## RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1H

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1H.

**Other Exercises**

- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1A
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1B
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1C
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1D
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1E
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1F
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1G
- RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1H

**Objective Questions :**

**Tick the correct answer in each of the following :**

**Question 1.**

**Solution:**

Answer = (c)

**Question 2.**

**Solution:**

**Question 3.**

**Solution:**

**Question 4.**

**Solution:**

**Question 5.**

**Solution:**

**Question 6.**

**Solution:**

**Question 7.**

**Solution:**

Answer = (b)

**Question 8.**

**Solution:**

**Question 9.**

**Solution:**

**Question 10.**

**Solution:**

**Question 11.**

**Solution:**

**Question 12.**

**Solution:**

Product of two numbers = \(\\ \frac { -28 }{ 81 } \)

One number = \(\\ \frac { 14 }{ 27 } \)

**Question 13.**

**Solution:**

Answer = (c)

Let x be the required number, then

**Question 14.**

**Solution:**

Answer = (d)

Let x is to be subtracted then

**Question 15.**

**Solution:**

Answer = (c)

sum = -3,one number = \(\\ \frac { -10 }{ 3 } \)

**Question 16.**

**Solution:**

Answer = (c)

We know that a number is called in standard form if the numerator and denominator has no common divisor except 1.

\(\\ \frac { -9 }{ 6 } \) is in standard form.

**Question 17.**

**Solution:**

**Question 18.**

**Solution:**

Answer = (b)

**Question 19.**

**Solution:**

Answer = (d)

Let x is required rational

**Question 20.**

**Solution:**

Additive inverse of \(\\ \frac { -5 }{ 9 } \) is = – \(\left( \frac { -5 }{ 9 } \right) \)

**Question 21.**

**Solution:**

Reciprocal of \(\\ \frac { -3 }{ 4 } \) is \(\\ \frac { -4 }{ 3 } \)

**Question 22.**

**Solution:**

A rational number between = \(\\ \frac { -2 }{ 3 } \)

**Question 23.**

**Solution:**

Answer: (b)

The reciprocal of a negative rational

the number is also a negative rational number.

Hope given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1H are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.