can be easily analysed to predict the genotype of the plant or the test organism.

Thus in a typical test cross an organism (pea plants) showing dominant phenotype (whose genotype is to be determined) is crossed with the recessive parent instead of self crossing. Test cross is used to identify whether an individual is homozygous or heterozygous for dominant character.
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 2
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 2a

Back cross

  • Back cross is a cross of F1 hybrid with any one of the parental genotypes. The back cross is of two types; they are dominant back cross and recessive back cross.
  • It involves the cross between the F1 offspring with either of the two parents.
  • When the F1 offsprings are crossed with the dominant parents all the F2 develop dominant character and no recessive individuals are obtained in the progeny.
  • If the F1 hybrid is crossed with the recessive parent individuals of both the phenotypes appear in equal proportion and this cross is specifid as test cross.
  • The recessive back cross helps to identify the heterozygosity of the hybrid.

Dihybrid cross

It is a genetic cross which involves individuals differing in two characters. Dihybrid inheritance is the inheritance of two separate genes each with two alleles.
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 3

Law of Independent Assortment:

When two pairs of traits are combined in a hybrid, segregation of one pair of characters is independent to the other pair of characters. Genes that are located in different chromosomes assort independently during meiosis. Many possible combinations of factors can occur in the gametes.

Independent assortment leads to genetic diversity. If an individual produces genetically dissimilar gametes it is the consequence of independent assortment. Though independent assortment, the maternal and paternal members of all pairs were distributed to gametes, so all possible chromosomal combinations were produced leading to genetic variation.

In sexually reproducing plants/organisms, due to independent assortment, genetic variation takes place which is important in the process of evolution. The Law of Segregation is concerned with alleles of one gene but the Law of Independent Assortment deals with the relationship between genes.

The crossing of two plants diffring in two pairs of contrasting traits is called dihybrid cross. In dihybrid cross, two characters (colour and shape) are considered at a time. Mendel considered the seed shape (round and wrinkled) and cotyledon colour (yellow & green) as the two characters. In seed shape round (R) is dominant over wrinkled (r); in cotyledon colour yellow (Y) is dominant over green (γ).

Hence the pure breeding round yellow parent is represented by the genotype RRYY and the pure breeding green wrinkled parent is represented by the genotype rryy. During gamete formation the paired genes of a character assort out independently of the other pair.

During the F1 × F1 fertilization each zygote with an equal probability receives one of the four combinations from each parent. The resultant gametes thus will be genetically different and they are of the following four types:

  1. Yellow round (YR) – 9/16
  2. Yellow wrinkled (Yr) – 3/16
  3. Green round (yR) – 3/16
  4. Green wrinkled (yr) – 1/16

These four types of gametes of F1 dihybrids unite randomly in the process of fertilization and produce sixteen types of individuals in F2 in the ratio of 9:3:3:1 as shown in the fiure. Mendel’s 9:3:3:1 dihybrid ratio is an ideal ratio based on the probability including segregation, independent assortment and random fertilization.

In sexually reproducing organism/plants from the garden peas to human beings, Mendel’s fidings laid the
foundation for understanding inheritance and revolutionized the field of biology. The dihybrid cross and its result led Mendel to propose a second set of generalisations that we called Mendel’s Law of independent assortment.
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 4

The Dihybrid test cross
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 5

Extensions of Mendelian Genetics

Apart from monohybrid, dihybrid and trihybrid crosses, there are exceptions to Mendelian principles, i.e. the occurrence of different phenotypic ratios. The more complex patterns of inheritance are the extensions of Mendelian Genetics. There are examples where phenotype of the organism is the result of the interactions among genes.

Gene interaction:
A single phenotype is controlled by more than one set of genes, each of which has two or more alleles. This phenomenon is called Gene Interaction. Many characteristics of the organism including structural and chemical which constitute the phenotype are the result of interaction between two or more genes.
Monohybrid, Dihybrid, Cross, Backcross And Testcross img 6

Mendelian experiments prove that a single gene controls one character. But in the post Mendelian fidings, various exception have been noticed, in which different types of interactions are possible between the genes. This gene interaction concept was introduced and explained by W. Bateson. This concept is otherwise known as Factor hypothesis or Bateson’s factor hypothesis. According to Bateson’s factor hypothesis, the gene interactions can be classifid as

  • Intragenic gene interactions or Intra allelic or allelic interactions
  • Intergenic gene interactions or inter allelic or non-allelic interactions

Structure of Atoms Class 11 Notes Chemistry Chapter 2

By going through these CBSE Class 11 Chemistry Notes Chapter 2 Structure of Atoms, students can recall all the concepts quickly.

Structure of Atoms Notes Class 11 Chemistry Chapter 2

Sub-Atomic Particles: Dalton’s Atomic Theory regarded the atom as the ultimate particle of matter. It explained satisfactorily various laws of chemical combination like the law of conservation of mass, the law of constant composition, and the law of multiple proportions. However, it failed to explain the existence of sub-atomic particles which were later discovered like electrons and proton.

Discovery of Electron: Michael Faraday suggested the particular nature of electricity. When he passed electricity through a solution of an electrolyte, chemical reactions occurred at the electrodes with liberation and deposition of matter at the electrodes.

Michael Faraday discovered the sub-atomic particles like electrons from his well-known experiments in partially evacuated glass tubes called cathode ray discharge tubes. The cathode ray tube is made of glass containing two thin pieces of metal, called electrodes, sealed in it.
Structure of Atoms Class 11 Notes Chemistry 1
At very low pressure and at high voltage, current starts flowing through a stream of particles from cathode to anode. These were called cathode rays or cathode ray particles

Characteristics of Cathode rays:

  1. The cathode rays start from the cathode and move towards the anode.
  2. These rays travel in straight lines.
  3. Cathode rays are made up of material particles.
  4. On applying an electric field, these rays are deflected towards the positive plate. This shows that cathode rays carry a negative charge. These negatively charged particles are Electrons.
  5. Cathode rays produce a heating effect.
  6. They produce X-rays when they strike against the surface of hard metals like tungsten, molybdenum, etc.
  7. They produce green fluorescence when they stride zinc sulfide.
  8. They affect the photographic plates.
  9. They possess a penetrating effect.
  10. They possess the same charge/mass ratio.

\(\frac{\text { Charge }}{\text { Mass }}=\frac{e^{-}}{m}\) = 1.76 × 108 coulombs/g Mass m
Charge = e = 1.60 × 10-19 coulombs or 4.8 × 10-10 esu

Thus the mass of electron m
= \(\frac{e}{e / m}=\frac{1.60 \times 10^{-19}}{1.76 \times 10^{8}}\)
= 9.11 × 10-28 g
= 9.11 × 10-31 kg
Thus, it is concluded that electrons are the basic constituent of all atoms.

The amount of deviation of the particles from their path in the presence of an electrical or magnetic field depends upon

  • The magnitude of the negative charge on the particle, the greater the magnitude of the charge on the particle, the greater is the deflection.
  • The mass of the particle-lighter the particle, the greater is the deflection.
  • The strength of the electrical or magnetic field.

The deflection of electrons from their original path increases with the increase in the voltage or strength of the magnetic field.

Thus electron can be defined as the fundamental particle which carries one unit negative charge and has a mass nearly equal to \(\frac{1}{1837}\)th of that of the hydrogen atom.

Discovery of Protons and Newtons: Anode rays or Canal rays: If a perforated cathode is used in the discharge tube experiment, it is found that certain type of radiations also travels from anode to cathode.
Structure of Atoms Class 11 Notes Chemistry 2
Production of Anode rays or Positive rays

Thus anode rays are not emitted from the anode but are produced in the space between the anode and cathode.

Properties of Positive rays/canal rays:

  1. The anode-rays originate in the region between two electrodes in the discharge tube.
  2. These rays are made of material particles.
  3. These rays are positively charged.
  4. These rays produce heat when striking against a surface.
  5. The magnitude of the charge on anode-rays varies from particle to particle depending on the number of electrons lost by an atom or molecule.
  6. The mass of positive particles which constitute these rays depend upon the nature of the gas in the tube.
  7. The charge/mass (e/m) ratio of anode-rays is not constant but depends upon the nature of gas in the tube. The value of e/m is greatest for the lightest gas, hydrogen.

The electric charge on the lightest positively charged particle from hydrogen gas was found to be exactly equal in magnitude but opposite in sign to that of the electron. This lightest positively charged particle from hydrogen gas was named a proton. The mass of a proton is almost 1836 times that of the electron.

When hydrogen gas is taken inside the tube
Charge on these particles = 1.6 × 10-19 coulomb
\(\frac{\text { Charge }}{\text { mass }}\) = 958 × 104 coulombs/g for each particle
∴ mass on each particle = \(\frac{1.6 \times 10^{-19}}{9.58 \times 10^{4}}\) = 1.67 × 10-24 g

This mass is nearly the same as that of hydrogen atom.

Therefore, a Proton may be defined as the fundamental particle which carries one unit positive charge and has a mass nearly equal to that of the hydrogen atom.

Chadwick in 1932 discovered the 3rd sub-atomic neutral particle and named it Neutron. He bombarded a thin sheet of beryllium by a-particles to discover neutrons. Neutron is a neutral particle carrying no charge and has a mass slightly greater than that of proton/

Thomson Model of Atom:
J.J. Thomson proposed that an atom is a sphere (radius approximately 10-10 m) of positive electricity and electrons are embedded into like the seeds of watermelon. An important figure of this model is that the mass of the atom is uniformly distributed over the atom.
Structure of Atoms Class 11 Notes Chemistry 3
Thomson model of the atom

Later on, this model was rejected as Sphere electrons are mobile. Thomson model of the atom

Rutherford’s Nuclear Model of Atom: Rutherford bombarded very thin gold foil with a-particles.

The observations of this a-particle scattering experiment were:

  1. Most of the a-particles passed through the gold foil undeflected.
  2. A small fraction of the a-particles was deflected through small angles.
  3. A very few a-particles (~ 1 in 20,000) bounced back, that is, were deflected by nearly 180°.

Conclusions:

  1. Atom is hollow from within. There is empty space within the atom as most of the a-particles passed undeflected.
  2. A few positively charged a-particles were deflected. These must have been deflected by some positively charged body present within the atom. This positively charged body is very small as compared to the size of the atom.
  3. Calculations by Rutherford showed that the radius of this positive center called Nucleus is only 10-15 m as compared to the radius of the atom which is about 10-10 m.

Structure of Atoms Class 11 Notes Chemistry 4
Rutherford’s scattering experiments

On the basis of the above observations and conclusion, Rutherford proposed the nuclear model of the atom.
1. The positive charge and most of the mass of the atom were densely concentrated in an extremely small region. This very small portion of the atom was called the nucleus by Rutherford.
Structure of Atoms Class 11 Notes Chemistry 5
Scattering of a-particles by
(a) a single atom (b) a group of atoms

2. The nucleus is surrounded by electrons that move around the nucleus at a very high speed in circular paths called orbits. Thus, Rutherford’s model of the atom is similar to the solar system in which the nucleus is like the sun and moving electrons are like revolving planets.

3. Electrons and the nucleus are held together by electrostatic forces of attraction.

Atomic Number and Mass Number: Atomic Number (Z) is the number of protons present in the nucleus.
As an atom is electrically neutral, the no. of protons in the nucleus is equal to the number of electrons moving outside it.
No. of protons in hydrogen (Z) = 1
= no. of electrons in a neutral atom

No. of protons in sodium (Z) = 11
= no. of electrons in a neutral atom

While the positive charge of the nucleus is due to protons, the mass of the nucleus, due to both protons and neutrons. As both protons and neutrons are present in the nucleus, they are collectively called Nucleons.

The total no. of nucleons is termed as the Mass number (A) = No. of protons (Z) + No. of neutrons (n)
∴ No. of neutrons n = A – Z

→ Isobars and Isotopes: The composition of any atom of symbol, X can be represented by ZAX.

→ Isobars are defined as the atoms of different elements with the same mass number but a different atomic number, e.g., 614C and 714N

→ Isotopes are the atoms of the same element with the same atomic number but different mass numbers. Protium (11H), deuterium (12D), and tritium (13T) are the isotopes of hydrogen.

Similarly, 1735Cl and 1737Cl are the isotopes of chlorine.

The chemical properties of atoms are controlled by the number of electrons which are determined by the no. of protons in the nucleus. No. of neutrons present in the nucleus have very little effect on the chemical properties of an element. Thus all the isotopes of a given element show the same chemical behavior.

→ Drawbacks of Rutherford Model of Atom:
1. According to Maxwell, charged particles when moving, dissipates energy in the form of electromagnetic radiations.
Slowly, the distance between the moving electron from the nucleus decreases. Calculations show that it should take an electron only 10-8 to spiral into the nucleus.
Structure of Atoms Class 11 Notes Chemistry 6
But this does not happen. Thus Rutherford’s model cannot explain the stability of an atom.

2. Another serious drawback of the Rutherford model is that it says nothing about the electronic structure of atoms, i.e., how the electrons are distributed around the nucleus and what are the energies of these electrons.

→ Developments leading to Bohr’s Model of Atom: Neils Bohr improved upon the model of the atom as proposed by Rutherford.

Two developments played a major role in the formulation of Bohr’s model of the atom.

  1. Electromagnetic radiations possess both wave-like and particle-like properties.
  2. Quantization of electronic energy levels in atoms.

→ Wave Nature of Electromagnetic Radiation: Maxwell was the first to suggest that charged bodies moving under acceleration, produce alternating electrical and magnetic fields. These fields are transmitted in the form of waves called electromagnetic waves or electromagnetic radiations.

Properties associated with electromagnetic wave motion:

  1. Electric and magnetic fields are perpendicular to each other and both are perpendicular to the direction of propagation of the wave.
  2. These waves do not require medium and can move in a vacuum.
  3. There are many types of electromagnetic radiations that differ from one another in wavelength (or frequency). They constitute electromagnetic spectrum (shown below). A visible part of the spectrum (around 1015 Hz) is only a small part of it.
  4. Different kinds of units are used to represent electromagnetic radiation.
    SI unit for frequency (v -nu) is hertz (Hz, s-1).

It is defined as the number of waves that pass through a given point in space in one second.
SI unit for wavelength (λ) should be a meter.
(a) Wavelength (λ): It is the distance between two consecutive points which are in the same phase along the direction of propagation. Depending upon the magnitude, the wavelength is expressed either in cm, micron, millimicron, Angstrom unit, or in nanometer.
1 Angstrom (Å) = 10-8 cm = 10-10 m
1 micron (g) = 10-4 cm = 10-6 m.
1 nanometer = 10-9 m

(b) Frequency (v): It is defined as the number of wavelengths travelled in one second. Therefore,
v = \(\frac{\text { Velocity of the radiation }}{\text { Wavelength of the radiation }}=\frac{c}{\lambda}\)

The frequency is expressed in cycles per second or in Hertz (Hz) units.
1 Hz = 1 cycle/s

(c) Wave number (\(\bar{v}\)): It is defined as the number of wavelengths which can be accommodated in one cm length along the direction of propagation. Therefore,
Wave number (\(\bar{v}\)) = \(\frac{\text { Frequency of the radiation }(v)}{\text { Velocity of the radiation }(c)}=\frac{v}{c}\)

The wave number is generally expressed in the units of cm-1, although it is not the SI unit.
Frequency = Velocity × wave number
or
v = c\(\bar{v}\)

Relationship between velocity, wavelength, and frequency of wave:
c = V × λ
where c = velocity, v = frequency, λ = wavelength

Electromagnetic spectrum: The different types of electromagnetic radiations differ only in their wavelengths and have frequencies.

The wavelengths increase in the following order.
Cosmic rays < γ-rays < X-rays < Ultra-violet rays < Visible rays < Infrared < Microwaves < Radio waves

(a) The spectrum of electromagnetic radiation
Structure of Atoms Class 11 Notes Chemistry 7
(b) Visible spectrum: The visible spectrum is onlv a small part of the entire spectrum

In a vacuum, all types of electromagnetic radiations, regardless of wavelength, travel at the same speed, i.e., 3.0 × 108 ms-1
This is called the speed of light and is given the symbol ‘c’.

Particle Nature of Electromagnetic Radiation: Planck’s Quantum Theory
The wave nature of electromagnetic radiation could explain experimental phenomena such as diffraction and interference. However, the experimental observations such as the emission of, radiation from a hot body, and the photoelectric effect could not be explained in terms of the wave nature of light.

→ Black body radiation: All hot bodies emit electromagnetic radiation. At high temperatures, a part of these radiations lies in the visible region of the spectrum With a further increase in the temperature of the body, the proportion of the higher frequency radiation increases. An ideal body that emits and absorbs radiations of all frequencies is called a black body.

Max Planck found that the characteristics of black body radiation could be accounted for by proposing that each electromagnetic oscillator, viz., an atom or a molecule, can emit or absorb only a certain discrete quantity of energy. This limitation of the energy of an object to discrete values is called the quantization of energy. According to Planck, the energy of an oscillator of frequency v is restricted to an integral multiple of the quantity, hv, where h is called the Planck’s constant.

→ Plank gave the name quantum to the smallest quantity of energy that can be emitted or absorbed in the form of electromagnetic radiation. The energy (E) of a quantum of radiation is proportional to its frequency (v) and is expressed as
E = h v

h is called Planck’s constant and has the value 6.626 × 10-34 Js.
Thus, according to Planck
E = n h v
where n = 0,1, 2 , h = 6.626 × 10-34 Js

The smallest amount of energy (n = 1) is then given by
E = h v

The energy to h v is called a quantum of energy that can be emitted or absorbed in the form of electromagnetic radiation.

→ The energy of Electromagnetic Radiation: All electromagnetic radiations are associated with a certain amount of energy.

According to Einstein

1.The radiation energy is emitted or absorbed in the form of small packets of energy. Each such packet of energy is called a quantum or photon. Each quantum has a certain discrete amount of energy associated with it.

2. Energy associated with a quantum or photon (e) is proportional to the frequency (v) of the radiation
Then E ∝ v
or
E = hv

where h is a constant called Planck’s constant. This constant (h) has value of 6.626 × 10-34 Joule second (Js) or 3.99 × 10-13 kJs mol-1
The above relation may be written as ε = \(\frac{h c}{\lambda}\)

3. The energy associated with Avogadro’s number (N) of quanta is called an Einstein of energy (E). Thus, the Einstein of energy associated with the radiation of frequency v is. E = NA hv
Structure of Atoms Class 11 Notes Chemistry 8
Photoelectric Effect: When a beam of light of suitable wavelength falls on a clean metal plate (such as cesium) in a vacuum, electrons are emitted from the surface of the metal plate. This phenomenon involving the emission of electrons from the surface of a metal by the action of light is known as the photoelectric effect. The electrons so emitted are called photoelectrons.
Structure of Atoms Class 11 Notes Chemistry 9
Photoelectric effect

The three important facts about the photo-electric effect observed are
1. The electrons are ejected only if the radiation striking the surface of the metal has at least a certain minimum frequency called threshold frequency (vo). If the frequency is less than vo, no electrons are ejected.
This value (vo) is called Threshold Frequency. The minimum energy required to eject the electron (hvo) is called the work function.

2. The velocity (and hence the kinetic energy) of the electron ejected depends upon the frequency of the incident radiation and is independent of its intensity.

3. The number of photoelectrons ejected is proportional to the intensity of incident radiation.

The above observations cannot be explained by the Electromagnetic wave theory. According to this theory, since radiations are continuous, therefore it should be possible to accumulate energy on the surface of the metal, irrespective of its frequency and thus radiations of all frequencies should be able to eject electrons.

Similarly, according to this theory, the energy of the electrons ejected should depend upon the lire intensity of the incident radiation.

If the striking photon of light has energy = hv and the minimum energy required to eject the electron is hvo then the difference of energy (hv – hvo) is transferred as the kinetic energy of the photoelectron
\(\frac{1}{2}\)hv – hvo = h(v – vo)

where m = mass of the electron and v is the velocity of the ejected electron.

Dual Behaviour of Electromagnetic Radiation: The particle nature of light can explain the black body radiation and photoelectric effect satisfactorily but cannot explain the known wave behavior of light like the phenomenon of interference and diffraction. Therefore, light possesses dual behavior either as a wave or as a stream of particles.

When radiation interacts with matter, it displays particle-like properties. When it propagates, it displays wave-like properties like diffraction and interference. Some microscopic particles like electrons also exhibit this wave-particle duality.

→ Evidence for the Quantized Electronic Energy Levels: Atomic Spectra: Atoms give discontinuous or line spectra. The spectrum given by atoms consists of a series of bright lines or bands separated from each other by a dark space. Each line in the spectrum corresponds to a specific wavelength.

There are two types of atomic spectra

  1. Atomic emission spectra,
  2. Atomic absorption spectra

1. Atomic emission spectra: A series of bright lines, separated from each other by dark spaces, produced by the excited atoms is called atomic emission spectra.

Each line in the emission spectrum corresponds to a specific wavelength. Therefore, each element gives a unique pattern of lines in the spectrum. No two elements give the same pattern of lines in their spectra.

2. Atomic absorption spectra: When a sample of atomic vapors is placed in the -path of white light from an arc lamp, it absorbs the light of certain characteristic wavelengths, and the light of other wavelengths gets transmitted. This produces a series of dark lines on a white background.

The spectrum of Hydrogen Atom: The spectrum of a hydrogen atom can be obtained by passing an electric discharge through the gas taken in the discharge tube under pressure. The spectrum consists of a large number of lines appearing in different regions of wavelengths. The lines in different regions were grouped into five different series of lines, each being named after the name of its discoverer.

These are the Lyman series. Balmer series, Paschen series, Brackett series and Pfund series. Lyman series appear in the ultraviolet region, Balmer series appear in the visible region while the other three series lie in the infrared region.

A simple relationship between the wavelengths of different lines can be given as
\(\frac{1}{λ}\) = \(\bar{v}\)(in cm-1)
= R(\(\frac{1}{n_{2}^{2}}-\frac{1}{n_{1}^{2}}\))

where n1 and n2 are integers, such that n1 > n2. R is a constant, now called the Rydberg constant. The value of R is 109678 cm-1. This expression is found to be valid for all the lines in the hydrogen spectrum and is also known as Rydberg equation.

For a given spectrum series, n2 remains constant while n1 varies from line to line in the same series. For example, for Lyman series n2 = 1 and = 2, 3, 4, 5 and for Balmer series n2 = 2 and n1 = 3, 4, 5

…. All the five series, the regions in which lines appear and the values of n1 and n2 are given below:
Structure of Atoms Class 11 Notes Chemistry 10
Structure of Atoms Class 11 Notes Chemistry 11
Emission or atomic spectrum of hydrogen

Of all the elements, the hydrogen atom has the simplest line spectrum.

Bohr’s Model For Hydrogen Atom Postulates:
1. The electron in the hydrogen atom can move around the. the nucleus in a circular path of fixed radius and energy. These paths are called orbits, stationary states, or allowed energy states.

2. The energy of an electron in the orbit does not change with time. However, it jumps from a lower energy level to a higher energy level where the requisite amount of energy is supplied to it and jumps from a higher orbit to a lower orbit with the release of energy.
ΔE = E2 – E1
where ΔE = change in energy, E2 = energy of the electron in the higher orbit, E1 = energy of the electron in the lower orbit.

3. The frequency of the radiation absorbed or emitted is given by
v = \(\frac{\Delta \mathrm{E}}{h}=\frac{\mathrm{E}_{2}-\mathrm{E}_{1}}{h}\)

4. The angular momentum of an electron in a given stationary state can be expressed as
mvr = \(\frac{n h}{2 \pi}\); n = 1, 2,3 2n
Thus an electron can move only in those orbits for which its angular momentum is an integral multiple of \(\frac{h}{2 \pi}\) (Quantization of angular momentum).
That is why only certain fixed orbits are allowed.

(a) The stationary states for electrons are numbered n = 1, 2, 3… . They are called Principal quantum numbers.
(b) the radii of stationary states are expressed as
rn = n2a0
where ao = 52.9 pm

Thus the radius of the first orbit called Bohr radius is 52.9 pm (as n = 1).

(c) Energy of the electron in a given orbit
En = – RH\(\left[\frac{1}{n^{2}}\right]\) where n = 1, 2, 3, ……….
RH is called Rydberg Constant and its value is 2.18 × 10-18 J. The energy of the lowest state, also called the ground state is
E1 = – 2.18 × 10-18(\(\frac{1}{1^{2}}\)) = – 2.18 × 10-18 J
For n = 2
E2 = – 2.18 × 10-18(\(\frac{1}{2^{2}}\)) = – 0.545 × 10-18 J

Significance of the negative sign before the electronic energy En: The energy of the electron in a hydrogen atom has a negative sign for all possible orbits. A free-electron at rest far away place from the nucleus has energy = 0, i.e., E = 0. As the electron gets closer to the nucleus (n decreases) En becomes larger in absolute value and more and more negative. Thus the most negative energy given by n = 1 corresponds to the most stable orbit.

(d) Bohr’s theory can also be applied to ions containing only one ‘ electron like hydrogen. For example He+, Li2+, Be3+ and so on. For them
En = – 2.18 × 10-18(\(\frac{\mathrm{Z}^{2}}{n^{2}}\)) J and radii
rn = \(\frac{52.9\left(n^{2}\right)}{Z}\) pm
where Z = atomic number. It has a value of 2, 3 for helium and lithium respectively.

(e) Magnitude of the velocity of the electron increases with the increase in nuclear charge and decreases with the increase’ of principal quantum numbers.

→ Explanation of Line Spectrum of Hydrogen: The energy difference between the two orbits is given by
ΔE = Ef – Ei
Ef, Ei energies in final and initial orbits
ΔE = \(\left(\frac{-\mathrm{R}_{\mathrm{H}}}{n_{f}^{2}}\right)-\left(\frac{\mathrm{R}_{\mathrm{H}}}{n_{i}^{2}}\right)\)

nf, ni are final and initial orbits
Structure of Atoms Class 11 Notes Chemistry 12
In the case of the absorption spectrum, nf > ni energy is absorbed.
In the case of emission spectrum ni > nf; ΔE is negative and energy is released.

Advantages of Bohr’s Model:

  1. It explains the stability of the atom. An electron can not lose energy as long as it stays in a particular orbit.
  2. It explains the line spectrum of hydrogen.

Structure of Atoms Class 11 Notes Chemistry 13
Different series in the hydrogen spectrum

Drawbacks of Bohr’s Model: Bohr’s model of atom suffers from the following weaknesses or limitations.
1. Inability to explain line spectra of multi-electron atoms: Bohr’s theory was successful in explaining the line spectra of the hydrogen atom and hydrogen-like particles, containing a single electron only. However, it failed to explain the line spectra of multi-electron atoms.

When spectroscopes with better resolving powers were used, it was found that even in the case of hydrogen spectrum, each line was split up into a number of closely spaced lines (called fine structure) which could not be explained by Bohr’s model of the atom.

2. Inability to explain Zeeman effect (splitting of lines in the magnetic field and stark effect (splitting of lines in the electric field)

3. Unable to explain the three-dimensional model of the atom. Bohr’s model gives a flat model of the atom with electrons moving in circular paths in one plane.

4. It does not explain the shapes of molecules.

5. It fails to explain de Broglie’s concept of the dual nature of matter and Heisenberg’s uncertainty principle.

Towards Quantum Mechanical Model of the Atom:
1. Dual Behaviour Matter: de-Broglie suggested that matter and hence electron-like radiations have a dual character – wave and particle. In other words, matter also possesses particles as well as Wave characters. This concept of the dual character of matter gave birth to the wave mechanical theory of matter according to which, the electrons, protons, and even atom when in motion possess all wave properties. Mathematically, de Broglie view may be written as below:
λ = \(\frac{h}{m v}\) …(1)

The equation (1) is known as de Broglie equation, m = mass of the particle, v = velocity of the particle, h = Planck’s constant, λ is the wavelength.

Since h is constant, its value is 6.6256 × 10-34 Js
∴ λ ∝ \(\frac{1}{m v}\)
or
λ ∝ \(\frac{1}{\text { Momentum }}\)
(mv = momentum of a photon) … (2)

Equation (2) is known as de Broglie’s relationship which may be stated as the momentum of a particle in motion is inversely proportional to the wavelength of the waves associated with it.

2. Heisenberg’s Uncertainty Principle: One of the important consequences of the dual nature of an electron is the Uncertainty Principle, developed by Heisenberg. According to the Uncertainty Principle, it is impossible to determine simultaneously at any given moment both the position and momentum (velocity) of an electron with accuracy.

Mathematically, if Δx and Δp are the uncertainties in the position and momentum respectively, then
ΔxΔp ≥ \(\frac{h}{4 \pi}\)

One can see from this equation that if Ap increases, the Ax decreases and vice-versa. Since, Δp = m. Δv, hence the above equation can be written as
Δx × Δv >\(\frac{h}{4 \pi m}\)

Significance of Uncertainty Principle: One of the important implications of the Heisenburg Uncertainty Principle is that it rules out the existence of definite paths or trajectories of electrons and other similar particles.

The effect of the Heisenburg Uncertainty Principle is significant only for the motion of microscopic objects and is negligible for two macroscopic objects.

In dealing with milligram-sized or heavier objects, the value of Δv Δx is extremely small and insignificant and the associated uncertainties are hard of any real consequence. Therefore the precise statements of the position and momentum of electrons have to be replaced by the statements of probability, that the electron has at a given position and momentum. This is what happens in the quantum mechanical model of the atom.

→ Reasons for the failure of the Bohr Model: In the Bohr model, an electron is regarded as a charged particle moving in well-defined circular orbits about the nucleus. The wave character of the electron is not considered.

Bohr’s model of the hydrogen atom, therefore, not only ignores the dual behavior of matter but also contradicts Heisenburg’s Uncertainty Principle.

→ Quantum Mechanical Model of Atom: Quantum mechanics was developed independently by Heisenburg and Schrodinger.

Schrodinger equation is Ĥ φ = Eφ where Ĥ is a mathematical operator called Hamiltonian, E is the total energy of the system and φ is the wave function.

Important features of the quantum mechanical model of the atom:

  1. The energy of the electrons in atoms is quantized.
  2. The existence of quantized electronic energy levels is allowed solutions of the Schrodinger Wave Equation.
  3. Both the exact position and exact velocity of an electron in an atom cannot be determined simultaneously. Therefore, only the probability of finding an electron at different points is required.
  4. An atomic orbital is the wave function \p for an electron in an atom.
  5. The probability of finding an electron at a point within an atom is proportional to the square of the orbital wave function, i.e., |φ|2 at that point. |φ|2 is called probability density and is always positive. From the value of | \p |2 at different points within an atom it is possible to predict the region around the nucleus where the electron will most likely be found.

Orbitals and Quantum Numbers:
→ Atomic Orbital: it is defined as the 3-dimensional region of space around the nucleus where the probability of finding an electron is maximum.

→ Quantum Numbers: The state of an electron in an atom is described by its location with respect to the nucleus and by its energy. Thus, the energy and angular momentum of an electron is quantized, i.e., an electron in an atom can have only certain permissible values of energy and angular momentum. These permissible states of an electron in an atom called Orbitals are identified by a set of four numbers. These numbers are called Quantum Numbers.

The various quantum numbers are
(a) Principal quantum numbers are denoted by n.
(b) Azimuthal or angular momentum quantum number denoted by l.
(c) Magnetic quantum number denoted by m.
(d) Spin quantum number denoted by s.

(a) Principal quantum number (n): This quantum number determines the main energy level or shell in which the electron in an atom is present and also the energy associated with it. In addition, it also determines the average distance of the electron from the nucleus in a particular shell. Starting from the nucleus, the energy shells are denoted as K, L, M, N, … etc., or as 1, 2, 3, 4, … etc: The maximum number of electrons that a shell can accommodate is 2n2. Thus, K-shell (n = 1) can have a maximum of two electrons. L- shell (n = 2) can have eight electrons and similarly, eighteen electrons can be accommodated in M-shell (n = 3).

(b) Azimuthal or subsidiary or angular quantum number (l): This, the quantum number determines the angular momentum of the electron. This is denoted by l. The values of l give principal energy- shell in which an electron belongs. It can have positive integer values from zero to (n – 1) where n is the principal quantum number.
That is l = 0, 1,2, 3, …. (n – 1).
Structure of Atoms Class 11 Notes Chemistry 14
(c) Magnetic quantum number: This quantum number describes the behavior of an electron in a magnetic field. The values of ‘m’ are linked to that of l. For a given value of l, the possible values of m vary from -l to 0 and 0 to + l. Thus, the total values of m are (2l + 1). The orbitals are also named after the sub-shell in which these are present. The number of orbitals in different sub-shells are given:
Structure of Atoms Class 11 Notes Chemistry 15
(d) Spin quantum number: This quantum number describes the spin orientation of the .electron. It is designated by ‘s’. Since the electron can spin in only two ways-clockwise or anti-clockwise and, therefore, the spin quantum number can take only two values: + 1/2 or – 1/2. These two values are normally represented by two arrows pointing in the opposite direction i.e.↑ and ↓.

Shapes of atomic orbitals:
1. Shapes of s-orbitals: For s-orbitals, l = 0, hence the orbital angular momentum of an s-orbital is zero. As a result, the distribution of electron density is symmetrical around the nucleus and the probability of finding an electron for a given distance is the same at all angles. As the distribution of electron density is symmetrical, therefore, the most suitable figure to represent an s-orbital is a sphere.

(a) The probability of finding an electron is maximum near the nucleus and decreases with distance. In the case of 2s electrons, the probability is again maximum near the nucleus and then decreases to zero and increases again and then decreases as the distance from the nucleus increases. The intermediate region (a spherical shell) where the probability of finding an electron cloud is zero is called a Nodal surface/node. In general, any n orbital has (n – 1) nodes.
Structure of Atoms Class 11 Notes Chemistry 16
Shapes of is, 2s, and 3s orbitals

(b) The size and energy of the s-orbital increases as the principal quantum number n increases, i.e., size and energy of s-orbital increases in the order 1s < 2s < 3s ……

2. Shape of p-orbitals: For p-orbitals l = 1, so angular momentum of an electron in 2p orbital
= \(\sqrt{l(l+1)} \frac{h}{2 \pi}=\sqrt{2} \frac{h}{2 \pi}\)

As a result, the distribution of electron density around the nucleus is. not spherical. The probability diagram for a p-orbital is dumbbell shape. Such a diagram consists of a distorted sphere of high probability one on each side of the nucleus, concentrated along with N in a particular direction.
Structure of Atoms Class 11 Notes Chemistry 17
Shapes of p-orbital
Structure of Atoms Class 11 Notes Chemistry 18
Different orientatios of p-orbitais

Now, since the electron with l = 1 can have three values for the magnetic quantum number (m), i.e., m = – 1, 0 and + 1, hence there are three p-orbitals. All three 2p-orbitals have the same shape, but their directions are different. The directions are perpendicular to each other. Since these directions can be chosen as the x, y, z axes, hence the p-orbitals along these axes are labeled as px, py, and pz respectively. The three p-orbitals of a particular energy level have equal energies and are called degenerate orbitals. 2p has no node, 3p has one 4p has two nodes, and so on. In general, no. of nodes in any orbital = (n – l – 1).

3. Shape of d-orbitals: For d-orbital, 1 = 2. Therefore, the angular momentum of -an electron in d orbitals is not zero. As a result, the d orbitals do not show spherical symmetry. For l = 2, the magnetic quantum number (m) should have five different values i.e., m = – 2, – 1, 0, 1, + 2. Accordingly, there are five different space orientations for d orbitals. These are designated as
Structure of Atoms Class 11 Notes Chemistry 19
The five d-orbitals

4. Energies of orbitals: In atoms, electrons can have only certain permissible energies. These permissible states of electrons are called energy levels.

In hydrogen and hydrogen-like atoms, all the orbitals having the same principal quantum number have the same energy. Thus, 2s and 2p orbitals have equal energies, 3s, 3p, and orbitals have equal energies, and 4s, 4p, and 4f orbitals have equal energies as shown above.
Structure of Atoms Class 11 Notes Chemistry 20
Energy level diagram for the few electronic shells of the hydrogen atom

The atoms containing two or more electrons are called multielectron atoms. In these atoms:
(a) Different orbitals having the same principal quantum number (n) may have different energies.
(b) For a particular main energy level, the orbital having a higher value of the azimuthal quantum number (l) has higher energy. For example, the energy of 2p orbital (l = 1) is higher than that of the 2s (l = 0) orbital, general, energies of the orbitals belonging to the same main energy level follow the order
s < p < d < f
Structure of Atoms Class 11 Notes Chemistry 21
Energy level diagram for the few electronic shells of a multi-electron atom

(c) When n > 3, the same orbitals belonging to a lower main energy level may have higher energy than some orbitals belonging to the higher main energy. For example, in the case of multi-electron atoms, the energy of 3d orbitals is higher than the energy of 4s orbitals.

(d) In multielectron atoms, the energy of any orbital is governed by both the principal quantum number (n) and azimuthal quantum number (l):

  • The orbital having leaver (n + l) value has lower energy.
  • For the orbitals having equal value of (n + 1), the orbital having lower value of n has lower energy. For example.
    4s orbital has n + l = 4 + 0 = 4 and
    3d orbital has n + l = 3 + 2 = 5.

Since, (n + l) value for 4s orbital is lower than that for 3d, hence 4s orbital has lower energy than 3d.

5. Filling of orbitals in atoms:
Aufbau principle: In the ground state of the atoms, the orbitals are filled in order of their increasing energies. In other words, electrons first occupy the lowest-energy orbital available to them and enter into higher energy orbitals only after the lower energy orbitals are filled.

The order in which the energies of the orbitals increase and hence the order in which orbitals are filled is as follows:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s …….

“n + l” Rule: The lower the value of (n + l) for an orbital, the lower is its energy, and hence earlier it will be filled. If two orbitals have the same value of (n + l), the orbital with the lower value of n will have lower energy. Hence it will be filled first.
Structure of Atoms Class 11 Notes Chemistry 22
Order of Filling Energy Levels (Aufbau Principle)

→ Pauli Exclusion Principle
No two electrons in an atom can have the same set of four quantum numbers.
OR
Only two electrons may exist in the same orbital and these electrons must have opposite spin.

Hund’s rule of maximum multiplicity: According to this rule, electron pairing will not take place in orbitals of the same energy (same subshell) until each orbital is singly filled. This principle is very (important in guiding the filling of p, d, and f orbitals, which have more than one kind of orbitals. For example, we know that there are three p orbitals. (px, py, and pz) of the p-subshell in a principal energy level. According-” to Hund’s rule, each o.f the three p orbitals must get one electron of parallel spin before any one of them receives the second electron of opposite spin.

The electronic configuration of some atoms are given below:
Structure of Atoms Class 11 Notes Chemistry 23
After calcium, 3d subshell starts getting filled. The electronic configurations of elements from scandium (Z = 21) to zinc (Z = 30) are given below:
Structure of Atoms Class 11 Notes Chemistry 24
Total number of exchanges = 3+ 2 + l= 6
The number of exchanges that can take place in d5 configuration is as follows:
Structure of Atoms Class 11 Notes Chemistry 25
Gallium (Ga) Z = 31 to Krypton (Kr) Z = 36 (Electronic Configuration)
With Gallium (Ga) onwards, 4p orbitals get filled up as:
Structure of Atoms Class 11 Notes Chemistry 26
Important points to remember:

  1. Mass No. (A) = Sum of protons and neutrons.
  2. Atomic No. (Z) = No. of protons in the nucleus.
  3. No. of neutrons = A – Z.
  4. Nucleons are the particles (n + p) present in the nucleus.
  5. Max. No. of electrons in a shell that can be present in an atom is given by 2n2 where n = no. of the orbit.
  6. An s-subshell can contain 2, a p-can contains 6, a d-can contain 10, and an f-subshell can contain 14 electrons, s-subshell has only one orbital; p-can has 3, d has 5; subshell has 7 orbitals.
  7. Each orbital can maximum contains two electrons.
  8. To form a cation from a neutral atom, electrons are removed equal to the no. of positive charges on the cation, while to form an anion from a neutral atom, electrons are added to the no. of negative charges on an anion.

Table Electronic Configurations of the Elements:
Structure of Atoms Class 11 Notes Chemistry 27
Elements with exceptional electronic configurations
Structure of Atoms Class 11 Notes Chemistry 28
Structure of Atoms Class 11 Notes Chemistry 29
Elements with exceptional electronic configurations.

→ Elements with atomic number 112 amid above have been reported but not yet frilly a the indicated and min med.

→ Electron: It is the fundamental particle that carries one unit negative charge and has a mass nearly equal to \(\frac{1}{1837}\) hydrogen atom.

→ Proton: A proton may be defined as that fundamental particle that carries one unit of positive charge and has a mass nearly equal to that of the hydrogen atom.

→ Neutron: A neutron may be defined as the fundamental particle which carries no charge but has a mass nearly equal to that of a hydrogen atom or proton.

→ Cathode rays: Cathode rays are a stream of electrons.

→ Electrons: Electrons are universal constituents of matter.

→ Mass Number (A): Sum of protons and neutrons.

→ Atomic Number (Z): Number of protons in the nucleus of an atom.

→ Nucleons: Sum of protons and neutrons.

→ Isotopes: Atoms of the same element having the same atomic number, but different mass numbers are called Isotopes.

→ Isobars: Atoms of different elements which have the same mass number, but a different atomic number are Isobars.

→ Isotones: Such atoms of different elements which contain the same number of neutrons are called Isotones.

The wavelength (λ) of a wave is the distance between any two consecutive crests or troughs.
1 Å = 10-8 cm = 10-10 m
1 nm = 10-9 m, 1 pm = 10-12 m

→ Frequency (v): It is the number of waves passing through a point in space in one second. Its unit is Hertz (Hz).
1 Hz = 1 cycle per second (cps)

→ Velocity (c): The velocity of a wave is defined as the linear distance traveled by the wave in one second. Its unit is cm per second or meters per second.

→ Amplitude (a): It is the height of the crest or depth of the trough of a wave It is expressed in units of length.

→ Wavenumber: It is defined as the number of waves present in one cm length. It is also defined as the reciprocal of the wavelength
\(\bar{v}\) = \(\frac{1}{λ}\)

Relationship between velocity, wavelength, and frequency of a wave
c = v × λ

→ Electromagnetic spectrum: When electromagnetic radiations of different wavelengths are arranged in order of their increasing wavelengths or decreasing frequencies, the complete spectrum obtained is called Electromagnetic Spectrum,

Cosmic rays < y-rays < X-rays < UV rays < visible < Infrared < Microwaves < radiowaves

→ Photon: Each packet of energy is called quantum. In the case of light, such a quantum is called Photon.

→ Black Body Radiation: If the substance being heated is a black body (which is a perfect absorber and perfect radiator of energy) the radiation emitted is called blackbody radiation.

→ Zeeman Effect: Splitting of spectral lines in the magnetic field.

→ Stark Effect: Splitting of spectral lines in the electric field.

→ Probability.: It is the best possible description of a situation that cannot be exactly described.

→ Orbit: It, is a well-defined circular path around the nucleus with . a fixed energy in which the electrons revolve.

→ Orbital: The three-dimensional region of space around the nucleus where there is a maximum probability of finding an electron.

→ Quantum Numbers may be defined as a set of four numbers that give complete information about the electron in an atom, i.e., energy, orbital occupied, size, shape, and orientation of that orbital, and the direction of electron spin.

Some Important Formulae:
→ c = v × λ
c = velocity;
λ = wavelength,
v = Frequency

→ E = hv
h = Planck’s coristt. = 6.625 × 10-34 J sec
E = Energy of a photon

→ \(\bar{v}\) = \(\frac{1}{λ}\)
\(\bar{v}\) = wavenumber .
Charge on 1 electron = – 1
Change on 1 proton = 1 +
Charge on 1 neutron = 0
Mass of one electron = 9.1 × 10-31 kg
Mass of a proton = 1.67 × 10-27 kg .
Mass of neutron = 1.67 × 10-27 kg
One unit charge = 4.8 × 10-10 e.s.u.
= 1.6 × 10-19 coulomb

Work of R.A. Millikan ,
Charge on one electron = 1.6 × 10-19 coulomb
e/m for electron = 1.76 × 108

∴ Mass of an electron = \(\frac{e}{e / m}=\frac{1.60 \times 10^{-19}}{1.76 \times 10^{8}}\)
= 9.11 × 10-28 g

If X is an atom of an element
Structure of Atoms Class 11 Notes Chemistry 30
Mass of 1 Mole of electron
. = 9.11 × 10-28 × 6.022 × 1023 g = 0.55 mg

→ Photoelectric Effect: The phenomenon of the emission of electrons from the surface of certain metals (usually potassium, cesium, rubidium). When they are exposed to a team of light with certain minimum frequency called threshold frequency.
hv = hv0 + \(\frac{1}{2}\) mv2

K.E. imparted to the ejected electron .
= \(\frac{1}{2}\) mv2 = hv – hv0

→ Line spectrum of hydrogen
\(\bar{v}\) = 109677(\(\frac{1}{2^{2}}-\frac{1}{n^{2}}\)) cm-1
where n > 3, i.e. n = 3, 4, 5, ….
The value 109677 cm-1 is called Rydburg Constant.

→ de Broglie Equation
λ = \(\frac{h}{m \times v}=\frac{h}{p}\)
where p = momentum of the particle.

→ Heisenburg’s Uncertainty Principle
Structure of Atoms Class 11 Notes Chemistry 31
It is impossible to determine simultaneously both the position as well as momentum (or velocity) of a moving particle like an electron with absolute accuracy.

→ Pauli Exclusion Principle: No two electrons in an atom can have the same set of four quantum numbers.
Or
Only two electrons may exist in the same orbital and these electrons must have opposite spin.

→ The maximum number of electrons in the shell with principal quantum number n is equal to 2n2.

→ Hund’s Rule of Maximum Multiplicity: Pairing of electrons in the orbitals belonging to the same subshell (p, d, or f) does not take place until each orbital belonging to that subshell has got one electron each, i.e., it is singly occupied.

→ Schrodinger Wave Equation: It is applicable to the wave nature of electrons.
Ĥ φ = E φ
where Ĥ is a mathematical operator called Hamiltonian operator.
or
\(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}+\frac{8 \pi^{2} m}{h^{2}}\)(E – V)φ = 0

where φ is the amplitude of the wave, x, y, z are space coordinates E is the total energy of the electron, V is its potential energy m is the mass of the electron.

Laws Of Mendelian Inheritance

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Laws Of Mendelian Inheritance

Mendelian inheritance – Mendel’s Laws of Heredity

Mendel proposed two rules based on his observations on monohybrid cross, today these rules are called laws of inheritance The first law is The Law of Dominance and the second law is The Law of Segregation. These scientific laws play an important role in the history of evolution.

The Law of Dominance:

The characters are controlled by discrete units called factors which occur in pairs. In a dissimilar pair of factors one member of the pair is dominant and the other is recessive. This law gives an explanation to the monohybrid cross (a) the expression of only one of the parental characters in F1 generation and (b)
the expression of both in the F2 generation. It also explains the proportion of 3:1 obtained at the F2.

The Law of Segregation (Law of Purity of gametes):

Alleles do not show any blending, both characters are seen as such in the F2 generation although one of the characters is not seen in the F2 generation.

During the formation of gametes, the factors or alleles of a pair separate and segregate from each other such that each gamete receives only one of the two factors. A homozygous parent produces similar gametes and a heterozygous parent produces two kinds of gametes each having one allele with equal proportion. Gametes are never hybrid.

An Overview of Mendelism

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

An Overview of Mendelism

The contribution of Mendel to Genetics is called Mendelism. It includes all concepts brought out by Mendel through his original research on plant hybridization. Mendelian genetic concepts are basic to modern genetics. Therefore, Mendel is called as Father of Genetics.

Father of Genetics – Gregor Johann Mendel (1822 – 1884)

The first Geneticist, Gregor Johann Mendel unraveled the mystery of heredity. He was born on 22nd July 1822 in Heinzendorf Silesia (now Hyncice, Czechoslovakia), Austria. After school education, later he studied botany, physics and mathematics at the University of Vienna. He then entered a monastery of St.Thmas at Brunn in Austria and continued his interest in plant hybridization.

In 1849 Mendel got a temporary position in a school as a teacher and he performed a series of elegant experiments with pea plants in his garden. In 1856, he started his historic studies on pea plants. 1856 to 1863 was the period of Mendel’s hybridization experiments on pea plants.

Mendel discovered the principles of heredity by studying the inheritance of seven pairs of contrasting traits of pea plant in his garden. Mendel crossed and catalogued 24, 034 plants through many generations. His paper entitled “Experiments on Plant Hybrids” was presented and published in The Proceedings of the Brunn Society of Natural History in 1866. Mendel was the fist systematic researcher in the field of genetics.
An Overview of Mendelism img 2

Mendel was successful because:

  • He applied mathematics and statistical methods to biology and laws of probability to his breeding experiments.
  • He followed scientifi methods and kept accurate and detailed records that include quantitative data of the outcome of his crosses.
  • His experiments were carefully planned and he used large samples.
  • The pairs of contrasting characters which were controlled by factor (genes) were present on separate chromosomes. (Figure 2.4)
  • The parents selected by Mendel were pure breed lines and the purity was tested by self crossing the progeny for many generations.
    An Overview of Mendelism img 1

Mendel’s Experimental System – The Garden pea.

He chose pea plant because,

  • It is an annual plant and has clear contrasting characters that are controlled by a single gene separately.
  • Self-fertilization occurred under normal conditions in garden pea plants. Mendel used both self-fertilization and crossfertilization.
  • The flowers are large hence emasculation and pollination are very easy for hybridization.

Mendel’s experiments on pea plant

Mendel’s theory of inheritance, known as the Particulate theory, establishes the existence of minute particles or hereditary units or factors, which are now called as genes. He performed artificial pollination or cross pollination experiments with several true-breeding lines of pea plants. A true breeding lines (Pure-breeding strains) means it has undergone continuous self pollination having stable trait inheritance from parent to offspring.

Matings within pure breeding lines produce offprings having specific parental traits that are constant in inheritance and expression for many generations. Pure line breed refers to homozygosity only. Fusion of male and female gametes produced by the same individual i.e pollen and egg are derived from the same plant is known as selffertilization.
An Overview of Mendelism img 3

Self pollination takes place in Mendel’s peas. The experimenter can remove the anthers (Emasculation) before fertilization and transfer the pollen from another variety of pea to the stigma of flowers where the anthers are removed.

This results in cross-fertilization, which leads to the creation of hybrid varieties with different traits. Mendel’s work on the study of the pattern of inheritance and the principles or laws formulated, now constitute the Mendelian Genetics.
An Overview of Mendelism img 4

Mendel worked at the rules of inheritance and arrived at the correct mechanism before any knowledge of cellular mechanism, DNA, genes, chromosomes became available. Mendel insights and meticulous work into the mechanism of inheritance played an important role which led to the development of improved crop varieties and a revolution in crop hybridization.

Mendel died in 1884. In 1900 the work of Mendel’s experiments were rediscovered by three biologists, Hugo de Vries of Holland, Carl Correns of Germany and Erich von Tschermak of Austria.

Terminology related to Mendelism

Mendel noticed two different expressions of a trait – Example: Tall and dwarf. Traits are expressed in different ways due to the fact that a gene can exist in alternate forms (versions) for the same trait is called alleles.

If an individual has two identical alleles of a gene, it is called as homozygous (TT). An individual with two different alleles is called heterozygous (Tt). Mendels non-true breeding plants are heterozygous, called as hybrids. When the gene has two alleles the dominant allele is symbolized with capital letter and the recessive with small letter.

When both alleles are recessive the individual is called homozygous recessive (tt) dwarf pea plants. An individual with two dominant alleles is called homozygous dominant (TT) tall pea plants. One dominant allele and one recessive allele (Tt) denotes nontrue breeding tall pea plants heterozygous tall.

Heredity And Variation

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Heredity And Variation

Genetics is oftn described as a science which deals with heredity and variation.

Heredity:
Heredity is the transmission of characters from parents to off springs.

Variation:
The organisms belonging to the same natural population or species that shows a diffrence in the characteristics is called variation. Variation is of two types

  1. Discontinuous variation and
  2. Continuous variation

1. Discontinuous Variation:

Within a population there are some characteristics which show a limited form of variation. Example: Style length in Primula, plant height of garden pea. In discontinuous variation, the characteristics are controlled by one or two major genes which may have two or more allelic forms. These variations are genetically determined by inheritance factors.

Individuals produced by this variation show diffrences without any intermediate form between them and there is no overlapping between the two phenotypes. The phenotypic expression is unaffcted by environmental conditions. This is also called as qualitative inheritance.

2. Continuous Variation:

This variation may be due to the combining effects of environmental and genetic factors. In a population most of the characteristics exhibit a complete gradation, from one extreme to the other without any break. Inheritance of phenotype is determined by the combined effects of many genes, (polygenes) and environmental factors. This is also known as quantitative inheritance. Example: Human height and skin color.

Importance of variations

  • Variations make some individuals better fited in the struggle for existence.
  • They help the individuals to adapt themselves to the changing environment.
  • It provides the genetic material for natural selection.
  • Variations allow breeders to improve better yield, quicker growth, increased resistance and lesser input.
  • They constitute the raw materials for evolution.

Asexual and Sexual Reproduction of Parthenocarpy

Learninsta presents the core concepts of Biology with high-quality research papers and topical review articles.

Asexual and Sexual Reproduction of Parthenocarpy

As mentioned earlier, the ovary becomes the fruit and the ovule becomes the seed after fertilization. However in a number of cases, fruit like structures may develop from the ovary without the act of fertilization. Such fruits are called parthenocarpic fruits. Invariably they will not have true seeds. Many commercial fruits are made seedless. Examples: Banana, Grapes and Papaya.

Signifiance

  • The seedless fruits have great signifiance in horticulture.
  • The seedless fruits have great commercial importance.
  • Seedless fruits are useful for the preparation of jams, jellies, sauces, fruit drinks etc.
  • High proportion of edible part is available in parthenocarpic fruits due to the absence of seeds.