RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2

RD Sharma Class 8 Solutions Chapter 22 Mensuration III (Surface Area and Volume of a Right Circular Cylinder) Ex 22.2

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2

Other Exercises

Question 1.
Find the volume of a cuboid whose
(i) r = 3.5 cm, h = 40 cm
(ii) r = 2.8 m, h = 15 m
Solution:
(i) Radius (r) = 3.5 cm
Height (h) = 40 cm
Volume of cylinder = πr2h
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 1

Question 2.
Find the volume of a cylinder, if the diameter (d) of its base and its altitude (h) are:
(i) d= 21 cm, h = 10 cm
(ii) d = 7 m, h = 24 m.
Solution:
(i) Diameter (d) = 21 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 2

Question 3.
The area of the base of a right circular cylinder is 616 cm3 and its height is 25 cm. Find the volume of the cylinder.
Solution:
Base area of cylinder = 616 cm2
Height (h) = 25 cm.
∴ Volume = Area of base x height
= 616 x 25 cm3 = 15400 cm3

Question 4.
The circumference of the base of a cylinder is 88 cm and its height is 15 cm. Find the volume of the cylinder.
Solution:
Circumference of the base of cylinder = 88 cm
Let r be the radius
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 3

Question 5.
A hollow cylindrical pipe is 21 dm long. Its outer and inner diameters are 10 cm and 6 cm respectively. Find the volume of the copper used in making the pipe.
Solution:
Length (Height) of hollow cylindrical pipe = 21 dm = 210 cm
Inner diameter = 6 cm
Outer diameter = 10 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 4
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 5

Question 6.
Find the (i) curved surface area (ii) total surface area and (iii) volume of a right circular cylinder whose height is 15 cm and the radius of the base is 7 cm
Solution:
Radius of the cylider (r) = 7 cm
and height (h) = 15 cm
(i) Curved surface area = 2πrh
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 6

Question 7.
The diameter of the base of a right circular cylinder is 42 cm and its height is 10 cm. Find the volume of the cylinder.
Solution:
Diameter of the base of cylinder = 42 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 7

Question 8.
Find the volume of a cylinder, the diameter of whose base is 7 cm and height being 60 cm. Also, find the capacity of the cylinder in litres.
Solution:
Diameter of cylinder = 7 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 8

Question 9.
A rectangular strip 25 cm x 7 cm is rotated about the longer side. Find the volume of the solid, thus generated.
Solution:
Size of rectangular strip = 25 cm x 7 cm
By rotating, about the longer side, we find a right circular cylinder,
then the radius of cylinder (r) = 7 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 9

Question 10.
A rectangular sheet of paper 44 cm x 20 cm, is rolled along its length to form a cylinder. Find the volume of the cylinder so formed.
Solution:
Size of sheet of paper = 44 cm x 20 cm
By rolling along length, a cylinder is formed in which circumference of its base = 20 cm
and height (h) = 44 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 10

Question 11.
The volume and the curved surface area of a cylinder are 1650 cm3 and 660 cm2 respectively. Find the radius and height of the cylinder.
Solution:
Volume of cylinder = 1650 cm3
and curved surface area = 660 cm2
Let r be the radius and h be the height of the cylinder, then
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 11
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 12

Question 12.
The radii of two cylinders are in the ratio 2 :3 and their heights are in the ratio 5 : 3. Calculate the ratio of their volumes.
Solution:
Ratio in radii = 2:3
and in heights = 5:3
Let r1,h1 and r2, h2 are the radii and heights of two cylinders respectively.
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 13

Question 13.
The ratio between the curved surface area and the total surface area of a right circular cylinder is 1 : 2. Find the volume of the cylinder, if its total surface area is 616 cm2.
Solution:
Ratio in curved surface are and total surface area =1 : 2
Let r be the radius and h be the height.
Then 2πrh : 2πr (h + r)= 1 : 2
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 14
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 15

Question 14.
The curved surface area of a cylinder is 1320 cm2 and its base has diameter 21 cm. Find the volume of the cylinder.
Solution:
Curved surface area of a cylinder = 1320 cm2
Diameter of base = 21 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 16

Question 15.
The ratio between the radius of the base and the height of a cylinder is 2 : 3. Find the total surface area of the cylinder, if its volume is 1617 cm3.
Solution:
Ratio between radius and height of a cylinder = 2:3
Volume = 1617 cm3
Let r be the radius and A be the height of the cylinder, then
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 17

Question 16.
The curved surface area of a cylindrical pillar is 264 m2 and its volume is 924 m3. Find the diameter and the height of the pillar.
Solution:
Let r be the radius and A be the height of the cylinder, then
2πrh = 264 …(i)
and πr2h= 924 …(ii)
Dividing (ii) by (i),
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 18
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 19

Question 17.
Two circular cylinders of equal volumes have their heights in the ratio 1 : 2. Find the ratio of their radii.
Solution:
Volumes of two cylinders are equal.
Let r1, r2 are the radii and h1, h2 are their heights, then
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 20
Now, volume of first cylinder = πr12h1
and Volume of second cylinder = πr22h2
Their volumes are equal
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 21

Question 18.
The height of a right circular cylinder is 10.5 m. Three times the sum of the areas of its two circular faces is twice the area of the curved surface. Find the volume of the cylinder.
Solution:
Height of cylinder (A) = 10.5 m.
Let r be the radius, then
Sum of areas of two circular faces = 2π2
and curved surface area = 2πrh
According to the condition,
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 22

Question 19.
How many cubic metres of earth must be dug-out to sink a well 21 m deep and 6 m diameter ?
Solution:
Diameter of well = 6 m
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 23

Question 20.
The trunk of a tree is cylindrical and its circumference is 176 cm. If the length of the trunk is 3 m, find the volume of the timber that can be obtained from the trunk.
Solution:
Circumference of cylindrical trunk = 176 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 24

Question 21.
A well is dug 20 m deep and it has a diameter of 7 m. The earth which is so dug out is spread out on a rectangular plot 22 m long and 14 m broad, what is the height of the platform so formed ?
Solution:
Diameter of the well = 7 m
∴ Radius (r) = \(\frac { 7 }{ 2 }\) m
Depth (h) = 20 m
= Volume of earth dug out = πr2h
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 25

Question 22.
A well with 14 m diameter is dug 8 m deep. The earth taken out of it has been evenly spread all around it to a width of 21 m to form an embankment. Find the height of the embankment.
Solution:
Diameter of the well = 14 m
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 26
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 27

Question 23.
A cylindrical container with diameter of base 56 cm contains sufficient water to submerge a rectangular solid of iron with dimensions 32 cm x 22 cm x 14 cm. Find the rise in the level of the water when the solid is completely submerged.
Solution:
Diameter of the base of a cylindrical container = 56 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 28
Dimensions of the rectangular solid = 32 cm x 22 cm x 14 cm
∴ Volume of solid = 32 x 22 x 14 cm3 = 9856 cm3
∴Volume of water rose up = 9856 cm3
Let h be the height of water, then πr2h = 9856
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 29

Question 24.
A rectangular sheet of paper 30 cm x 18 cm can be transformed into the curved surface of a right circular cylinder in two ways Le., either by rolling the paper along its length or by rolling it along its breadth. Find the ratio of the volumes of the two cylinders thus formed.
Solution:
Size of paper = 30 cm and 18 cm.
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 30
(i) By rolling length wise,
The circumference of base = 30 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 31
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 32
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 33

Question 25.
The rain which falls on a roof 18 m long and 16.5 m wide is allowed to be stored in a cylindrical tank 8 m in diameter. If it rains 10 cm on a day, what is the rise of water level in the tank due to it.
Solution:
Length of roof (l) = 18 m
Breadth (b) = 16.5 m
Height of water on the roof = 10 cm
∴ Volume of water collected
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 34

Question 26.
A Piece of ductile metal is in the form of a cylinder of diameter 1 cm and length 5 cm. It is drawnout into a wire of diameter 1 mm. What will be the length of the wire so formed ?
Solution:
Diameter of ductile metal = 1 cm
and length (h) = 5 cm
and radius (r) = \(\frac { 1 }{ 2 }\) cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 35

Question 27.
Find the length of 13.2 kg of copper wire of diameter 4 mm when 1 cubic cm of copper weighs 8.4 gm.
Solution:
Weight of wire = 13.2 kg
Diameter of wire = 4 mm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 36
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 37

Question 28.
2.2 cubic dm of brass is to be drawn into a cylindrical wire 0.25 cm in diameter. Find the length of the wire.
Solution:
Volume of brass = 2.2 cu.dm
= 2.2 x 10 x 10 x 10 = 2200 cm2
Diameter of wire = 0.25 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 38

Question 29.
The difference between inside and outside surfaces of a cylindrical tube 14 cm long is 88 sq. cm. If the volume of the tube is 176 cubic cm, find the inner and outer radii of the tube.
Solution:
Let r and R be the radii of inner and outer surfaces of a cylindrical tube,
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 39
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 40

Question 30.
Water flows out through a circular pipe whose internal diameter is 2 cm, at the rate of 6 metres per second into a cylindrical tank, the radius of whose base is 60 cm. Find the rise in the level of water in 30 minutes.
Solution:
Diameter of pipe = 2 cm
∴ Radius (r) = \(\frac { 2 }{ 2 }\) = 1 cm = 0.01 m
Length of flow of water in 1 second = 6 m Length of flow in 30 minutes = 6 x 30 x 60 m = 10800 m
∴ Volume of water = πr2h
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 41

Question 31.
A cylindrical tube, open at both ends, is to made of metal. The internal diameter of the tube is 10.4 cm and its length is 25 cm. The thickness of the metal tube is 8 mm everywhere. Calculate the volume of the metal.
Solution:
Length of metal tube (h) = 25 cm
Internal diameter = 10.4 cm
∴ Internal radius (r) = \(\frac { 10.4 }{ 2 }\) = 5.2 cm
Thickness of metal = 8 mm = 0.8 cm
∴ Outer radius = 5.2 + 0.8 = 6 cm
Now volume of the metal
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 42

Question 32.
From a tap of inner radius 0.75 cm, water flows at the rate of 7 m per second. Find the volume in litres of water delivered by the pipe in one hour.
Solution:
Inner radius of pipe (r) = 0.75 cm
Rate of water flow = 7 m per second
∴ Length of water flow in 1 hour (h)
= 7 x 3600 m = 25200 m
∴ Volume of water in 1 hour
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 43

Question 33.
A cylindrical water tank of diameter 1. 4 m and height 2.1 m is being fed by a pipe of diameter 3.5 cm through which water flows at the rate of 2 metre per second. In how much time the tank will be filled ?
Solution:
Diameter of cylindrical tank = 1.4 m
∴ Radius (r) = \(\frac { 1.4 }{ 2 }\) = 0.7 m
Height (h) = 2.1m.
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 44

Question 34.
A rectangular sheet of paper 30 cm x 18 cm can be transformed into the curved surface of a right circular cylinder in two ways Le. either by rolling the paper along its length or by rolling it along its breadth. Find the ratio of the volumes of the two cylinder thus formed.
Solution:
In first case,
By rolling the paper along its length,
the circumference of the base = 30 cm
and height (h) = 18 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 45
Note: See Q.No. 24 this exercise

Question 35.
How many litres of water flow out of a pipe having an area of cross-section of 5 cm2 in one minute, if the speed of water in the pipe is 30 cm/sec ?
Solution:
Speed of water = 30 cm/sec
∴ Water flow in 1 minute = 30 cm x 60 = 1800 cm
Area of cross-section = 5 cm2
∴ Volume of water = 1800 x 5 = 9000 cm3
Capacity of water in litres = 9000 x l ml
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 46

Question 36.
A solid cylinder has a total surface area of 231 cm2. Its curved surface area is \(\frac { 2 }{ 3 }\) of the total surface area. Find the volume of the cylinder.
Solution:
Total surface area of a solid cylinder = 231 cm2
Curved surface area = \(\frac { 2 }{ 3 }\) of 231 cm2 = 2 x 77 = 154 cm2
and area of two circular faces = 231-154 = 77 cm2
Let r be the radius, then
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 47

Question 37.
Find the cost of sinking a tubewell 280 m deep, having diameter 3 m at the rate of Rs 3.60 per cubic metre. Find also the cost of cementing its inner curved surface at Rs 2.50 per square metre.
Solution:
Diameter of well = 3 m
∴ Radius (r) = \(\frac { 3 }{ 2 }\) m
and depth (h) = 280 m
(i) Volume of earth dug out = πr2h
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 48
Rate of sinking the well = Rs 3.60 per m3
∴ Total cost of sinking = Rs 1980 x 3.60 = Rs 7,128
(ii) Inner curved surface area = 2πrh
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 49
Rate of cementing = Rs 2.50 per m2
∴ Total cost of cementing = Rs 2.50 x 2640
= Rs 6,600

Question 38.
Find the length of 13.2 kg of copper wire of diameter 4 mm, when 1 cubic cm of copper weighs 8.4 gm.
Solution:
Note : See Q.No. 27 of this exercise

Question 39.
2.2 cubic dm of brass is to be drawn into a cylindrical wire 0.25 cm in diameter. Find the length of the wire.
Solution:
Note: See Q.No. 28 of this exercise.

Question 40.
A well with 10 m inside diameter is dug 8.4 m deep. Earth taken out of it is spread all around it to a width of 7.5 m to form an embankment. Find the height of the embankment.
Solution:
Diameter of the well = 10 m
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 50
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 51

Question 41.
A hollow garden roller, 63 cm wide with a girth of 440 cm, is made of 4 cm thick iron. Find the volume of the iron.
Solution:
Width of roller (h) = 63 cm.
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 52
Outer circumference of roller = 440 cm
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 53
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 54

Question 42.
What length of a solid cylinder 2 cm in diameter must be taken to recast into a hollow cylinder of length 16 cm, external diameter 20 cm and thickness 2.5 mm ?
Solution:
Length of hollow cylinder (h) = 16 cm
External diameter = 20 cm
∴ External radius (R) = \(\frac { 20 }{ 2 }\) = 10 cm
Thickness of iron = 2.5 mm
∴ Internal radius (r) = 10 – 0.25 = 9.75 cm
∴ Volume of iron = πh (R2 – r2)
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 55

Question 43.
In the middle of rectangular field measuring 30 m x 20 m, a well of 7 m diameter and 10 m depth is dug. The earth so removed is evenly spread over the remaining part of the field. Find the height through which the level of the field is raised.
Solution:
Diameter of well = 7 m
∴ Radius (r) = \(\frac { 7 }{ 2 }\) m
Depth (h) = 10 m.
∴ Volume of earth dug out = πr2h
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 56
RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 57

Hope given RD Sharma Class 8 Solutions Chapter 22 Mensuration III Ex 22.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 26 Data Handling IV (probability) Ex 26.1

RD Sharma Class 8 Solutions Chapter 26 Data Handling IV (probability) Ex 26.1

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 26 Data Handling IV (probability) Ex 26.1

Question 1.
The probability that it will rain to morrow is 0.85. What is the probability that it will not rain tomorrow ?
Solution:
Total number of possible events = 1
∴ P (\(\bar { A }\) ) = 0.85
∴ P (\(\bar { A }\) ) = 1-0.85 = 0.15

Question 2.
A die is thrown. Find the probability of getting (i) a prime number (ii) 2 or 4 (iii) a multiple of 2 or 3.
Solution:
Total number of possible events = 6 (1 to 6)
(i) Let A be the favourable occurrence which are prime number i.e., 2,3,5
∴ P(A) = \(\frac { 3 }{ 6 }\) = \(\frac { 1 }{ 2 }\)
(ii) Let B be the favourable occurrence which are 2 or 4
∴ P(B) = \(\frac { 2 }{ 6 }\) = \(\frac { 1 }{ 3 }\)
(iii) Let C be the favourable occurrence which are multiple of 2 or 3 i.e., 2, 3, 4, 6.
∴ P(C) = \(\frac { 4 }{ 6 }\) = \(\frac { 2 }{ 3 }\)

Question 3.
In a simultaneous throw of a pair of dice, find the probability of getting:
(i) 8 as the sum
(ii) a doublet
(iii) a doublet, of prime numbers
(iv) a doublet of odd numbers
(v) a sum greater than 9
(vi) an even number on first
(vii) an even number on one and a multiple of 3 on the other
(viii) neither 9 nor 11 as the sum of the numbers on the faces
(ix) a sum less than 6
(x) a sum less than 7
(xi) a sum more than 7
(xii) at least once
(xiii) a number other than 5 on any dice.
Solution:
By throwing of a pair of dice, total number of possible events = 6 × 6 = 36
(i) Let A be the occurrence of favourable events whose sum is 8 i.e. (2,6), (3,5), (4,4), (5,3) , (6,2) which are 5
∴ P(A) = \(\frac { 5 }{ 36 }\)
(ii) Let B be the occurrence of favourable events which are doublets i.e. (1, 1), (2, 2), (3, 3), (4,4), (5, 5) and (6, 6).
∴ P(B) = \(\frac { 6 }{ 36 }\) = \(\frac { 1 }{ 6 }\)
(iii) Let C be the occurrence of favourable events which are doublet of prime numbers which are (2, 2), (3,3), (5, 5)
∴ P(C) = \(\frac { 3 }{ 36 }\) = \(\frac { 1 }{ 12 }\)
(iv) Let D be the occurrence of favourable events which are doublets of odd numbers which are (1, 1), (3, 3) and (5, 5)
∴ P(D) = \(\frac { 3 }{ 36 }\) = \(\frac { 1 }{ 12 }\)
(v) Let E be the occurrence of favourable events whose sum is greater than 8 i.e, (3,6), (4, 5), (4, 6), (5, 4), (5, 5), (5, 6) which are 6 in numbers
∴ P(E) = \(\frac { 6 }{ 36 }\) = \(\frac { 1 }{ 6 }\)
(vi) Let F be the occurrence of favourable events in which is an even number is on first i.e (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (4, 1),(4,2), (4,3) (4,4), (4,5), (4,6), (6,1), (6,2), (6, 3), (6,4 ), (6, 5), (6,6) which are 18 in numbers.
∴ P(F) = \(\frac { 18 }{ 36 }\) = \(\frac { 1 }{ 2 }\)
(vii) Let G be the occurrence of favourable events in which an even number on the one and a multiple of 3 on the other which are (2,3), (2,6), (4, 3), (4, 6), (6, 3), (6, 6), (3, 2), (3, 4), (3, 6), (6,2), (6,4) = which are 11th number
∴ P(G) = \(\frac { 11 }{ 36 }\)
(viii) Let H be the occurrence of favourable events in which neither 9 or 11 as the sum of the numbers on the faces which are (1,1), (1,2), (1,3) , (1, 4), (1, 5), (1, 6), (2, 1), (2, 2), (2, 3), (2,4) , (2, 5), (2, 6), (3, 1), (3, 2), (3, 3), (3, 4), (3,5) , (4, 1), (4, 2), (4, 3), (4, 4), (4, 6), (5, 1), (5,2), (5,3), (5,5), (6,1), (6,2), (6,4), (6,6) which are 30
∴ P(H) = \(\frac { 30 }{ 36 }\) = \(\frac { 5 }{ 6 }\)
(ix) Let I be the occurrence of favourable events, such that a sum less than 6, which are (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4,1) which are 10
∴ P(I) = \(\frac { 10 }{ 36 }\) = \(\frac { 5 }{ 18 }\)
(x) Let J be the occurrence of favourable events such that a sum is less than 7, which are
(1.1) , (1,2), (1,3), (1,4), (1,5), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (5.1) which are 15
∴ P(J) = \(\frac { 15 }{ 36 }\) = \(\frac { 5 }{ 6 }\)
(xi) Let K be the occurrence of favourable events such that the sum is more than 7, which are (2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6) which 15
∴ P(K) = \(\frac { 15 }{ 36 }\) = \(\frac { 5 }{ 12 }\)
(xii) Let L be the occurrence of favourable events such that at least P (L) one is black card
∴ P(L) = \(\frac { 26 }{ 52 }\) = \(\frac { 1 }{ 2 }\)
(xiii) Let M is the occurrence of favourable events such that a number other than 5 on any dice which can be (1,1), (1,2), (1,3), (1,4), (1,6), (2, 1), (2, 2), (2, 3), (2, 4), (2, 6), (3,1), (3,2), (3, 3), (3,4), (3,6), (4,1), (4, 2), (4, 3), (4,4), (4,6), (6, 1), (6,2), (6, 3), (6,4), (6, 6) which are 25
∴ P(M) = \(\frac { 25 }{ 36 }\)

Question 4.
Three coins are tossed together. Find the probability of getting:
(i) exactly two heads
(ii) at least two heads
(iii) at least one head and one tail
(iv) no tails
Solution:
Total number of events tossed by 3 coins each having one head and one tail = 2x2x2 = 8
(i) Let A be the occurrence of favourable events which is exactly two heads, which can be 3 in number which are HTH, HHT, THH.
∴ P(A) = \(\frac { 3 }{ 8 }\)
(ii) Let B be the occurrence of favourable events which is at least two heads, which will be 4 which are HHT, HTH, THH, and HHH.
∴ P(B) = \(\frac { 4 }{ 8 }\) = \(\frac { 1 }{ 2 }\)
(iii) Let C be the occurrence 6f favourable events which is at least one head and one tail which are 6 which can be HHT, HTH, THH, TTH, THT, HTT
∴ P(C) = \(\frac { 6 }{ 8 }\) = \(\frac { 3 }{ 4 }\)
(iv) Let D be the occurrence of favourable events in which there is no tail which is only 1 (HHH)
∴ P(D) = \(\frac { 1 }{ 8 }\)

Question 5.
A card is drawn at random from a pack of 52 cards. Find the probability that the card drawn is:
(i) a black king
(ii) either a black card or a king
(iii) black and a king
(iv) a jack, queen or a king
(v) neither a heart nor a king
(vi) spade or an ace
(vii) neither an ace nor a king
(viii) neither a red card nor a queen
(ix) other than an ace
(x) a ten
(xi) a spade
(xii) a black card
(xiii) the seven of clubs
(xiv) jack
(xv) the ace of spades
(xvi) a queen
(xvii) a heart
(xviii) a red card
Solution:
A pack of cards have 52 cards, 26 black and 26 red and four kinds each of 13 cards from 2 to 10, one ace, one jack, one queen and one king.
∴ Total number of possible events = 52
(i) Let A be the occurrence of favourable events which is a black king which are 2.
∴ P(A) = \(\frac { 2 }{ 52 }\) = \(\frac { 1 }{ 26 }\)
(ii) Let B be the occurrence of favourable events such that it is either a black card or a king.
Total = number of black cards = 26 + 2 red kings = 28
∴ P(B) = \(\frac { 28 }{ 52 }\) = \(\frac { 7 }{ 13 }\)
(iii) Let C be the occurrence of favourable events such that it is black and a king which can be 2.
∴ P(C) = \(\frac { 2 }{ 52 }\) = \(\frac { 1 }{ 26 }\)
(iv) Let D be the occurrence of favourable events such that it is a jack, queen or a king which will be4 + 4 + 4 = 12
∴ P(D) = \(\frac { 12 }{ 52 }\) = \(\frac { 3 }{ 13 }\)
(v) Let E be the occurrence of favourable events such that it is neither a heart nor a king.
∴ Number of favourable event will be 13 x 3 -3 = 39 – 3 = 36
∴ P(E) = \(\frac { 36 }{ 52 }\) = \(\frac { 9 }{ 13 }\)
(vi) Let F be the occurrence of favourable events such that it is a spade or an ace.
∴ Number of events = 13 + 3 = 16
∴ P(F) = \(\frac { 16 }{ 52 }\) = \(\frac { 4 }{ 13 }\)
(vii) Let G be the occurrence of favourable events such that it neither an ace nor a king.
∴Number of events = 52 – 4 – 4 = 44
∴ P(G) = \(\frac { 44 }{ 52 }\) = \(\frac { 11 }{ 13 }\)
(viii) Let H be the occurrence of favourable events such that it is neither a red card nor a queen.
∴Number of events = 26 – 2 = 24,
∴ P(H) = \(\frac { 24 }{ 52 }\) = \(\frac { 6 }{ 13 }\)
(ix) Let 1 be the occurrence of favourable events such that it is other than an ace.
∴ Number of events = 52 – 4 = 48
∴ P(I) = \(\frac { 48 }{ 52 }\) = \(\frac { 12 }{ 13 }\)
(x) Let J be the occurrence of favourable event such that it is ten
∴ Number of events = 4
∴ P(J) = \(\frac { 4 }{ 52 }\) = \(\frac { 1 }{ 13 }\)
(xi) Let K be the occurrence of favourable event such that it is a spade.
∴ Number of events =13
∴ P(K) = \(\frac { 13 }{ 52 }\) = \(\frac { 1 }{ 4 }\)
(xii) Let L be the occurrence of favourable event such that it is a black card.
∴ Number of events = 26
∴ P(L) = \(\frac { 26 }{ 52 }\) = \(\frac { 1 }{ 2 }\)
(xiii) Let M be the occurrence of favourable event such that it is the seven of clubs.
∴ Number of events = 1
∴ P(M) = \(\frac { 1 }{ 52 }\)
(xiv) Let N be the occurrence of favourable event such that it is a jack.
∴ Number of events = 1
∴ P(N) = \(\frac { 4 }{ 52 }\) = \(\frac { 1 }{ 13 }\)
(xv) Let O be the occurrence of favourable event such that it is an ace of spades.
∴ Number of events = 1
∴ P(O) = \(\frac { 1 }{ 52 }\)
(xvi) Let Q be the occurrence of favourable event such that it is a queen.
∴ VNumber of events = 4
∴ P(P) = \(\frac { 4 }{ 52 }\) = \(\frac { 1 }{ 13 }\)
(xvii) Let R be the occurrence of favourable event such that it is a heart card.
∴ Number of events =13
∴ P(P) = \(\frac { 13 }{ 52 }\) = \(\frac { 1 }{ 4 }\)
(xviii) Let S be the occurrence of favourable event such that it is a red card
∴ Number of events = 26
∴ P(P) = \(\frac { 26 }{ 52 }\) = \(\frac { 1 }{ 2 }\)

Question 6.
An urn contains 10 red and 8 white balls. One ball is drawn at random. Find the probability that the ball drawn is white.
Solution:
Number of possible events = 10 + 8 = 18
Let A be the occurrence of favourable event such that it is a white ball.
∴ Number of events = 8
∴ P(A) = \(\frac { 8 }{ 18 }\) = \(\frac { 4 }{ 9 }\)

Question 7.
A bag contains 3 red balls, 5 black balls and 4 white balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is (i) white ? (ii) red ? (iii) black ? (iv) not red ?
Solution:
Number of possible events = 3 + 5 + 4 = 12 balls
(i) Let A be the favourable event such that it is a white ball.
∴ P(A) = \(\frac { 4 }{ 12 }\) = \(\frac { 1 }{ 3 }\)
(ii) Let B be the favourable event such that it is a red ball.
∴ P(B) = \(\frac { 3 }{ 12 }\) = \(\frac { 1 }{ 4 }\)
(iii) Let C be the favourable event such that it is a black ball.
∴ P(C) = \(\frac { 5 }{ 12 }\)
(iv) Let D be the favourable event such that it is not red.
∴ Number of favourable events = 5 + 4 = 9
∴ P(D) = \(\frac { 9 }{ 12 }\) = \(\frac { 3 }{ 4 }\)

Question 8.
What is the probability that a number selected from the numbers 1,2,3,…………, 15 is a multiple of 4 ?
Solution:
Number of possible events =15
Let A be the favourable event such that it is a multiple of 4 which are 4, 8, 12
∴ P(A) = \(\frac { 3 }{ 15 }\) = \(\frac { 1 }{ 5 }\)

Question 9.
A bag contains 6 red, 8 black and 4 white balls. A ball is drawn at random. What is the probability that ball drawn is not black ?
Solution:
Number of possible events = 6 + 8 + 4 = 18 balls
Let A be the favourable event such that it is not a black
∴ Number of favourable events = 6 + 4=10
∴ P(A) = \(\frac { 10 }{ 18 }\) = \(\frac { 5 }{ 9 }\)

Question 10.
A bag contains 5 white and 7 red balls. One ball is drawn at random, what is the probability that ball drawn is white ?
Solution:
Number of possible events = 5 + 7 = 12
Let A be the favourable event such that it is a while which are 5.
∴ P(A) = \(\frac { 5 }{ 12 }\)

Question 11.
A bag contains 4 red, 5 black and 6 white balls. A ball is drawn from the bag at random. Find the probability that the ball drawn is (i) white (if) red (iii) not black (iv) red or white.
Solution:
Number of possible events = 4 + 5 + 6 = 15
(i) Let A be the favourable events such that it is a white.
∴ P(A) = \(\frac { 6 }{ 15 }\) = \(\frac { 2 }{ 5 }\)
(ii) Let B be the favourable event such that it is a red
∴ P(B) = \(\frac { 4 }{ 15 }\)
(iii) Let C be the favourable event such that it is not black.
∴ Number of favourable events = 4 + 6=10
∴ P(C) = \(\frac { 10 }{ 15 }\) = \(\frac { 2 }{ 3 }\)

Question 12.
A bag contains 3 red balls and 5 black balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is: (i) red (ii) black.
Solution:
Number of possible events = 3 + 5 = 8
(i) Let A be the favourable events such that it is red.
∴ P(A) = \(\frac { 3 }{ 8 }\)
(ii) Let B be the favourable event such that it is black.
∴ P(B) = \(\frac { 5 }{ 8 }\)

Question 13.
A bag contains 5 red marbles, 8 white marbles, 4 green marbles. What is the probability that if one marble is taken out of the bag at random, it will be
(i) red
(ii) white
(iii) not green.
Solution:
Total number of possible events = 5 + 8+4=17
(i) Let A be the favourable event such that it is red.
∴ P(A) = \(\frac { 5 }{ 7 }\)
(ii) Let B be the favourable event such that it is white
Then P (B) = \(\frac { 8 }{ 7 }\)
(iii) Let C be the favourable event such that it is not green.
∴ Number of favourable events = 5 + 8 = 13
∴ P(C) = \(\frac { 13 }{ 17 }\)

Question 14.
If you put 21 consonants and 5 vowels in a bag. What would carry greater probability ? Getting a consonant or a vowel ? Find each probability.
Solution:
Total number of possible events = 21 + 5 = 26
(i) Probability of getting a consonant is greater as to number is greater than the other.
(ii) Let A be the favourable event such that it is a consonant.
∴ P(A) = \(\frac { 21 }{ 26 }\)
(iii) Let B be the favourable event such that it is a vowel.
∴ P(B) = \(\frac { 5 }{ 26 }\)

Question 15.
If we have 15 boys and 5 girls in a class which carries a higher probability ? Getting a copy belonging to a boy or a girl ? Can you give it a value ?
Solution:
Number of possible outcome (events) = 15 + 5 = 20
∵ The number of boys is greater than the girls
∴ The possibility of getting a copy belonging to a boy is greater.
Let A be the favourable outcome (event) then
P(A) = \(\frac { 15 }{ 20 }\) = \(\frac { 3 }{ 4 }\)

Question 16.
If you have a collection of 6 pairs of white socks and 3 pairs of black socks. What is the probability that a pair you pick without looking is (i) white ? (if) black ?
Solution:
Total number of possible outcomes =6+3=9
(i) Let A be the favourable outcome which is white pair.
∴ P(A) = \(\frac { 6 }{ 9 }\) = \(\frac { 2 }{ 3 }\)
(ii) Let B be the favourable outcome which is a black pair.
∴ P(B) = \(\frac { 3 }{ 9 }\) = \(\frac { 1 }{ 3 }\)

Question 17.
If you have a spinning wheel with 3 green sectors, 1-blue sector and 1-red sector, what is the probability of getting a green sector ? Is it the maximum ?
Solution:
Total number of possible outcomes = 3 + 1 + 1 =5
Let A be the favourable outcome which is green sector
∴ P(A) = \(\frac { 3 }{ 5 }\)
∴ Number of green sectors is greater.
∴ It’s probability is greater.

Question 18.
When two dice are rolled :
(i) List the outcomes for the event that the total is odd.
(ii) Find probability of getting an odd total.
(iii) List the outcomes for the event that total is less than 5.
(iv) Find the probability for getting a total less than 5.
Solution:
∵ Every dice has 6 number from 1 to 6.
∴ Total outcomes = 6 x 6 = 36.
(i) List of outcomes for event then the total is odd will be (1,2), (1,4), (1,6), (2,1), (2, 3), (2, 5), (3, 2), (3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (5, 2), (5, 4), (5, 6), (6,1), (6, 3), (6, 5)
(ii) Probability of getting an odd total
Let A be the favourable outcomes which are
P(A) = \(\frac { 18 }{ 36 }\) = \(\frac { 1 }{ 2 }\)
(iii) List of outcomes for the event that total is less than 5 are (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2,1), which are 6.
(iv) Probability of getting a total less than 5 Let B be the favourable outcome,
Then P (B) = \(\frac { 6 }{ 36 }\) = \(\frac { 1 }{ 6 }\)

 

Hope given RD Sharma Class 8 Solutions Chapter 26 Data Handling IV (probability) Ex 26.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2

RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2

Other Exercises

Question 1.
The following table shows the number of patients discharged from a hospital with HIV diagnosis in different years :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 1
Represent this information by a graph.
Solution:
Represent years along x-axis and number of patients along y-axis. Now, plot the points (2002, 150), (2003, 170), (2004, 195), (2005, 225) and (2006, 230) on the graph and join them in order. We get the required graph as shown on the graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 2

Question 2.
The following table shows the amount of rice grown by a farmer in different years :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 3
Plot a graph to illustrate this information.
Solution:
We represent years along x-axis and rice (in quintals) along y-axis. Now we plot the points (2000,200), (2001, 180), (2002,240), (2003,260), (2004,250), (2005,200) and (2006,270) on the graph and join them in order as shown on the graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 4

Question 3.
The following table gives the information regarding the number of persons employed to a piece of work and time taken to complete the work:
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 5
Plot a graph of this information.
Solution:
We represent number of person along x-axis and time taken in day along y-axis. Now plot the points (2,12), (4,6), (6,4) and (8, 3) on the graph and join them in order as shown on the graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 6

Question 4.
The following table gives the information regarding length of a side of a square and its area :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 7
Draw a graph to illustrate this information.
Solution:
We represent length of a side (in cm) along x-axis and Area of square (in cm2) along the y-axis. Now plot the points (1,1), (2, 4), (3, 9), (4, 16) and (5, 25) on the graph and join them in order. We get the required graph as shown on the graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 8

Question 5.
The following table shows the sales of a commodity during the years 2000 to 2006.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 9
Draw a graph of this information.
Solution:
We represent years on x-axis and sales (in lakh rupees) along y-axis. Now plot the points
(2000, 1.5), (2001, 1.8), (2002, 2.4), (2003, 3.2), (2004, 5.4), (2005, 7.8) and (2006, 8.6) on the graph and join them in order we get the required graph as shown.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 10

Question 6.
Draw the temperature-time graph in each of the following cases :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 11
Solution:
(i) We represent time along x-axis and temperature (in °F) alongy-axis. Now plot the points (7:00, 100), (9:00, 101), (11:00, 104), (13:00, 102), (15:00, 100), (17:00, 99), (19:00, 100) and (21:00, 98) on the graph and join them in order to get the required graph as shown on the graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 12
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 13
(ii) We represent time along x-axis and temperature (in °F) along j-axis. Now plot the points (8:00, 100), (i0:00, 101), (12:00, 104), (14:00, 103), (16:00, 99), (18:00,98), (20:00,100) on the graph and join them in order to get the required graph as shown on the graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 14

Question 7.
Draw the velocity-time graph from the following data :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 15
Solution:
We represent time (in hours) along x- axis and speed (in km/hr) along y-axis. Now plot the points (7:00,30), (8:00,45), (9:00,60), (10:00, 50), (11:00, 70), (12:00, 50), (13:00, 40) and (14:00,45) on the graph and join them in order to get the required graph as shown.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 16

Question 8.
The runs scored by a cricket team in first 15 overs are given below :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 17
Draw the graph representing the above data in two different ways as a graph and as a bar chart.
Solution:
We represent overs along.t-axis and runs along v-axis. Now plot the points (1,2), (II, 1), (III, 4), (IV, 2), (V, 6), (VI, 8), (VII, 10), (VIII, 21), (IX, 5), (X, 8), (XI, 3), (XII, 2), (XIII, 6), (XIV, 8), (XV, 12) on the graph and join them to get the graph, as shown bar graph of the given data is given below:
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 18
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 19

Question 9.
The runs scored by two teams A and B in first 10 overs are given below :
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 20
Draw a graph depicting the data, making the graphs on the same axes in each case in two different ways as a graph and as a bar chart.
Solution:
We represent overs along x-axis and runs scored by team A and team B with different types of lines along y-axis.
Plot the points for team A : (I, 2), (II, 1), (III,8), (IV, 9), (V, 4), (VI, 5), (VII, 6), (VIII, 10), (IX, 6) and (X, 2)
and for team B, the points will be : (I, 5), (II, 6), (III, 2), (IV, 10), (V, 5), (VI, 6), (VII, 3), (VIII, 4), (IX, 8), (X, 10).
Then join them in order to get the required graph for team A and team B as shown.
Note : For team A ………
for team B …………
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 21

Hope given RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1

RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1

Other Exercises

Question 1.
Plot the points (5,0 ), (5,1), (5, 8). Do they lie on a line ? What is your observation ?
Solution:
Draw XOX’ and YOY’ the co-ordinates axis on the graph.
Take 1 cm = 1 unit
Point A (5, 0), B (5, 1) and C (5, 8) have been plotted on the graph. By joining A, B and C, we see that these points lie on the same line which is 5 units from y-axis.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 1

Question 2.
Plot the points (2, 8), (7, 8) and (12, 8). Join these points in pairs. Do they lie on a line ? What do you observe ?
Solution:
Draw XOX’ and YOY’, the co-ordinate axis on the graph.
Take 0.5 cm = 1 unit.
Now points A (2, 8), B (7, 8), and C (12, 8) have been plotted on the graph. By joining them, we see that these points lie on the same line which is at a distance of 8 unit from x-axis.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 2

Question 3.
Locate the points :
(i) (1,1), (1,2), (1,3), (1,4)
(ii) (2,1), (2, 2), (2,3), (2,4)
(iii) (1,3), (2,3), (3,3), (4,3)
(iv) (1,4), (2,4), (3,4), (4,4).
Solution:
The points given in (i) and (ii) are locates in first graph.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 3
(i) (1,1), (1,2), (1,3), (1,4)
(ii) (2,1), (2, 2), (2, 3), (2, 4)
Points of (iii) and (iv) are located in the adjoining graph.
(iii) (1, 3), (2, 3), (3, 3), (4, 3)
(iv) (1,4), (2, 4), (3, 4), (4,4)
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 4

Question 4.
Find the coordinates of points A, B, C, D in the figure
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 5
Solution:
Draw perpendicular from A, B, C and D on x-axis and also on y-axis.
A is 1 unit from y-axis and 1 unit from x-axis.
∴ Co-ordinates of A are (1,1)
B is 1 unit fr onr y-axis and 4 units from x-axis
∴ Co-ordinates of B are (1,4)
C is 4 units from y-axis and 6 units from x-axis
∴ Co-ordinates of C are (4, 6)
D is 5 units fromy-axis and 3 units from x-axis
∴ Co-ordinates of D are (5,3)

Question 5.
Find the coordinates of points P, Q, R and S in Fig.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 6

Solution:
Through P, Q, R and S, draw perpendiculars on x-axis and also on y-axis.
(i) P is 10 units form >’-axis and 70 units from y-axis
∴ Co-ordinates of P are (10, 70)
(ii) Q is 12 unit from x-axis and 80 units from y-axis
∴ Co-ordinates of Q are (12, 80)
(iii) R is 16 units from x-axis and 100 units from y-axis
∴ Co-ordinates of R are (16, 100)
(iv) S is 20 units from x-axis and 120 units from y-axis
∴ Co-ordinates of S are (20, 120)

Question 6.
Write the coordinates of each of the vertices of each polygon in the figure.
RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 7
Solution:
(i) In figure OXYZ
Co-ordinates of O are (0, 0) ∵It is the origin
Co-ordinates of X are (0, 2) ∵ It lies on y – axis
Co-ordinates of Y are (2, 2)
Co-ordinates of Z are (2, 0) ∵It lies on x-axis
(ii) In figure ABCD, draw perpendicular from A, B, C, D on x-axis and y-axis.
A is 4 unit from y-axis and 5 units from x- axis
∴ Co-ordinates of A are (4, 5)
B is 7 units from y-axis and 5 units from x – axis
∴ Co-ordinates of B are (7, 5)
C is 6 units from y-axis and 3 units from x- axis
∴ Co-ordinates of C are (6, 3)
D is 3 units from y-axis as well x-axis
∴ Co-ordinates of D are (3, 3)
(iii) In figure PQR, perpendiculars for P, Q, R are drawn on x-axis and also on y-axis.
∴ Co-ordinates of P are (7, 4), of Q are (9, 5) and of R are (9, 3).

Question 7.
Decide which of the following statements is true and which is false. Give reasons for your answer.
(i) A point whose x-coordinate is zero, will lie on they-axis.
(ii) A point whose y-coordinate is zero, will lie on x-axis.
(iii) The coordinates of the origin are (0, 0).
(iv) Points whose x and y coordinates are equal, lie on a line passing through the origin.
Solution:
(i) Correct: ∵ every point on y-axis, its x = 0
(ii) Correct: ∵ every point on x-axis, its y = 0
(iii) Correct
(iv) Correct

Hope given RD Sharma Class 8 Solutions Chapter 27 Introduction to Graphs Ex 27.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4

Other Exercises

Question 1.
Find the cube roots of each of the following integers :
(i) -125
(ii) -5832
(iii) -2744000
(iv) -753571
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 1
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 2
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 4

Question 2.
Show that :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 5
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 6
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 7

Question 3.
Find the cube root of each of the following numbers :
(i) 8 x 125
(ii) -1728 x 216
(iii) -27 x 2744
(iv) -729 x -15625
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 8
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 9

Question 4.
Evaluate :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 10
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 12

Question 5.
Find the cube root of each of the following rational numbers.
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 13
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 14
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 15
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 16
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 17

Question 6.
Find the cube root of each of the following rational numbers :
(i) 0.001728
(ii) 0.003375
(iii) 0.001
(iv) 1.331
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 18
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 19

Question 7.
Evaluate each of the following :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 20
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 21
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 22
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 23
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 24

Question 8.
Show that :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 25
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 26
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 27
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 28

Question 9.
Fill in the Blanks :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 29
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 30
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 31
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 32
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 33

Question 10.
The volume of a cubical box is 474.552 cubic metres. Find the length of each side of the box.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 34
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 35

Question 11.
Three numbers are to one another 2:3: 4. The sum of their cubes is 0.334125. Find the numbers.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 36
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 37

Question 12.
Find side of a cube whose volume is
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 38
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 39

Question 13.
Evaluate :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 40
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 41
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 42

Question 14.
Find the cube root of the numbers : 2460375,20346417,210644875,57066625 using the fact that
(i) 2460375 = 3375 x 729
(i) 20346417 = 9261 x 2197
(iii) 210644875 = 42875 x 4913
(iv) 57066625 = 166375 x 343
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 43
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 44
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 45

Question 15.
Find the units digit of the cube root of the following numbers ?
(i) 226981
(ii) 13824
(iii) 571787
(iv) 175616
Solution:
(i) 226981
In it unit digit is 1
∴The units digit of its cube root will be = 1
(∵ 1 x 1 x 1 = 1)
∴Tens digit of the cube root will be = 6
(ii) 13824
∵ The units digit of 13824 = 4
(∵ 4 X 4 X 4 = 64)
∴Units digit of the cube root of it = 4
(iii) 571787
∵ The units digit of 571787 is 7
∴The units digit of its cube root = 3
(∵ 3 x 3 x 3 = 27)
(iv) 175616
∵ The units digit of 175616 is 6
∴The units digit of its cube root = 6
(∵ 6 x 6 x 6=216)

Question 16.
Find the tens digit of the cube root of each of the numbers in Question No. 15.
Solution:
(i) In 226981
∵ Units digit is 1
∴Units digit of its cube root = 1
We have 226
(Leaving three digits number 981)
63 = 216 and 73 = 343
∴63 ∠226 ∠ T
∴The ten’s digit of cube root will be 6
(ii) In 13824
Leaving three digits number 824, we have 13
∵ (2)3 = 8, (3)3 = 27
∴23 ∠13 ∠3′
∴Tens digit of cube root will be 2
(iii) In 571787
Leaving three digits number 787, we have 571
83 = 512, 93 = 729
∴ 83 ∠571 ∠93
Tens digit of the cube root will be = 8
(iv) In 175616
Leaving three digit number 616, we have 175
∵ 53 = 125, 63 = 216
∴53 ∠175 ∠63
∴Tens digit of the cube root will be = 5

Hope given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1

RD Sharma Class 8 Solutions Chapter 25 Data Handling III (Pictorial Representation of Data as Pie Charts or Circle Graphs) Ex 25.1

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1

Other Exercises

Question 1.
The number of hours, spent by a school boy on different activities in a working day, is given below:
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 1
Present the information in the form of a pie-chart .
Solution:
Total = 24
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 2
Now we draw a circle and divide it in the sectors having above central angles as shown in the figure.

Question 2.
Employees of a company have been categorized according to their religions as given below:
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 3
Draw a pie-chart to represent the above information.
Solution:
Total =1080
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 4
Now draw a circle and divided it into sectors having the above central angles as shown in the figure.

Question 3.
In one day the sales (in rupees) of different items of a baker’s shop are given below :
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 5
Draw pie-chart representing the above sales.
Solution:
Total = 480
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 6
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 7
Now draw a circle and divide it into sectors having the above central angles as shown in the figure.

Question 4.
The following data shows the expenditure of a person on different items during a month. Represent the data by a pie-chart.
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.8
Solution:
Total = 10800
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.9
Now we draw a circle and divide it into sector having the above central angles as shown in figure.

Question 5.
The percentages of various categories of workers in a state are given in the following table:
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.10
Present the information in the form of a pie-chart.
Solution:
Total = 100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.11

Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure.

Question 6.
The following table shows the expenditure incurred by a publisher in publishing a book:
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.12
Present the above data in the form of a pie-chart.
Solution:
Total = 100% = 100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.13
Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure

Question 7.
Percentage of the different products of a village in a particular district are given below. Draw a pie-chart representing this information.
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.14
Solution:
Total = 100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.15
Now, we draw a circle and divided it into sectors having the above central angles as shown in the figure.

Question 8.
Draw a pie-diagram for the following data of expenditure pattern in a family.
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.16
Solution:
Total =100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.17
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.18
Now we draw a circle and divide it into sectors having the above central angles as shown in the figure.

Question 9.
Draw a pie-diagram of the areas of continents cf the world given in the following table :
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.19
Solution:
Total = 133.3
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.20
Now, we draw a circle and divide it into sectors having the above given central angles as shown in the figure.

Question 10.
The following data gives the amount spent of the construction of a house. Draw a pie diagram.
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.21
Solution:
Total = 300 (in thousands)
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.22
Now, we draw a circle and divide it into sectors having the above given central angles as shown in the figure.

Question 11.
The following table shows how a student spends his pocket money during the course of a month. Represent it by a pie-diagram.
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.23
Solution:
Total expenditure = 100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.24
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.25
Now, we draw a circle and divide it into sectors having the above given central angles as shown in the figure.

Question 12.
Represent the following data by a pie-diagram :
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.26
Solution:
1. For family A
Total = 10000
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.27
Now, we draw a circle and divide it in sectors having the above central angles as shown in the figure.
(2) For family B
Total = 11680
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.28
Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure.

Question 13.
Following data gives the break up of the cost of production of a book:
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.29
Draw a pie – diagram depicting the above information.
Solution:
Total = 100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.30
Now, we draw a circle and divide it into sectors of above central angles as shown in the figure.

Question 14.
Represent the following data with the help of pie-diagram.
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.31
Solution:
Total = 6000 tons
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.32
Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure.

Question 15.
Draw a pie-diagram representing the relative frequencies (expressed as percentage) of the eight classes as given below :
12.6,18.2,17.5,20.3,2.8,4.2,9.8,14.7
Solution:
Total =100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.33
Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure given.

Question 16.
Following is the break up of the expenditure of a family on different items of consumption :
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.34
Draw a a pie – diagram to represent the above data.
Solution:
Total = Rs. 3000
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.35
Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure.

Question 17.
Draw a pie-diagram for the following data of the investment pattern in five year plan :
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.36
Solution:
Total = 100
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.37
RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.38
Now, we draw a circle and divide it into sectors having the above central angles as shown in the figure.

Hope given RD Sharma Class 8 Solutions Chapter 25 Data Handling III Ex 25.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1

Other Exercises

Question 1.
Find the cubes of the following numbers:
(i) 7
(ii) 12
(iii) 16
(iv) 21
(v) 40
(vi) 55
(vii) 100
(viii) 302
(ix) 301
Solution:
(i) (7)3 = 7 x 7 x 7 = 343
(ii) (12)3 = 12 x-12 x 12 = 1728
(iii) (16)3 = 16 x 16 x 16 = 4096
(iv) (21)3 = 21 x 21 x 21 = 441 x 21 =9261
(v) (40)3 = 40 x 40 x 40 = 64000
(vi) (55)3 = 55 x 55 x 55 = 3025 x 55 = 166375
(vii) (100)3 = 100 x 100 x 100 =1000000
(viii)(302)3 = 302 x 302 x 302 = 91204 x 302 = 27543608
(ix) (301)3 = 301 x 301 x 301 = 90601 x 301 =27270901

Question 2.
Write the cubes of all natural numbers between 1 and 10 and verify the following statements :
(i) Cubes of all odd natural numbers are odd.
(ii) Cubes of all even natural numbers are even.
Solution:
Cubes of first 10 natural numbers :
(1)3 = 1 x 1 x 1 = 1
(2)3 = 2 x 2 x 2 = 8
(3)3 = 3 x 3 x 3 = 27
(4)3= 4 x 4 x 4 = 64
(5)3 = 5 x 5 x 5 = 125
(6)3 = 6 x 6 x 6 = 216
(7)3 = 7 x 7 x 7 = 343
(8)3 = 8 x 8 x 8 = 512
(9)3 = 9 x 9 x 9= 729
(10)3 = 10 x 10 x 10= 1000
We see that the cubes of odd numbers is also odd and cubes of even numbers is also even.

Question 3.
Observe the following pattern :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 1
Write the next three rows and calculate the value of 13 + 23 + 33 +…. + 93 + 103 by the above pattern.
Solution:
We see the pattern
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 2

Question 4.
Write the cubes of 5 natural numbers which are multiples of 3 and verify the followings :
The cube of a natural number which is a multiple of 3 is a multiple of 27′
Solution:
5 natural numbers which are multiples of 3
3,6,9,12,15.
(3)3 = 3 x 3 x 3 = 27
Which is multiple of 27
(6)3 = 6 x 6 x 6 = 216 ÷ 27 = 8
Which is multiple of 27
(9)3 = 9 x 9 x 9 = 729 + 27 = 27
Which is multiple of 27
(12)3= 12 x 12 x 12 = 1728 ÷ 27 = 64
Which is multiple of 27
(15)3 = 15 x 15 x 15 = 3375 ÷ 27 = 125
Which is multiple of 27
Hence, cube of multiple of 3 is a multiple of 27

Question 5.
Write the cubes of 5 natural numbers which are of the form 3n+ 1 (e.g.,4, 7, 10, …………) and verify the following :
‘The cube of a natural number of the form 3n + 1 is a natural number of the same form i.e. when divided by 3 it leaves the remainder 1’.
Solution:
3n + 1
Let n = 1, 2, 3, 4, 5, then
If n = 1, then 3n +1= 3 x 1+1= 3+1= 4
If n = 2, then 3n +1=3 x 2+1=6+1=7
If n = 3, then 3n + 1= 3 x 3 + 1= 9 + 1 = 10
If n = 4, then 3n + 1= 3 x 4+1 = 12 + 1= 13
If n = 5, then 3n +1=3 x 5 + 1 = 15 +1 = 16
Now
(4)3 = 4 x 4 x 4 = 64
Which is \(\frac {64 }{ 3 }\)=21, Remainder = 1
(7)3 = 7 x 7 x 7 = 343
Which is \(\frac {343 }{ 3 }\) =114, Remainder = 1
(10)3 = 10 x 10 x 10 = 1000 ÷ 3 = 333, Remainder = 1
(13)3 = 13 x 13 x 13 = 2197 ÷ 3 = 732, Remainder = 1
(16)3 = 16 x 16 x 16 = 4096 ÷ 3 = 1365, Remainder = 1
Hence cube of natural number of the form, 3n + 1, is a natural of the form 3n + 1

Question 6.
Write the cubes of 5 natural numbers of the form 3n + 2 (i.e. 5, 8, 11,……… ) and verify the following :
‘The cube of a natural number of the form 3n + 2 is a natural number of the same form i.e. when it is dividend by 3 the remainder is 2’.
Solution:
Natural numbers of the form 3n + 2, when n
is a natural number i.e. 1, 2, 3, 4, 5,………….
If n = 1, then 3n + 2 = 3 x 1+2 = 3+ 2 = 5
If n = 2, then 3n + 2 = 3 x 2 + 2 = 6 + 2 = 8
If n = 3, then 3n + 2 = 3 x 3 + 2 = 9 + 2 = 11
If n = 4, then 3n + 2 = 3 x 4 + 2 = 12 + 2 = 14
and if n = 5, then 3n + 2 = 3 x 5 + 2 = 15 + 2= 17
Now (5)3 = 5 x 5 x 5 = 125
125 + 3 = 41, Remainder = 2
(8)2 = 8 x 8 x 8 = 512 512 -s- 3 = 170, Remainder = 2
(11)3 = 11 x 11 x 11 = 1331
1331 + 3 = 443, Remainder = 2
(14)3 = 14 x 14 x 14 = 2744
2744 + 3 = 914, Remainder = 2
(17)3 = 17 x 17 x 17 = 4913
4913 = 3 = 1637, Remainder = 2
We see the cube of the natural number of the
form 3n + 2 is also a natural number of the
form 3n + 2.

Question 7.
Write the cubes of 5 natural numbers of which are multiples of 7 and verify the following :
‘The cube of a multiple of 7 is a multiple of 73′.
Solution:
5 natural numbers which are multiple of 7,are 7, 14, 21, 28, 35
(7)3 = (7)3 which is multiple of 73
(14)3 = (2 x 7)3 = 23 x 73, which is multiple of 73
(21)3 = (3 x 7)3 = 33 x 73, which is multiple of 73
(28)3 = (4 x 7)3 = 43 x 73, which is multiple of 73 (35)3 = (5 x 7)3 = 53 x 73 which is multiple of 73
Hence proved.

Question 8.
Which of the following are perfect cubes?
(i) 64
(ii) 216
(iii) 243
(iv) 1000
(v) 1728
(vi) 3087
(vii) 4608
(viii) 106480
(ix) 166375
(x) 456533
Solution:
(i) 64 = 2 x 2 x 2 x 2 x 2 x 2
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 3
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 64 is a perfect cube
(ii) 216 = 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 4
Grouping the factors in triplets of equal factors, we see that no factor is left
216 is a perfect cube.
(iii) 243 = 3 x 3 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 5
Grouping the factors in triplets, we see that two factors 3 x 3 are left
∴ 243 is not a perfect cube.
(iv) 1000 = 2 x 2 x 2 x 5 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 6
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 1000 is a perfect cube.
(v) 1728 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 7
Grouping the factors in triplets of the equal factors, we see that no factor is left
∴ 1728 is a perfect cube,
(vi) 3087 = 3 x 3 x 7 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 8
Grouping the factors in triplets of the equal factors, we see that two factor 3×3 are left
∴ 3087 is not a perfect cube.
(vii) 4608 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 9
Grouping the factors in triplets of equal factors, we see that two factors 3, 3 are left
∴ 4609 is not a perfect cube.
(viii) 106480 = 2 x 2 x 2 x 2 x 5 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 10
Grouping the factors in triplets of equal factors, we see that factors 2, 5 are left
∴ 106480 is not a perfect cube.
(ix) 166375 = 5 x 5 x 5 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 11
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 166375 is a perfect cube.
(x) 456533 = 7 x 7 x 7 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 12
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ 456533 is a perfect cube.

Question 9.
Which of the following are cubes of even natural numbers ?
216, 512, 729,1000, 3375, 13824
Solution:
We know that the cube of an even natural number is also an even natural number
∴ 216, 512, 1000, 13824 are even natural numbers.
∴ These can be the cubes of even natural number.

Question 10.
Which of the following are cubes of odd natural numbers ?
125, 343, 1728, 4096, 32768, 6859
Solution:
We know that the cube of an odd natural number is also an odd natural number,
∴ 125, 343, 6859 are the odd natural numbers
∴ These can be the cubes of odd natural numbers.

Question 11.
What is the smallest number by which the following numbers must be multiplied, so that the products are perfect cubes ?
(i) 675
(ii) 1323
(iii) 2560
(iv) 7803
(v) 107311
(vi) 35721
Solution:
(i) 675 = 3 x 3 x 3 x 5 X 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 13
Grouping the factors in triplet of equal factors, 5 x 5 are left without triplet
So, by multiplying by 5, the triplet will be completed.
∴ Least number to be multiplied = 5
(ii) 1323 = 3 x 3 x 3 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 14
Grouping the factors in triplet of equal factors. We find that 7 x 7 has been left
So, multiplying by 7, we get a triplet
∴ The least number to be multiplied = 7
(iii) 2560 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 15
Grouping the factors in triplet of equal factors, 5 is left.
∴ To complete a triplet 5 x 5 is to multiplied
∴ Least number to be multiplied = 5 x 5 = 25
(iv) 7803 = 3 x 3 x 3 x 17 x 17
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 16
Grouping the factors in triplet of equal factors, we find the 17 x 17 are left
So, to complete the triplet, we have to multiply by 17
∴ Least number to be multiplied = 17
(v) 107811 = 3 x 3 x 3 x 3 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 17
Grouping the factors in triplet of equal factors, factor 3 is left
So, to complete the triplet 3 x 3 is to be multiplied
∴ Least number to be multiplied = 3 x 3 = 9
(vi) 35721 = 3 x 3 x 3 x 3 x 3 x 3 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 18
Grouping the factors in triplet of equal factors, we find that 7 x 7 is left
So, in order to complete the triplets, we have to multiplied by 7
∴ Least number to be multiplied = 7

Question 12.
By which smallest number must the following numbers be divided so that the quotient is a perfect cube ?
(i) 675
(ii) 8640
(iii) 1600
(iv) 8788
(v) 7803
(vi) 107811
(vii) 35721
(viii) 243000
Solution:
(i) 675 = 3 x 3 x 3 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 19
Grouping the factors in triplet of equal factors, 5 x 5 is left
5 x 5 is to be divided so that the quotient will be a perfect cube.
∴ The least number to be divided = 5 x 5 = 25
(ii) 8640 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 20
Grouping the factors in triplets of equal factors, 5 is left
∴ In order to get a perfect cube, 5 is to divided
∴ Least number to be divided = 5
(iii) 1600 = 2 x 2 x 2 x 2 x 2 x 2 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 21
Grouping the factors in triplets of equal factors, we find that 5 x 5 is left
∴ In order to get a perfect cube 5 x 5 = 25 is to be divided.
∴ Least number to be divide = 25
(iv) 8788 = 2 x 2 x 13 x 13 x 13
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 22
Grouping the factors in triplets of equal factors, we find that 2 x 2 has been left
∴ In order to get a perfect cube, 2 x 2 is to be divided
∴ Least number to be divided = 4
(v) 7803 = 3 x 3 x 3 x 17 x 17
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 23
Grouping the factors in triplets of equal factors, we see that 17 x 17 has been left.
So, in order to get a perfect cube, 17 x 17 is be divided
∴ Least number to be divided = 17 x 17 = 289
(vi) 107811 = 3 x 3 x 3 x 3 x 11 x 11 x 11
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 24
Grouping the factors in triplets of equal factors, 3 is left
∴ In order to get a perfect cube, 3 is to be divided
∴ Least number to be divided = 3
(vii) 35721 = 3 x 3 x 3 x 3 x 3 x 3 x 7 x 7
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 25
Grouping the factors in triplets of equal factors, we see that 7 x 7 is left
So, in order to get a perfect cube, 7 x 7 = 49 is to be divided
∴ Least number to be divided = 49
(viii) 243000 = 2 x 2 x 2 x 3 x 3 x 3 x 3 x 3 x 5 x 5 x 5
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 26
Grouping the factors in triplets of equal factors, 3 x 3 is left
∴ By dividing 3 x 3, we get a perfect cube
∴ Least number to be divided = 3 x 3=9

Question 13.
Prove that if a number is trebled then its cube is 27 times the cube of the given number.
Solution:
Let x be the number, then trebled number of x = 3x
Cubing, we get:
(3x)3 = (3)3 x3 = 27x3
27x3 is 27 times the cube of x i.e., of x3

Question 14.
What happenes to the cube of a number if the number is multiplied by
(i) 3 ?
(ii) 4 ?
(iii) 5 ?
Solution:
number (x)3 = x3
(i) If x is multiplied by 3, then the cube of
∴ (3x)3 = (3)3 x x3 = 27x3
∴ The cube of the resulting number is 27 times of cube of the given number
(ii) If x is multiplied by 4, then the cube of
(4x)3 = (4)3 x x3 = 64x3
∴ The cube of the resulting number is 64 times of the cube of the given number
(ii) If x is multiplied by 5, then the cube of
(5x)3 = (5)3 x x3 = 125x3
∴ The cube of the resulting number is 125 times of the cube of the given number

Question 15.
Find the volume of a cube, one face of which has an area of 64 m2.
Solution:
Area of one face of a cube = 64 m2
∴ Side (edge) of cube = √64
= √64 = 8 m
∴ Volume of the cube = (side)3 = (8 m)3 = 512 m3

Question 16.
Find the volume of a cube whose surface area is 384 m2.
Solution:
Surface area of a cube = 384 m2 Let side = a
Then 6a2 = 384 ⇒ a2 = \(\frac {384 }{ 6 }\)= 64 = (8)2
∴ a = 8 m
Now volume = a3 = (8)3 m3 = 512 m3

Question 17.
Evaluate the following :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 27
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 28
Question 18.
Write the units digit of the cube of each of the following numbers :
31,109,388,833,4276,5922,77774,44447, 125125125.
Solution:
We know that if unit digit of a number n is
= 1, then units digit of its cube = 1
= 2, then units digit of its cube = 8
= 3, then units digit of its cube = 7
= 4, then units digit of its cube = 4
= 5, then units digit of its cube = 5
= 6, then units digit of its cube = 6
= 7, then the units digit of its cube = 3
= 8, then units digit of its cube = 2
= 9, then units digit of its cube = 9
= 0, then units digit of its cube = 0
Now units digit of the cube of 31 = 1
Units digit of the cube of 109 = 9
Units digits of the cube of 388 = 2
Units digits of the cube of 833 = 7
Units digits of the cube of 4276 = 6
Units digit of the cube of 5922 = 8
Units digit of the cube of 77774 = 4
Units digit of tl. cube of 44447 = 3
Units digit of the cube of 125125125 = 5

Question 19.
Find the cubes of the following numbers by column method :
(i) 35
(ii) 56
(iii) 72
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 29
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 30

Question 20.
Which of the following numbers are not perfect cubes ?
(i) 64
(ii) 216
(iii) 243
(iv) 1728
Solution:
(i) 64 = 2 x 2 x 2 X 2 x 2 x 2
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 31
Grouping the factors in triplets, of equal factors, we see that no factor is left
∴ 64 is a perfect cube.
(ii) 216 = 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 32
Grouping the factors in triplets, of equal factors, we see that no factor is left
∴ 216 is a perfect cube.
(iii) 243 = 3 x 3 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 33
Grouping the factors in triplets, of equal factors, we see that 3 x 3 are left
∴ 243 is not a perfect cube.
(iv) 1728 = 2 x 2 x 2 x 2 x 2 x 2 x 3 x 3 x 3
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 34
Grouping the factors m triplets, of equal factors, we see that no factor is left.
∴ 1728 is a perfect cube.

Question 21.
For each of the non-perfect cubes, in Q. 20, find the smallest number by which it must be
(a) multiplied so that the product is a perfect cube.
(b) divided so that the quotient is a perfect cube.
Solution:
In qustion 20, 243 is not a perfect cube and 243 = 3 x 3 x 3 x 3 x 3
Grouping the factors in triplets, of equal factors, we see that 3 x 3 is left.
(a) In order to make it a perfect cube, 3 is to be multiplied which makes a triplet.
(b) In order to make it a perfect cube, 3 x 3 or 9 is to be divided.

Question 22.
By taking three different values of n verify the truth of the following statements :
(i) If n is even, then n3 is also even.
(ii) If n is odd, then n3 is also odd.
(iii) If n leaves remainder 1 when divided by 3, then it3 also leaves 1 as remainder when divided by 3.
(iv) If a natural number n is of the form 3p + 2 then n3 also a number of the same type.
Solution:
(i) n is even number.
Let n = 2, 4, 6 then
(a) n3 = (2)3 = 2 x 2 x 2 = 8, which is an even number.
(b) (n)3= (4)3 = 4 x 4 x 4 = 64, which is an even number.
(c) (n)3 = (6)3 = 6 x 6 x 6 = 216, which is an even number.

(ii) n is odd number.
Letx = 3, 5, 7
(a) (n)3 = (3)3 = 3 x 3 x 3 = 27, which is an odd number.
(b) (n)3 = (5)3 = 5 x 5 x 5 = 125, which is an odd number.
(c) (n)3 = (7)3 = 7 x 7 x 7 = 343, which is an odd number.

(iii) If n leaves remainder 1 when divided by 3, then n3 is also leaves 1 as remainder,
Let n = 4, 7, 10 If n = 4,
then «3 = (4)3 = 4 x 4 x 4 = 64
= 64 + 3 = 21, remainder = 1
If n = 7, then
n3 = (7)3 = 7 x 7 x 7 = 343
343 + 3 = 114, remainder = 1
If n – 10, then
(n)3 = (10)3 = 10 x 10 x 10 = 1000
1000 + 3 = 333, remainder = 1

(iv) If the natural number is of the form 3p + 2, then n3 is also of the same type
Let p =’1, 2, 3, then
(a) If p = 1, then
n = 3p + 2 = 3 x 1+2=3+2=5
∴ n3 = (5)3 = 5 x 5 x 5 = 125
125 = 3 x 41 + 2 = 3p +2

(b) If p = 2, then
n = 3p + 2 = 3 x 2 + 2 = 6 + 2 = 8
∴ n3 = (8)3 = 8 x 8 x 8 = 512
∴ 512 = 3 x 170 + 2 = 3p + 2

(c) If p = 3, then
n = 3p + 2 = 3 x 3 + 2 = 9 + 2 = 11
∴ n3 = (11)3 = 11 x 11 x 11 = 1331
and 1331 =3 x 443 + 2 = 3p + 2
Hence proved.

Question 23.
Write true (T) or false (F) for the following statements :
(i) 0 392 is a perfect cube.
(ii) 8640 is not a perfect cube.
(iii) No cube can end with exactly two zeros.
(iv) There is no perfect cube which ends in 4.
(v) For an integer a, a3 is always greater than a> b2
(vi) If a and b are integers such that a> b2 , then a3 > b3.
(x) If a2 ends in an even number of zeros, then a ends in an odd number of zeros.
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 35
∵ 5 is left.
(iii)True : A number ending three zeros can be a perfect cube.
(iv) False : v (4)3 = 4 x 4 x 4 = 64, which ends with 4.
(v) False : If n is a proper fraction, it is not possible.
(vi) False : It is not true if a and b are proper fraction.
(vii) True.
(viii) False : as a2 ends in 9, then a3 does not necessarily ends in 7. It ends in 3 also.
(ix) False : it is not necessarily that a3 ends in 25 it can end also in 75.
(x) False : If a2 ends with even zeros, then a3 will ends with odd zeros but of multiple of 3.

 

Hope given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8

Other Exercises

Question 1.
Find the square root of each of the following correct to three places of decimal :
(i) 5
(ii) 7
(iii) 17
(iv) 20
(v) 66
(vi) 427
(vii) 1.7
(vii’) 23.1
(ix) 2.5
(x) 237.615
(xi) 15.3215
(xii) 0.9
(xiii) 0.1
(xiv) 0.016
(xv) 0.00064
(xvi) 0.019
(xvii) \(\frac {7 }{ 8 }\)
(xviii) \(\frac {5 }{ 12 }\)
(xix) 2 \(\frac {1 }{ 2 }\)
(xx) 287 \(\frac {8 }{ 8 }\)
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 1
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 2
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 3
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 4
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 5
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 6
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 7
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 8
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 9
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 10
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 11

Question 2.
Find the square root of 12.0068 correct to four decimal places.
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 12

Question 3.
Find the square root of 11 correct to five decimal places.
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 13

Question 4.
Given that √2, = 1-414, √3 = 1.732, √5 = 2.236 and √7 = 2.646. Evaluate each of the following :
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 14
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 15
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 16

Question 5.
Given that √2 = 1-414, √3 = 1-732, √5= 2.236 and √7= 2.646, find the square roots of the following :
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 17
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 18
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 19
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 20

Hope given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.8 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2

RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2

Other Exercises

Question 1.
Find the cubes of:
(i) -11
(ii) -12
(iii) – 21
Solution:
(i) (-11)3=(-11)3=(11 x 11 x 11) =-1331
(ii) (-12)3=(-12)3=(12 x 12 x 12) =  -1728
(iii) (-21)3=(-21)3=(21 x 21 x 21) = -9261

Question 2.
Which of the following numbers are cubes of negative integers.
(i) -64
(ii) -1056
(iii) -2197
(iv) -2744
(v)  -42875
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 1

∴ All factors of 64 can be grouped in triplets of the equal factors completely.
∴ -64 is a perfect cube of negative integer.
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 2
All the factors of 1056 can be grouped in triplets of equal factors grouped completely
∴ 1058 is not a perfect cube of negative integer.
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 3
All the factors of -2197 can be grouped in triplets of equal factors completely
∴ 2197 is a perfect cube of negative integer,
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 4
All the factors of -2744 can be grouped in triplets of equal factors completely
∴ 2744 is a perfect cube of negative integer
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 5
All the factors of -42875 can be grouped in triplets of equal factors completely
∴ 42875 is a perfect cube of negative integer.

Question 3.
Show that the following integers are cubes of negative integers. Also, find the integer whose cube is the given integer :
(i) -5832 (ii) -2744000
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 6
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 7
Grouping the factors in triplets of equal factors, we see that no factor is left
∴ -5832 is a perfect cube
Now taking one factor from each triplet we find that
-5832 is a cube of – (2 x 3 x 3) = -18
∴ Cube root of-5832 = -18
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 8
Grouping the factors in tuplets of equal factors, we see that no factor is left. Therefore it is a perfect cube.
Now taking one factor from each triplet, we find that.
-2744000 is a cube of – (2 x 2 x 5 x 7) ie. -140
∴ Cube root of -2744000 = -140

Question 4.
Find the cube of :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 9
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 10
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 11

Question 5.
Which of the following numbers are cubes of rational numbers :
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 12
Solution:
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 13
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 14
RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 15

Hope given RD Sharma Class 8 Solutions Chapter 4 Cubes and Cube Roots Ex 4.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6

Other Exercises

Question 1.
Find the square root of:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 1
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 2
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 3
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 4
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 5
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 6
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 7
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 8
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 9
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 10
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 11
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 12

Question 2.
Find the value of :
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 13
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 14
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 15

Question 3.
The area of a square field is 80 \(\frac {244 }{ 729 }\) square metres. Find the length of each side of the field.
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 16

Question 4.
The area of a square field is 30 \(\frac {1 }{ 4}\) m2. Calculate the length of the side of the squre.
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 17

Question 5.
Find the length of a side of a square playground whose area is equal to the area of a rectangular field of dimensions 72 m and 338 m.
Solution:
Length of rectangular field (l) = 338 m
and breadth (b) = 72 m
∴ Area = 1 x 6= 338 x 72 m2
∴ Area of square = 338 x 72 m2 = 24336 m2
and length of the side of the square
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 18

Hope given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.6 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3

RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3

Other Exercises

Question 1.
Find the squares of the following numbers using column method. Verify the result by finding the square using the usual multiplication :
(i) 25
(ii) 37
(iii) 54
(iv) 71
(v) 96
Solution:
(i) (25)2
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 1
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 2

Question 2.
Find the squares of the following numbers using diagonal method :
(i) 98
(ii) 273
(iii) 348
(iv) 295
(v) 171
Solution:
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 3
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 4
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 5

Question 3.
Find the squares of the following numbers :
(i) 127
(ii) 503
(iii) 451
(iv) 862
(v) 265
Solution:
(i) (127)2 = (120 + 7)2
{(a + b)2 = a2 + lab + b2}
= (120)2 + 2 x 120 x 7 + (7)2
= 14400+ 1680 + 49 = 16129

(ii) (503)2 = (500 + 3)2
{(a + b)2 = a2 + lab + b1}
= (500)2 + 2 x 500 x 3 + (3)2
= 250000 + 3000 + 9 = 353009

(iii) (451)2 = (400 + 51)2
{(a + b)2 = a2 + lab + b2}
= (400)2 + 2 x 400 x 51 + (5l)2
= 160000 + 40800 + 2601 = 203401

(iv) (451)2 = (800 + 62)2
{(a + b)2 = a2 + lab + b2}
= (800)2 + 2 x 800 x 62 + (62)2
= 640000 + 99200 + 3844 = 743044

(v) (265)2
{(a + b)2 = a2 + 2ab + b2}
(200 + 65)2 = (200)2 + 2 x 200 x 65 + (65)2
= 40000 + 26000 + 4225 = 70225

Question 4.
Find the squares of the following numbers
(i) 425
(ii) 575
(iii) 405
(iv) 205
(v) 95
(vi) 745
(vii) 512
(viii) 995
Solution:
(i) (425)2
Here n = 42
∴ n (n + 1) = 42 (42 + 1) = 42 x 43 = 1806
∴ (425)2 = 180625

(ii) (575)2
Here n = 57
∴ n (n + 1) = 57 (57 + 1) = 57 x 58 = 3306
∴ (575)2 = 330625

(iii) (405)2
Here n = 40
∴ n (n + 1) = 40 (40 + 1) -40 x 41 = 1640
∴ (405)2 = 164025

(iv) (205)2
Here n = 20
∴ n (n + 1) = 20 (20 + 1) = 20 x 21 = 420
∴ (205)2 = 42025

(v) (95)2
Here n = 9
∴ n (n + 1) = 9 (9 + 1) = 9 x 10 = 90
∴ (95)2 = 9025

(vi) (745)2
Here n = 74
∴ n (n + 1) = 74 (74 + 1) = 74 x 75 = 5550
∴ (745)2 = 555025

(vii) (512)2
Here a = 1, b = 2
∴ (5ab)2 = (250 + ab) x 1000 + (ab)2
∴ (512)2 = (250 + 12) x 1000 + (12)2
= 262 x 1000 + 144
= 262000 + 144 = 262144

(viii) (995)2
Here n = 99
∴ n (n + 1) = 99 (99 + 1) = 99 x 100 = 9900
∴ (995)2 = 990025

Question 5.
Find the squares of the following numbers using the identity (a + b)1 = a2 + lab + b1
(i) 405
(ii) 510
(iii) 1001
(iv) 209
(v) 605
Solution:
a + b)2 = a2 + lab + b2

(i) (405)2 = (400 + 5)2
= (400)2 + 2 x 400 x 5 + (5)2
= 160000 + 4000 + 25 = 164025

(ii) (510)2 = (500 + 10)2
= (500)2 + 2 x 500 x 10 x (10)2
= 250000 + 10000 + 100
= 260100

(iii) (1001)2 = (1000+1)2
= (1000)2 + 2 X 1000 x 1 + (1)
= 1000000 + 2000 + 1
=1002001

(iv) (209)2 = (200 + 9)2
= (200)2 + 2 x 200 x 9 x (9)2
= 40000 + 3600 +81
= 43681

(v) (605)2 = (600 + 5)2
= (600)2 + 2 x 600 x 5 +(5)2
= 360000 + 6000       25
=366025

Question 6.
Find the squares of the following numbers using the identity (a – b)2 = a2 – 2ab + b2 :
(i) 395
(ii) 995
(iii) 495
(iv) 498
(v) 99
(vi) 999
(vii) 599
Solution:
a – b)2 = a2 – lab + b2

(i) (395)2 = (400 – 5)2
= (400)2 – 2 x 400 x 5 + (5)2
= 160000-4000 + 25
= 160025-4000
= 156025

(ii) (995)2 = (1000 – 5)2
= (1000)2 – 2 x 1000 x 5 + (5)2
= 1000000- 10000 + 25
= 1000025- 10000
= 990025

(iii) (495)2 = (500 – 5)2
= (500)2 – 2 x 500 x 5 + (5)2
= 250000 – 5000 + 25
= 250025 – 5000
= 245025

(iv) (498)2 = (500 – 2)2
= (500)2 – 2 x 500 x 2 + (2)2
= 250000 – 2000 + 4
= 250004 – 2000
= 248004

(v) (99)2 = (100 – l)2
= (100)2 – 2 x 100 x 1 + (1)2
= 10000 – 200 + 1
= 10001 – 200
= 9801

(vi) (999)2 = (1000- l)2
= (1000)2 – 2 x 1000 x 1+ (1)2
= 1000000-2000+1
= 10000001-2000=998001

(vii) (599)2 = (600 – 1)2
= (600)-2 x 600 X 1+ (1)2
= 360000 -1200+1
= 360001 – 1200 = 358801

Question 7.
Find the squares of the following numbers by visual method :
(i) 52
(ii) 95
(iii) 505
(iv) 702
(v) 99
Solution:
(a + b)2 = a2 – ab + ab + b2
(i) (52)2 = (50 + 2)2
= 2500 + 100 + 100 + 4
= 2704
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 6
(ii) (95)2 = (90 + 5)2
= 8100 + 450 + 450 + 25
= 9025
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 7
(iii) (505)2 = (500 + 5)2
= 250000 + 2500 + 2500 + 25
= 255025
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 8
(iv) (702)2 = (700 + 2)2
= 490000 + 1400+ 1400 + 4
= 492804
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 9
(v) (99)2 = (90 + 9)2
= 8100 + 810 + 810 + 81
= 9801
RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 10

Hope given RD Sharma Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.