RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS

Other Exercises

Mark the correct alternative in each of the following:
Question 1.
The factors of x3 – x2y -xy2 + y3 are
(a) (x + y) (x2 -xy + y2)
(b) (x+y)(x2 + xy + y2)
(c) (x + y)2 (x – y)
(d) (x – y)2 (x + y)
Solution:
x3 – x2y – xy2 + y3
= x3 + y3 – x2y – xy2
= (x + y) (x2 -xy + y2)- xy(x + y)
= (x + y) (x2 – xy + y2 – xy)
= (x + y) (x2 – 2xy + y2)
= (x + y) (x – y)2         (d)

Question 2.
The factors of x3 – 1 +y3 + 3xy are
(a) (x – 1 + y)  (x2 + 1 + y2 + x + y – xy)
(b) (x + y + 1)  (x2 + y2 + 1- xy – x – y)
(c) (x – 1 + y)   (x2 – 1 – y+ x + y + xy)
(d) 3(x + y – 1) (x2 + y2 – 1)
Solution:
x3 – 1 + y3 + 3xy
= (x)3 + (-1)3 + (y)3 – 3 x  x  x (-1) x y
= (x – 1 + y) (x2 + 1 + y2 + x + y – xy)
= (x- 1 + y) (x2+ 1 + y2 + x + y – xy)      (a)

Question 3.
The factors of 8a3 + b3 – 6ab + 1 are
(a) (2a + b – 1) (4a2 + b2 + 1 – 3ab – 2a)
(b) (2a – b + 1) (4a2 + b2 – 4ab + 1 – 2a + b)
(c) (2a + b+1) (4a2 + b2 + 1 – 2ab – b – 2a)
(d) (2a – 1 + b)(4a2 + 1 – 4a – b – 2ab)
Solution:
8a3 + b3 – 6ab + 1
= (2a)3 + (b)3 + (1)3 – 3 x 2a x b x 1
= (2a + b + 1) [(2a)2 + b2+1-2a x b- b x 1 – 1 x 2a]
= (2a + b + 1) (4a2 + b2+1-2ab-b- 2a)            (c)

Question 4.
(x + y)3 – (x – v)3 can be factorized as
(a) 2y (3x2 + y2)                
(b) 2x (3x2 + y2)
(c) 2y (3y2 + x2)                
(d) 2x (x2 + 3y2)
Solution:
(x + y)3 – (x – y)3
= (x + y -x + y) [(x + y)2 + (x +y) (x -y) + (x – y)2]
= 2y(x2 + y2 + 2xy + x2-y2 + x2+y2 – 2xy)
= 2y(3x2 + y2)          (a)

Question 5.
The expression (a – b)3 + (b – c)3 + (c – a)3 can be factorized as
(a) (a -b) (b- c) (c – a) 
(b) 3(a – b) (b – c) (c – a)
(c) -3(a – b) (b – c) (a – a)
(d) (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
Solution:
(a – b)3 + (b – c)3 + (c – a)3
Let a – b = x, b – a = y, c – a = z
∴ x3 + y3 + z3
x+y + z = a- b + b- c + c – a = 0
∴ x3 +y3 + z3 = 3xyz
(a – b)3 + (b – a)3 + (c – a)3
= 3 (a – b) (b – c) (c – a)        (b)

Question 6.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS Q7.2

Question 8.
The factors of a2 – 1 – 2x – x2 are
(a) (a – x + 1) (a – x – 1)                                
(b) (a + x – 1) (a – x + 1)
(c) (a + x + 1) (a – x – 1)                               
(d) none of these
Solution:
a2 – 1- 2x – x2
⇒ a2 – (1 + 2x + x2)
= (a)2 – (1 + x)2
= (a + 1 + x) (a – 1 – x)                         (c)

Question 9.
The factors of x4 + x2 + 25 are
(a) (x2 + 3x + 5) (x2 – 3x + 5)                      
(b) (x2 + 3x + 5) (x2 + 3x – 5)
(c) (x2 + x + 5) (x2 – x + 5)                           
(d) none of these
Solution:
x4 + x2 + 25 = x4 + 25 +x2
= (x2)2 + (5)2 + 2 x x2 x 5- 9x2
= (x2 + 5)2 – (3x)2
= (x2 + 5 + 3x) (x2 + 5 – 3x)
= (x2 + 3x + 5) (x2 – 3x + 5)                 (a)

Question 10.
The factors of x2 + 4y2 + 4y – 4xy – 2x – 8 are
(a) (x – 2y – 4) (x – 2y + 2)                            
(b)  (x – y  +   2) (x – 4y – 4)
(c) (x + 2y – 4) (x + 2y + 2)                         
(d)    none of these
Solution:
x2 + 4y2 + 4y – 4xy – 2x – 8
⇒  x2 + 4y + 4y – 4xy – 2x – 8
= (x)2 + (2y)2– 2 x x x 2y + 4y-2x-8
= (x – 2y)2 – (2x – 4y) – 8
= (x – 2y)2 – 2 (x – 2y) – 8
Let x – 2y = a, then
a2– 2a – 8 = a2– 4a + 2a – 8
= a(a – 4) + 2(a – 4)
= (a-4) (a + 2)
= (x2 -2y-4) (x2 -2y + 2)                       (a)

Question 11.
The factors of x3 – 7x + 6 are
(a) x(x – 6) (x – 1)                                           
(b) (x2 – 6) (x – 1)
(c) (x + 1) (x + 2) (x – 3)                               
(d) (x – 1) (x + 3) (x – 2)
Solution:
x-7x + 6= x3-1-7x + 7
= (x – 1) (x2 + x + 1) – 7(x – 1)
= (x – 1) (x2 + x + 1 – 7)
= (x – 1) (x2 + x – 6)
= (x – 1) [x2 + 3x – 2x – 6]
= (x – 1) [x(x + 3) – 2(x + 3)]
= (x – 1) (x+ 3) (x – 2)                           (d)

Question 12.
The expression x4 + 4 can be factorized as
(a) (x2 + 2x + 2) (x2 – 2x + 2)                       
(b) (x2 + 2x + 2) (x2 + 2x – 2)
(c) (x2 – 2x – 2) (x2 – 2x + 2)                         
(d) (x2 + 2) (x2 – 2)
Solution:
x4 + 4 = x4 + 4 + 4x2 – 4x2                (Adding and subtracting 4x2)
= (x2)2 + (2)2 + 2 x x2 x 2 – (2x)2
= (x2 + 2)2 – (2x)2
= (x2 + 2 + 2x) (x2 + 2 – 2x)                {∵ a2 – b2 = (a + b) (a – b)}
= (x2 + 2x + 2) (x2 – 2x + 2)                  (a)

Question 13.
If 3x = a + b + c, then the value of (x – a)3 + (x –    bf + (x – cf – 3(x – a) (x – b) (x – c) is
(a) a + b + c                                                
(b) (a – b) {b – c) (c – a)
(c) 0                                                                  
(d) none of these
Solution:
3x = a + b + c                                                                      .
⇒ 3x-a-b-c = 0
Now, (x – a)3+ (x – b)3 + (x – c)– 3(x – a) (x -b)  (x – c)
= {(x – a) + (x – b) + (x – c)} {(x – a)2 + (x – b)+ (x – c)2  – (x – a) (x – b) (x – b) (x – c) – (x – c) (x – a)}
= (x – a + x – b + x – c) {(x – a)2 + (x – b)2  + (x – c)2 – (x – a) (x – b) – (x – b) (x – c) – (x – c) (x – a)}
= (3x – a – b -c) {(x – a)2 + (x -b)2+ (x – c)2 – (x – a) (x – b) – (x – b) (x – c) – (x – c) (x – a)}
But 3x-a-b-c = 0, then
= 0 x {(x – a)2 + (x – b)2 + (x – c)2 – (x – a) (x – b) – (x – b) (x – c) – (x – c) (x – a)}
= 0                                                         (c)

Question 14.
If (x + y)3 – (x – y)3 – 6y(x2 – y2) = ky2, then k =
(a) 1                                   
(b) 2                                
(c) 4                                     
(d) 8
Solution:
(x + y)3 – (x – y)3 – 6y(x2 – y2) = ky2
LHS = (x + y)3 – (x – y)3 – 3 x (x + y) (x – y) [x + y – x + y]
= (x+y-x + y)3       {∵ a3 – b3 – 3ab (a – b) = a3 – b3}
= (2y)3 = 8y3
Comparing with ky3, k = 8                     (d)

Question 15.
If x3 – 3x2 + 3x – 7 = (x + 1) (ax2 + bx + c), then a + b + c =
(a) 4                                   
(b) 12                             
(c) -10                                 
(d) 3
Solution:
x3 – 3x2 + 3x + 7 = (x + 1) (ax2 + bx + c)
= ax3 + bx2 + cx + ax2 + bx + c
x3 – 3x2 + 3x – 7 = ax3 + (b + a)2 + (c + b)x + c
Comparing the coefficient,
a = 1
b + a = -3 ⇒ b+1=-3 ⇒ b = -3-1=-4
c + b = 3 ⇒ c- 4 = 3 ⇒ c = 3 + 4 = 7
a + b + c = 1- 4 + 7 = 8- 4 = 4             (a)

Hope given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1

Other Exercises

Factorize
Question 1.
x3 + x – 3x2 – 3
Solution:
x3 + x – 3x2 – 3
x3 – 3a2 + x – 3
⇒  x2(x – 3) + 1(x – 3)
= (x – 3) (x2 + 1)

Question 2.
a(a + b)3 – 3a2b(a + b)
Solution:
a(a + b)3 – 3a2b(a + b)
= a(a + b) {(a + b)2 3ab}
= a(a + b) {a2 + b2 + 2ab – 3ab}
= a{a + b) {a2 – ab + b2)

Question 3.
x(x3 – y3) + 3xy(x – y)
Solution:
x(x3 – y3) + 3xy(x – y)
= x(x – y) (x2 + xy + y2) + 3xy(x – y)
= x(x – y) (x2 + xy + y2 + 3y)
= x(x – y) (x2 + xy + y2 + 3y)

Question 4.
a2x2 + (ax2 +1)x + a
Solution:
a2x2 + (ax2 + 1)x + a
= a2x2 + a + (ax2 + 1)x
= a(ax2 + 1) + x(ax2 + 1)
= (ax2 + 1) (a + x)
= (x + a) (ax2 + 1)

Question 5.
x2 + y – xy – x
Solution:
x2 + y – xy – x
= x2-x-xy + y = x(x- l)-y(*- 1)
= (x – 1) (x – y)

Question 6.
X3 – 2x2y + 3xy2 – 6y3
Solution:
x3 – 2x2y + 3xy26y3
= x2(x – 2y)
+ 3y2(x – 2y)
= (x – 2y) (x2 + 3y2)

Question 7.
6ab – b2 + 12ac – 2bc
Solution:
6ab – b2 + 12ac – 2bc
= 6ab + 12ac – b2 – 2bc
= 6a(b + 2c) – b(b + 2c)
= (b + 2c) (6a – b)

Question 8.
x(x – 2) (x – 4) + 4x – 8
Solution:
x(x – 2) (x – 4) + 4x – 8
= x(x – 2) (x – 4) + 4(x – 2)
= (x – 2) [x(x – 4) + 4]
= (x – 2) (x2 – 4x + 4)
= (x – 2) [(x)2 – 2 x x x 2 + (2)2]
= (x – 2) (x – 2)2 = (x – 2)3

Question 9.
(a – b + c)2 + (b – c + a)2 + 2(a – b + c) (b – c + a)
Solution:
(a – b + c)2 + ( b- c+a)2 + 2(a – b + c) (b – c + a)      {∵ a2 + b2 + 2ab = (a + b)2}
= [a – b + c + b- c + a]2
= (2a)2 = 4a2

Question 10.
a2 + 2ab + b2 – c2
Solution:
a2 + 2ab + b2 – c2
= (a2 + 2ab + b2) – c2
= (a + b)2 – (c)2         {∵  a2 – b2 = (a + b) (a – b)}
= (a + b + c) (a + b – c)

Question 11.
a2 + 4b2 – 4ab – 4c2
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q11.1

Question 12.
x2 – y2 – 4xz + 4z2
Solution:
x2 – y2 – 4xz + 4z2
= x2 – 4xz + 4z2 – y2
= (x)2 – 2 x x x 2z + (2z)2 – (y)2
= (x – 2z)2 – (y)2
= (x – 2z + y) (x – 2z – y)
= (x +y – 2z) (x – y – 2z)

Question 13.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q13.2
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q13.3

Question 14.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q14.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q14.2

Question 15.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q15.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q15.2

Question 16.
Give possible expression for the length and breadth of the rectangle having 35y2 + 13y – 12 as its area.
Solution:
Area of a rectangle = 35y2 + 13y – 12
= 35y2 + 28y- 15y- 12
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q16.1
(i) If length = 5y + 4, then breadth = 7y – 3
(ii) and if length = 7y-3, then length = 5y+ 4

Question 17.
What are the possible expressions for the dimensions of the cuboid whose volume is 3x2 – 12x.
Solution:
Volume 3x2 – 12x
= 3x(x – 4)
∴ Factors are 3, x, and x – 4
Now, if length = 3, breadth = x and height = x – 4
if length =3, breadth = x – 4, height = x
if length = x, breadth = 3, height = x – 4
if length = x, breadth = x – 4, height = 3
if length = x – 4, breadth = 3, height = x
if length – x – 4, breadth = x, height = 3

Question 18.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q18.2

Question 19.
(x + 2) (x2 + 25) – 10x2 – 20x
Solution:
(x + 2) (x2 + 25) – 10x2 – 20x
= (x + 2) (x2 + 25) – 10x(x + 2)
= (x + 2) [x2 + 25 – 10x]
= (x + 2) [(x)2 – 2 x x x 5 + (5)2]
= (x + 2) (x – 5)2

Question 20.
2a2 + 2\(\sqrt { 6 } \) ab +3b2
Solution:
2a2 + 2\(\sqrt { 6 } \)  ab +3 b2
= (\(\sqrt { 2 } \) a)2+ \(\sqrt { 2 } \) a x \(\sqrt { 3 } \) b+ (\(\sqrt { 3 } \) b)2
= (\(\sqrt { 2 } \)a + \(\sqrt { 3 } \) b)2

Question 21.
a2 + b2 + 2(ab + bc + ca)
Solution:
a2 + b2 + 2(ab + bc + ca)
= a2 + b2 + 2 ab + 2 bc + 2 ca
= (a + b)2 + 2c(b + a)
= (a + b)2 + 2c(a + b)
= (a + b) (a + b + 2c)

Question 22.
4(x – y)2 – 12(x -y) (x + y) + 9(x + y)2
Solution:
4(x – y)2 – 12(x – y) (x + y) + 9(x + y)2
= [2(x – y)2 + 2 x 2(x – y) x 3(x + y) + [3 (x+y]2        { a2 + b2 + 2 abc = (a + b)2}
= [2(x – y) + 3(x + y)]2
= (2x-2y + 3x + 3y)2
= (5x + y)2

Question 23.
a2 – b2 + 2bc – c2
Solution:
a2 – b2 + 2bc – c2
= a2 – (b2 – 2bc + c2)                                           { a2 + b2 – 2abc = (a – b)2}
= a2 – (b – c)2
= (a)2 – (b – c)2          { a2 – b2 = (a + b) (a – b)}
= (a + b – c) (a – b + c)

Question 24.
xy9 – yx9
Solution:
xy9 – yx9 = xy(y8 – x8)
= -xy(x8 – y8)
= -xy[(x4)2 – (y4)2]
= -xy (x4 + y4) (x4 – y4)                                         {∵ a2-b2 = (a + b) (a – b)}
= -xy (x4 + y4) {(x2)2 – (y2)2}
= -xy(x+ y4) (x2 + y2) (x2 – y2)
= -xy (x4 +y4) (x2 + y2) (x + y) (x -y)
= -xy(x – y) (x + y) (x2 + y2) (x4 + y4)

Question 25.
x4 + x2y2 + y4
Solution:
x4 + x2y2 + y4  = (x2)2 + 2x2y2 + y4 – x2y2           (Adding and subtracting x2y2)
= (x2 + y2)2 – (xy)2                                                        { a2 – b2 = (a + b) (a – b)}
= (x2 + y2 + xy) (x2 + y2 – xy)
= (x2 + xy + y2) (x2 – xy + y2)

Question 26.
x2 + 6\(\sqrt { 2 } \)x + 10
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q26.1

Question 27.
x2 + 2\(\sqrt { 2 } \)x- 30
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q27.1

Question 28.
x2 – \(\sqrt { 3 } \)x – 6
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q28.1

Question 29.
x2 + 5 \(\sqrt { 5 } \)x + 30
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q29.1

Question 30.
x2 + 2 \(\sqrt { 3 } \)x – 24
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q30.1

Question 31.
5 \(\sqrt { 5 } \)x2 + 20x + 3\(\sqrt { 5 } \)
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q31.1

Question 32.
2x2 + 3\(\sqrt { 5 } \) x + 5
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q32.1

Question 33.
9(2a – b)2 – 4(2a – b) – 13
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q33.1

Question 34.
7(x-2y) – 25(x-2y) +12
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q34.1

Question 35.
2(x+y) – 9(x+y) -5
Solution:
2(x+y) – 9(x+y) -5
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 Q35.1

Hope given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4

Other Exercises

Factorize each of the following expressions:
Question 1.
a3 + 8b3 + 64c3 – 24abc
Solution:
We know that
a3 + b3 + c3 – 3abc = (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
a3 + 8b3 + 64c3 – 24abc
= (a)3 + (2b)3 + (4c)3 – 3 x a x 2b x 4c
= (a + 2b + 4c) [(a)2 + (2b)2 + (4c)2 -a x 2b – 2b x 4c – 4c x a]
= (a + 2b + 4c) (a2 + 4b2 + 16c2 – 2ab – 8bc – 4ca)

Question 2.
x3 – 8y3 + 27z3 + 18xyz
Solution:
x3 – 8y3 + 27z3 + 18xyz
= (x)3 + (-2y)3 + (3z)3 – 3 x x x (-2y) (3 z)
= (x – y + 3z) (x2 + 4y2 + 9z2 + 2xy + 6yz – 3zx)

Question 3.
27x3 – y3 – z3 – 9xyz          [NCERT]
Solution:
27x3-y3-z3-9xyz
= (3x)3 + (-y)3 + (-z)3 – 3 x 3x x (-y) (-z)
= (3x – y – z) [(3x)2 + (-y)2 + (-z)2 – 3x x (-y) – (-y) (-z)-  (- z x 3x)]
= (3x-y – z) (9x2y2 + z2 + 3xy – yz + 3zx)

Question 4.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q4.2

Question 5.
8x3 + 27y3 – 216z3 + 108xyz
Solution:
8x3 + 27y3 – 216z3 + 108xyz
= (2x)3 + (3y)3 + (6z)3 – 3 x (2x) (3y) (-6z)
= (2x + 3y – 6z) [(2x)2 + (3y)2 + (-6z)2 – 2x x 3y – 3y x (-6z) – (-6z) x 2x]
= (2x + 3y – 6z) (4x2 + 92 + 36z2 – 6xy + 18yz + 12zx)

Question 6.
125 + 8x3 – 27y3 + 90xy
Solution:
125 + 8X3 – 27y3 + 90xy
= (5)3 + (2x)3 + (-3y)3 – [3 x 5 x 2x x (-3y)]
= (5 + 2x – 3y) [(5)2 + (2x)2 + (-3y)2 – 5 x 2x – 2x (-3y) – (-3y) x 5]
= (5 + 2x – 3y) (25 + 4x2 + 9y2– 10x + 6xy + 15y)

Question 7.
8x3 – 125y3 + 180xy + 216
Solution:
8x3 – 125y3 + 180xy + 216
= (2x)3 + (-5y)3 + (6)3 – 3 x 2x (-5y) x 6
= (2x – 5y + 6) [(2x)2 + (-5y)2 + (6)2 – 2x x (-5y) – (-5y) x 6 – 6 x 2x]
= (2x -5y + 6) (4x2 + 25y2 + 36 + 10xy + 30y – 12x)

Question 8.
Multiply:
(i) x2 +y2 + z2 – xy + xz + yz by x + y – z
(ii) x2 + 4y2 + z2 + 2xy + xz – 2yz by x- 2y-z
(iii) x2 + 4y2 + 2xy – 3x + 6y + 9 by x – 2y + 3
(iv) 9x2 + 25y2 + 15xy + 12x – 20y + 16 by 3x  – 5y + 4
Solution:
(i)  (x2 + y2 + z2 – xy + yz + zx) by (x + y – z)
= x3 +y3 – z3 + 3xyz
(ii) (x2 + 4y2 + z2 + 2xy + xz – 2yz) by (x – 2y – z)
= (x -2y-z) [x2 + (-2y)2 + (-z)2 -x x (- 2y) – (-2y) (z) – (-z) (x)]
= x3 + (-2y)3 + (-z)3 – 3x (-2y) (-z)
= x3 – 8y3 – z3 – 6xyz
(iii) x2 + 4y2 + 2xy – 3x + 6y + 9 by x – 2y + 3
= (x – 2y + 3) (x2 + 4y2 + 9 + 2xy + 6y – 3x)
= (x)3 + (-2y)3 + (3)3 – 3 x x x (-2y) x 3 = x3 – 8y3 + 27 + 18xy
(iv) 9x2 + 25y3 + 15xy + 12x – 20y + 16 by 3x – 5y + 4
= (3x -5y + 4) [(3x)2 + (-5y)2 + (4)2 – 3x x (-5y) (-5y x 4) – (4 x 3x)]
= (3x)3 + (-5y)3 + (4)3 – 3 x 3x (-5y) x 4
= 27x3 – 12573 + 64 + 180xy

Question 9.
(3x – 2y)3 + (2y – 4z)3 + (4z – 3x)3
Solution:
(3x – 2y)3 + (2y – 4z)+   (4z – 3x)3
 ∵ 3x – 2y + 2y – 4z + 4z – 3x = 0
∴ (3x – 2y)3 + (2y – 4z)3 + (4z – 3x)3
= 3(3x – 2y) (2y – 4z) (4z – 3x)               {∵ x3 + y3 + z3 = 3xyz if x + y + z = 0}

Question 10.
(2x – 3y)3 + (4z – 2x)3  + (3y – 4z)3
Solution:
(2x – 3y)3 + (4z – 2x)3 + (3y – 4z)3
∵  2x – 3y + 4z – 2x + 3y – 4z = 0
∴ (2x – 3y)3 + (4z – 2x)3 + (3y – 4z)3
= (2x – 3y) (4z – 2x) (3y – 4z)                {∵ x3 + y3 + z3 = 3xyz if x + y + z = 0}

Question 11.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q11.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q11.2
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q11.3

Question 12.
(a – 3b)3 + (3b – c)3 + (c – a)3
Solution:
(a- 3b)3 + (3b – c)3 + (c – a)3
∵ a – 3b + 3b – c + c – a = 0
∴  (a – 3b)3 + (3b – c)3 + (c – a)3
= 3(a – 3b) (3b – c) (c – a)                       {∵ a3 + b3 + c3 = 3abc if a + b + c = 0}

Question 13.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q13.2

Question 14.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q14.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q14.2

Question 15.
2 \(\sqrt { 2 } \) a3+ 16\(\sqrt { 2 } \) b3 + c3 – 12abc
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 Q15.1

Question 16.
Find the value of x3 + y– 12xy + 64, when x + y = -4
Solution:
x3 + y– 12xy + 64
x + y = -4
Cubing both sides,
x3 + y3 + 3 xy(x + y) = -64
Substitute the value of (x + y)
⇒ x2 + y2 + 3xy x (-4) = -64
⇒  x3 + y2 – 12xy + 64 = 0

Hope given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3

Question 1.
Find the cube of each of the following binomial expressions:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q1.5

Question 2.
If a + b = 10 and ab = 21, find the value of a3 + b3.
Solution:
a + b = 10, ab = 21
Cubing both sides,
(a + b)3 = (10)3
⇒ a3 + 63 + 3ab (a + b) = 1000
⇒  a3 + b3 + 3 x 21 x 10 = 1000
⇒  a3 + b3 + 630 = 1000
⇒  a3 + b3 = 1000 – 630 = 370
∴ a3 + b3 = 370

Question 3.
If a – b = 4 and ab = 21, find the value of a3-b3.
Solution:
a – b = 4, ab= 21
Cubing both sides,
⇒ (a – A)3 = (4)3
⇒ a3 – b3 – 3ab (a – b) = 64
⇒ a3-i3-3×21 x4 = 64
⇒  a3 – 63 – 252 = 64
⇒  a3 – 63 = 64 + 252 =316
∴ a3 – b3 = 316

Question 4.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q4.2

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q7.3

Question 8.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q8.3

Question 9.
If 2x + 3y = 13 and xy = 6, find the value of 8x3 + 21y3.
Solution:
2x + 3y = 13, xy = 6
Cubing both sides,
(2x + 3y)3 = (13)3
⇒ (2x)3 + (3y)3 + 3 x 2x x 3X2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18xy(2x + 3y) = 2197
⇒ 8x3 + 27y3 + 18 x 6 x 13 = 2197
⇒ 8X3 + 27y3 + 1404 = 2197
⇒  8x3 + 27y3 = 2197 – 1404 = 793
∴ 8x3 + 27y3 = 793

Question 10.
If 3x – 2y= 11 and xy = 12, find the value of 27x3 – 8y3.
Solution:
3x – 2y = 11 and xy = 12 Cubing both sides,
(3x – 2y)3 = (11)3
⇒  (3x)3 – (2y)3 – 3 x 3x x 2y(3x – 2y) =1331
⇒  27x3 – 8y3 – 18xy(3x -2y) =1331
⇒   27x3 – 8y3 – 18 x 12 x 11 = 1331
⇒  27x3 – 8y3 – 2376 = 1331
⇒  27X3 – 8y3 = 1331 + 2376 = 3707
∴ 2x3 – 8y3 = 3707

Question 11.
Evaluate each of the following:
(i)  (103)3
(ii) (98)3
(iii) (9.9)3
(iv) (10.4)3
(v) (598)3
(vi) (99)3
Solution:
We know that (a + bf = a3 + b3 + 3ab(a + b) and (a – b)3= a3 – b3 – 3 ab(a – b)
Therefore,
(i)  (103)3 = (100 + 3)3
= (100)3 + (3)3 + 3 x 100 x 3(100 + 3)    {∵ (a + b)3 = a3 + b3 + 3ab(a + b)}
= 1000000 + 27 + 900 x 103
= 1000000 + 27 + 92700
= 1092727
(ii) (98)3 = (100 – 2)3
= (100)3 – (2)3 – 3 x 100 x 2(100 – 2)
= 1000000 – 8 – 600 x 98
= 1000000 – 8 – 58800
= 1000000-58808
= 941192
(iii) (9.9)3 = (10 – 0.1)3
= (10)3 – (0.1)3 – 3 X 10 X 0.1(10 – 0.1)
= 1000 – 0.001 – 3 x 9.9
= 1000 – 0.001 – 29.7
= 1000 – 29.701
= 970.299
(iv) (10.4)3 = (10 + 0.4)3
= (10)3 + (0.4)3 + 3 x 10 x 0.4(10 + 0.4)
= 1000 + 0.064 + 12(10.4)
= 1000 + 0.064 + 124.8 = 1124.864
(v) (598)3 = (600 – 2)3
= (600)3 – (2)3 – 3 x 600 x 2 x (600 – 2)
= 216000000 – 8 – 3600 x 598
= 216000000 – 8 – 2152800
= 216000000 – 2152808
= 213847192
(vi) (99)3 = (100 – 1)3
= (100)3 – (1)3 – 3 x 100 x 1 x (100 – 1)
= 1000000 – 1 – 300 x 99
= 1000000 – 1 – 29700
= 1000000 – 29701
= 970299

Question 12.
Evaluate each of the following:
(i)  1113 – 893
(ii) 463 + 343
(iii) 1043 + 963
(iv) 933 – 1073
Solution:
We know that a3 + b3 = (a + bf – 3ab(a + b) and a3 – b3 = (a – bf + 3 ab(a – b)
(i) 1113 – 893
= (111 – 89)3 + 3 x ill x 89(111 – 89)
= (22)3 + 3 x 111 x 89 x 22
= 10648 + 652014 = 662662
(OR)
(a + b)3 – (a – b)3 = 2(b3 + 3a2b)
= 1113 – 893 = (100 + 11)3 – (100 – 11)3
= 2(113 + 3 x 1002 x 11]
= 2(1331 + 330000]
= 331331 x 2 = 662662
(a + b)3 + (a- b)3 = 2(b3 + 3ab2)
(ii) 463 + 343 = (40 + 6)3 + (40 – 6)3
= 2[(40)3 + 3 x 40 x 62]
= 2[64000 + 3 x 40 x 36]
= 2[64000 + 4320]
= 2 x 68320 = 136640
(iii) 1043 + 963 = (100 + 4)3 + (100 – 96)3
= 2 [a3 + 3 ab2]
= 2[(100)3 + 3 x 100 x (4)2]
= 2[ 1000000 + 300 x 16]
= 2[ 1000000 + 4800]
= 1004800 x 2 = 2009600
(iv) 933 – 1073 = -[(107)3 – (93)3]
= -[(100 + If – (100 – 7)3]
= -2[b3 + 3a2b)]
= -2[(7)3 + 3(100)2 x 7]
= -2(343 + 3 x 10000 x 7]
= -2[343 + 210000]
= -2[210343] = -420686

Question 13.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q13.4

Question 14.
Find the value of 27X3 + 8y3 if
(i) 3x + 2y = 14 and xy = 8
(ii) 3x + 2y = 20 and xy = \(\frac { 14 }{ 9 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q14.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q14.2

Question 15.
Find the value of 64x3 – 125z3, if 4x – 5z = 16 and xz = 12.
Solution:
4x – 5z = 16, xz = 12
Cubing both sides,
(4x – 5z)3 = (16)3
⇒ (4x)3 – (5y)3 – 3 x 4x x 5z(4x – 5z) = 4096
⇒ 64x3 – 125z3 – 3 x 4 x 5 x xz(4x – 5z) = 4096
⇒  64x3 – 125z3 – 60 x 12 x 16 = 4096
⇒ 64x3 – 125z3 – 11520 = 4096
⇒  64x3 – 125z3 = 4096 + 11520 = 15616

Question 16.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q16.3

Question 17.
Simplify each of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q17.5

Question 18.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q18.4

Question 19.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 Q19.3

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS

RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS

Question 1.
Write the value of (2 + \(\sqrt { 3 } \) ) (2 – \(\sqrt { 3 } \)).
Solution:
(2+ \(\sqrt { 3 } \) )(2- \(\sqrt { 3 } \) ) = (2)2-(\(\sqrt { 3 } \) )2
{∵ (a + b) (a – b) = a2 – b2}
= 4-3=1

Question 2.
Write the reciprocal of 5 + \(\sqrt { 2 } \).
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q2.1

Question 3.
Write the rationalisation factor of 7 – 3\(\sqrt { 5 } \) .
Solution:
Rationalising factor of 7 – 3\(\sqrt { 5 } \) is 7 + 3\(\sqrt { 5 } \)
{∵ (\(\sqrt { a } \) + \(\sqrt { b } \)  ) (\(\sqrt { a } \) – \(\sqrt { b } \)) = a-b}

Question 4.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q4.2

Question 5.
If x =\(\sqrt { 2 } \) – 1 then write the value of \(\frac { 1 }{ x }\).
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q5.1

Question 6.
If a = \(\sqrt { 2 } \) + h then find the value of a –\(\frac { 1 }{ a }\)
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q6.1

Question 7.
If x = 2 + \(\sqrt { 3 } \), find the value of x + \(\frac { 1 }{ x }\).
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q7.1

Question 8.
Write the rationalisation factor of \(\sqrt { 5 } \) – 2.
Solution:
Rationalisation factor of \(\sqrt { 5 } \) – 2 is \(\sqrt { 5 } \) + 2 as
(\(\sqrt { a } \) + \(\sqrt { b } \))(\(\sqrt { a } \) – \(\sqrt { b } \)) = a – b

Question 9.
Simplify : \(\sqrt { 3+2\sqrt { 2 } }\).
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q9.1

Question 10.
Simplify : \(\sqrt { 3-2\sqrt { 2 } }\).
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q10.1

Question 11.
If x = 3 + 2 \(\sqrt { 2 } \), then find the value of  \(\sqrt { x } \) – \(\frac { 1 }{ \sqrt { x } }\).
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS Q11.1

Hope given RD Sharma Class 9 Solutions Chapter 3 Rationalisation VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1

RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1

Question 1.
Simplify each of the following:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q1.2

Question 2.
Simplify the following expressions:
(i)  (4 + \(\sqrt { 7 } \)) (3 + \(\sqrt { 2 } \))
(ii) (3 + \(\sqrt { 3 } \) )(5- \(\sqrt { 2 } \))
(iii) (\(\sqrt { 5 } \) -2)(\(\sqrt { 3 } \) – \(\sqrt { 5 } \))
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q2.1

Question 3.
Simplify the following expressions:
(i)  (11 + \(\sqrt { 11 } \)) (11 – \(\sqrt { 11 } \))
(ii) (5 + \(\sqrt { 7 } \) ) (5 – \(\sqrt { 7 } \) )
(iii) (\(\sqrt { 8 } \) – \(\sqrt { 2 } \)) (\(\sqrt { 8 } \)+ \(\sqrt { 2 } \))
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q3.1
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q3.2

Question 4.
Simplify the following expressions:
(i) (\(\sqrt { 3 } \)+\(\sqrt { 7 } \))2
(ii) (\(\sqrt { 5 } \) – \(\sqrt { 3 } \) )2
(iii) (2\(\sqrt { 5 } \) + 3 \(\sqrt { 2} \))2
Solution:
(i)
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q4.1
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 Q4.2
Hope given RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS

Mark the correct alternative in each of the following:
Question 1.
The value of {2 – 3 (2 – 3)3}3 is
(a) 5
(b) 125
(c) \(\frac { 1 }{ 5 }\)
(d) -125
Solution:
{2 – 3 (2 – 3)3}3 = {2 – 3 (-1)3}3
= {2 – 3 x (-1)}3
= (2 + 3)3 = (5)3
= 125    (b)

Question 2.
The value of x – yx-y when x = 2 and y = -2 is
(a) 18
(b) -18
(c) 14
(d) -14
Solution:
x = 2, y = -2
x-yx-y = 2 – (-2)2 – (-2)
= 2 – (-2)2 + 2 = 2 – (-2)4
= 2 – (+16) = 2 – 16 = -14        (d)

Question 3.
The product of the square root of x with the cube root of x, is
(a) cube root of the square root of x
(b) sixth root of the fifth power of x
(c) fifth root of the sixth power of x
(d) sixth root of x
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q3.1

Question 4.
The seventh root of x divided by the eighth root of x is
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q4.2

Question 5.
The square root of 64 divided by the cube root of 64 is
(a) 64
(b) 2
(c) \(\frac { 1 }{ 2 }\)
(d) 64\(\frac { 2 }{ 3 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q5.1

Question 6.
Which of the following is (are) not equal to
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q6.2

Question 7.
When simplified (x1 + y1)1 is equal to
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q7.2

Question 8.
If 8x+1 = 64, what is the value of 3 2x +1?
(a) 1
(b) 3
(c) 9
(d) 27
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q8.1

Question 9.
If (23)2 = 4x then   3x =
(a) 3
(b) 6
(c) 9
(d) 27
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q9.1

Question 10.
If x-2= 64, then x\(\frac { 1 }{ 3 }\) + x°=
(a) 2
(b) 3
(c) \(\frac { 3 }{ 2 }\)
(c) \(\frac { 2 }{ 3 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q10.1

Question 11.
When simplified ( –\(\frac { 1 }{ 27 }\))\(\frac { -2 }{ 3 }\)
(a) 9
(b) -9
(c) \(\frac { 1 }{ 9 }\)
(d) –\(\frac { 1 }{ 9 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q11.1

Question 12.
Which one of the following is not equal to
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q12.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q12.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q12.3

Question 13.
Which one of the following is not equal to
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q13.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q13.3

Question 14.
If a, b, c are positive real numbers, then
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q14.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q14.2

Question 15.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q15.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q15.2

Question 16.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q16.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q16.3

Question 17.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q17.2

Question 18.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q18.2

Question 19.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q19.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q19.2

Question 20.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q20.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q20.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q20.3

Question 21.
The value of {(23 + 22)2/3+ (150 -29)1/2}2  is
(a) 196
(b) 289
(c) 324
(d) 400
Solution:
{(23 + 22)2/3 + (150 – 29)1/2}2
= [(23×4)\(\frac { 2 }{ 3 }\)  +(150 – 29)\(\frac { 1 }{ 2 }\) ]2
= [(27)\(\frac { 2 }{ 3 }\) + (121)\(\frac { 1 }{ 2 }\) ]2
= [(33)3 +(112)\(\frac { 1 }{ 2 }\)]2 = (9 + 11)2
= (20)2 = 400  (d)

Question 22.
(256)0.16x (256)0.09
(a) 4
(b) 16
(c) 64
(d) 256.25
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q22.1

Question 23.
If 102y = 25, then 10-y equals
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q23.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q23.2

Question 24.
If 9X + 2 = 240 + 9X. then x =
(a) 0.5
(b) 0.2
(c) 0.4
(d) 0.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q24.1

Question 25.
If x is a positive real number and x2 = 2, then x3 =
(a) \(\sqrt { 2 } \)
(b) 2\(\sqrt { 2 } \)
(c) 3\(\sqrt { 2 } \)
(d) 4
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q25.1

Question 26.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q26.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q26.2

Question 27.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q27.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q27.2

Question 28.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q28.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q28.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q28.3

Question 29.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q29.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q29.2

Question 30.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q30.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q30.2

Question 31.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q31.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q31.2

Question 32.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q32.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q32.2

Question 33.
If (16)2x + 3 = (64)x + 3 , then 42x – 2  =
(a) 64
(b) 256
(c) 32
(d) 512
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q33.1

Question 34.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q34.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q34.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q34.3

Question 35.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q35.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q35.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q35.3

Question 36.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q36.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q36.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q36.3

Question 37.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS 37.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS 37.2

Question 38.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q38.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q38.2

Question 39.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q39.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q39.2

Question 40.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q40.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q40.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS Q40.3

Hope given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS

Question 1.
Write (625)1/4 in decimal form.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q1.1

Question 2.
State the product law of exponents:
Solution:
xm x xn = xm +n

Question 3.
State the quotient law of exponents.
Solution:
xm ÷ xn = xm -n

Question 4.
State the power law of exponents.
Solution:
(xm)n =xm x n = xmn

Question 5.
If 24 x 42 – 16x, then find the value of x.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q5.1

Question 6.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q6.2

Question 7.
Write the value of \(\sqrt [ 3 ]{ 7 }\)  x \(\sqrt [ 3 ]{ 49 }\) .
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q7.1

Question 8.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q8.2

Question 9.
Write the value of \(\sqrt [ 3 ]{ 125×27 }\)
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q9.1

Question 10.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q10.2

Question 11.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q11.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q11.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q11.3

Question 12.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q12.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q12.2

Question 13.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q13.2

Question 14.
If (x – 1)3 = 8, what is the value of (x + 1)2?
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS Q14.1

Hope given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2

Question 1.
Assuming that x, y, z are positive real numbers, simplify each of the following:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q1.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q1.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q1.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q1.5
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q1.6

Question 2.
Simplify:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q2.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q2.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q2.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q2.5
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q2.6

Question 3.
Prove that:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.5
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.6
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.7
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.8
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.9
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.10
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.11
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.12
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q3.13

Question 4.
Show that:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.1
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.2
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.5
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.6
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.7
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.8
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.9
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q4.10

Question 5.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q7.2

Question 8.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q8.2

Question 9.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q9.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q9.2

Question 10.
Find the values of x in each  of the following:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.5
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.6
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.7
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q10.8

Question 11.
If x = 21/3 + 22/3, show that x3 – 6x = 6.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q11.1
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q11.2

Question 12.
Determine (8x)x, if 9x+ 2 = 240 + 9x.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q12.1

Question 13.
If 3x+1 = 9x-2, find the value of 21 +x.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q13.1

Question 14.
If 34x = (81)-1 and 101/y = 0.0001, find the value of 2-x+4y
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q14.1

Question 15.
If 53x = 125 and 10y = 0.001 find x and y.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q15.1

Question 16.
Solve the following equations:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q16.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q16.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q16.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q16.5
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q16.6

Question 17.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q17.2

Question 18.
If a and b are different positive primes such that
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q18.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q18.3

Question 19.
If 2x x 3y x 5z = 2160, find x, y and z. Hence, compute the value of 3x x 2-y x 5-z.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q19.1

Question 20.
If 1176 = 2a x 3b x 7c, find the values of a, b and c. Hence, compute the value of 2a x 3b x 7-c as a fraction.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q20.1

Question 21.
Simplify:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q21.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q21.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q21.3

Question 22.
Show that:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q22.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q22.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q22.3

Question 23.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q23.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q23.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 Q23.3

Hope given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1

RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1

Question 1.
Simplify the following:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q1.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q1.3

Question 2.
If a = 3 and b =-2, find the values of:
(i) aa+ bb
(ii) ab + ba
(iii) (a+b)ab
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q2.1

Question 3.
Prove that:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q3.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q3.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q3.4

Question 4.
Prove that
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q4.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q4.3

Question 5.
Prove that
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q6.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q6.3

Question 7.
Simplify the following:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q7.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q7.3

Question 8.
Solve the following equations for x:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q8.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q8.3
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q8.4
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q8.5

Question 9.
Solve the following equations for x:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q9.1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q9.2
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q9.3

Question 10.
If 49392 = a4b2V3, find the values.of a, b and c, where a, b and c are different positive primes.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q10.1

Question 11.
If 1176 = 2a x 3b x Tc, find a, 6 and c.
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q11.1

Question 12.
Given 4725 = 3a5b7c, find:
(i) the integral values of a, b and c
(ii) the value of 2-a 3b 7c
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q12.1

Question 13.
If a = xyp-1, b = xy q-1 and c = xyr-1, prove that aq-r br-p cp-q = 1
Solution:
RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 Q13.1

Hope given RD Sharma Class 9 Solutions Chapter 2 Exponents of Real Numbers Ex 2.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS

RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS

Other Exercises

the correct alternative in each of the following:
Question 1.
Which one of the following is a correct statement?
(a) Decimal expansion of a rational number is terminating
(b) Decimal expansion of a rational number is non-terminating
(c) Decimal expansion of an irrational number is terminating
(d) Decimal expansion of an irrational number is non-terminating and non-repeating
Solution:
Decimal expansion of an irrational number is non-terminating and non-repeating . (d)

Question 2.
Which one of the following statements is true?
(a) The sum of two irrational numbers is always an irrational-number            
(b) The sum of two irrational numbers is always a rational number
(c) The sum of two irrational numbers may be a rational number or an irrational number
(d) The sum of two irrational numbers is always an integer
Solution:
The sum of two irrational numbers may be a rational number or an irrational number (c)

Question 3.
Which of the following is a correct statement?
(a) Sum of two irrational numbers is always irrational
(b) Sum of a rational and irrational number is always an irrational number
(c) Square of an irrational number is always a rational number
(d) Sum of two rational numbers can never be an integer
Solution:
Sum of a rational and irrational number is always an irrational number         (b)

Question 4.
Which of the following statements is true?
(a) Product of two irrational numbers is always irrational
(b) Product of a rational and an irrational number is always irrational
(c) Sum of two irrational numbers can never be irrational
(d) Sum of an integer and a rational number can never be an integer
Solution:
Product of a rational and an irrational number is always irrational    (b)

Question 5.
Which of the following is irrational?
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q5.2

Question 6.
Which of the following is irrational?
(a) 14
(b)  0.14\(\overline { 16 }\)
(c)   0.\(\overline { 1416 }\)                  
(d)  0.1014001400014
Solution:
0.1014001400014…….. is irrational as it is non-terminating nor repeating decimal, (d)

Question 7.
Which of the following is rational?
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q7.2

Question 8.
The number 0.318564318564318564… is:
(a) a natural number
(b) an integer
(c) a rational number
(d) an irrational number
Solution:
The number = 0.318564318564318564…………
= 0.\(\overline { 318564 }\)
∵ The decimal is non-terminating and recurring
∴ It is rational number.   (c)

Question 9.
If n is a natural number, then \(\sqrt { n } \)is
(a) always a natural number
(b) always a rational number
(c) always an irrational number
(d) sometimes a natural number and sometimes an irrational number
Solution:
If n is a natural number then \(\sqrt { n } \) may sometimes a natural number and sometime an irrational number e.g.
If n = 2 then \(\sqrt { n } \) =\(\sqrt { 2 } \) which is are irrational and if n = 4, then \(\sqrt { n } \)= \(\sqrt { 4 } \) =  2 which is a rational number.       (d)

Question 10.
Which of the following numbers can be represented as non-terminating, repeating decimals?
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q10.2

Question 11.
Every point on a number line represents
(a) a unique real number
(b) a natural number
(c) a rational number
(d) an irrational number
Solution:
Every point on a number line represents a unique real number.         (a)

Question 12.
Which of the following is irrational?
(a) 0.15                     
(b) 0.01516
(c) 0.\(\overline { 1516 }\)                
(d) 0.5015001500015..
Solution:
As it is non-terminating non-repeating decimals while others are terminating or non-terminating repeating decimals. (d)

Question 13.
The number 1.\(\overline { 27 }\) in the form \(\frac { p }{ q }\)  , where p and q are integers and q ≠ 0, is
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q13.2

Question 14.
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q14.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q14.2

Question 15.
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q15.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q15.2

Question 16.
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q16.2

Question 17.
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q17.2

Question 18.
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q18.2

Question 19.
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q19.1
Solution:
An irrational number between 2 and 2.5 is \(\sqrt { 5 } \) as it has approximate value 2.236… (b)

Question 20.
The number of consecutive zeros in 23 x 34 x 54 x 7, is
(a) 3                            
(b) 2
(c) 4
(d) 5
Solution:
In 23 x 34 x 54 x 7, number of consecutive zero will be 3 as 23 x 54 = 2 x 2 x 2 x 5x 5 x 5 x 5 = 5000      (a)

Question 21.
The smallest rational number by which \(\frac { 1 }{ 3 }\) should be multiplied so that its decimal expansion terminates after one place of decimal, is
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q21.1
Solution:
RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS Q21.2

Hope given RD Sharma Class 9 Solutions Chapter 1 Number Systems MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.