RS Aggarwal Class 8 Solutions Chapter 19 Three-Dimensional Figures Ex 19A

RS Aggarwal Class 8 Solutions Chapter 19 Three-Dimensional Figures Ex 19A

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 19 Three-Dimensional Figures Ex 19A.

Other Exercises

Question 1.
Solution:
(i) Cuboid : It has 6 faces.
(ii) Cube : It has 6 faces.
(iii) Triangular prism : It has 5 faces.
(iv) Square Pyramid : It has 5 faces.
(v) Tetrahedron : It has 4 faces. Ans.

Question 2.
Solution:
(i) Tetrahedron : It has 6 edges.
(ii) Rectangular pyramid : It has 8 edges
(iii) Cube : It is 12 edges.
(iv) Triangular prism : It has 9 edges Ans.

Question 3.
Solution:
(i) Cuboid : It has 8 vertices
(ii) Square pyramid : It has 5 vertices.
(iii) Tetrahedron : It is 4 vertices.
(iv) Triangular prism : It has 6 vertices

Question 4.
Solution:
(i) A cube has 8 vertices 12 edges and 6 faces.
(ii) The point at which three faces of a figure meet is known as vertex.
(iii) A cuboid is also known as a rectangular prism.
(iv) A triangular pyramid is called a tetrahedron.

 

Hope given RS Aggarwal Solutions Class 8 Chapter 19 Three-Dimensional Figures Ex 19A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2

RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2

Other Exercises

Question 1.
Find the volume of a right circular cone with:
(i) radius 6 cm, height 7 cm
(ii) radius 3.5 cm, height 12 cm
(iii) height 21 cm and slant height 28 cm. [NCERT]
Solution:
(i) Radius of a cone (r) = 6 cm
and height (h) = 7 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q1.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q1.2

Question 2.
Find the capacity in litres of a conical vessel with:
(i) radius 7 cm, slant height 25 cm,
(ii) height 12 cm, slant height 13 cm. [NCERT]
Solution:
(i) Radius of the conical vessel (r) = 7 cm
Slant height (h) = 25 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q2.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q2.2

Question 3.
Two cones have their heights in the ratio 1 : 3 and the radii of their bases in the ratio 3:1. Find the ratio of their volumes.
Solution:
Ratio in the heights of two cones =1:3
and ratio in their radii = 3: 1
Let radius of first cone (r1) = x
and of second cone (r2) = 3x
and height of first cone (h1) = 3y
and of second cone (h2)
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q3.1

Question 4.
The radius and the height of a right circular cone are in the ratio 5 : 12. If its volume is 314 cubic metre, find the slant height and the radius (Use π = 3.14).
Solution:
Ratio in the radius and height of a cone = 5 : 12
Volume = 314 cm3
Let radius (r) = 5x
and height (h) = 12x
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q4.1

Question 5.
The radius and height of a right circular cone are in the ratio 5 : 12 and its volume is 2512 cubic cm. Find the slant height and radius of the cone. (Use π = 3.14).
Solution:
Ratio in the radius and height of a right circular cone = 5 : 12
Volume = 2512 cm3
Let radius (r) = 5x
Then height (h) = 12x
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q5.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q5.2

Question 6.
The ratio of volumes of two cones is 4 : 5 and the ratio of the radii of their bases is 2:3. Find the ratio of their vertical heights.
Solution:
Ratio in volumes of two cones = 4:5
and ratio in radii = 2:3
Let radius of the first cone (r1) = 2x
Then radius of second cone (r2) = 3x
Let h1, h2 be their heights respectively
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q6.1

Question 7.
Ratio between their vertical heights = 9:5 7. A cylinder and a cone have equal radii of their bases and equal heights. Show that their volumes are in the ratio 3:1.
Solution:
Let r be the radius and h be the height of a cylinder and a cone, then
Volume of cylinder = πr2h
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q7.1

Question 8.
If the radius of the base of a cone is halved, keeping the height same, what is the ratio of the volume of the reduced cone to that of the original cone?
Solution:
Let r be the radius and h be the height of the cone, then
Volume = \(\frac { 1 }{ 3 }\) πr2h
By halving the radius and same height the
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q8.1

Question 9.
A heap of wheat is in the form of a cone of diameter 9 m and height 3.5 m. Find its volume. How much canvas cloth is required to just cover the heap? (Use π = 3.14). [NCERT]
Solution:
Diameter of conical heap of wheat = 9 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q9.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q9.2

Question 10.
Find the weight of a solid cone whose base is of diameter 14 cm and vertical height 51 cm, supposing the material of which it is made weighs 10 grams per cubic cm.
Solution:
Diameter of the base of solid cone = 14 cm
and vertical height (h) = 51 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q10.1

Question 11.
A right angled triangle of which the sides containing the right angle are 6.3 cm and 10 cm in length, is made to turn round on the longer side. Find the volume of the solid, thus generated. Also, find its curved surface area.
Solution:
Length of sides of a right angled triangle are 6.3 cm and 10 cm
By turning around the longer side, a cone is formed in which radius (r) = 6.3 cm
and height (h) = 10 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q11.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q11.2

Question 12.
Find the volume of the largest right circular cone that can be fitted in a cube whose edge is 14 cm.
Solution:
Side of cube = 14 cm ,
Radius of the largest cone that can be fitted
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q12.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q12.2

Question 13.
The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find:
(i) height of the cone
(ii) slant height of the cone
(iii) curved surface area of the cone. [NCERT]
Solution:
Volume of a right circular cone = 9856 cm3
Diameter of the base = 28 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q13.1

Question 14.
A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres? [NCERT]
Solution:
Diameter of the top of the conical pit = 3.5 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q14.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q14.2

Question 15.
Monica has a piece of Canvas whose area is 551 m2. She uses it to have a conical tent made, with a base radius of 7 m. Assuming that all the stitching margins and wastage incurred while cutting, amounts to approximately 1 m2. Find the volume of the tent that can be made with it. [NCERT]
Solution:
Area of Canvas = 551 m2
Area of wastage = 1 m2
Actual area = 551 – 1 = 550 m2
Base radius of the conical tent = 7 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q15.1
Let l be the slant height and h be the vertical
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 Q15.2

Hope given RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C

RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 18 Area of a Trapezium and a Polygon Ex 18C.

Other Exercises

Tick the correct answer in each of the following :

Question 1.
Solution:
Parallel sides 14 cm and 18 cm
Distance between parallel sides (h) = 9cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C 1.1

Question 2.
Solution:
Length of parallel sides are 19 cm and 13 cm
Area of trapezium = 128 cm²
Distance between then
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C 2.1

Question 3.
Solution:
Ratio in parallel sides = 3:4
Perpendicular distance (h) = 12 cm
Area of trapezium = 630 cm²
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C 3.1

Question 4.
Solution:
Area of trapezium = 180 cm²
and height (h) = 9 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C 4.1

Question 5.
Solution:
In the figure, AB || DC, DA ⊥ AB
DC = 7 cm, BC = 10 cm, AB = 13 cm
CL ⊥ AB
AD = DC = 7 cm
and LB – 13 – 7 = 6 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C 5.1
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18C 5.2

Hope given RS Aggarwal Solutions Class 8 Chapter 18 Area of a Trapezium and a Polygon Ex 18C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1

RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1

Other Exercises

Question 1.
What do you understand by the word ‘statistics’ in (i) singular form, (ii) plural forms.
Solution:
The word ‘statistics’ is used in both its singular as well as its plural senses.
In singular sense, statistics piay be defined as the science of collection, presentation, analysis and interpretation of numerical data.
In plural sense, statistics means numerical facts or observations collected with definite purpose.
For example, income and expenditure of persons in a particular locality, number of males and females in a particular town are statistics.

Question 2.
Describe some fundamental characteristics of statistics.
Solution:
Statistics in plural sense have the following characteristics:
(i) A single observation does not form statistics. Statistics are a sum total of observations.
(ii) Statistics are expressed quantitatively and not qualitatively.
(iii) Statistics are collected with a definite purpose.
(iv) Statistics in an experiment are comparable and can be classified into various groups.

Question 3.
What are (i) primary data? (ii) secondary data? Which of the two – the primary or the secondary data – is more reliable and why?
Solution:
(i) Primary data : When an investigator collects the data himself with a definite plan Or design in his mind, it is called primary data.
(ii) Secondary data : Data which are not originally collected rather obtained from the published or unpublished, sources are called secondary data.
Primary data are reliable and relevent because they are original in character and are collected by some individuals or by some institutions or by research bodies.

Question 4.
Why do we group data?
Solution:
When the number of observations is large, then arranging data in ascending or descending order is tedius job and it does not tell us much except minimum or maximum(s) of data. So, to make it easily understandable and clear, we tabulate data in the form of a table.

Question 5.
Explain the meaning of the following terms:
(i) variate
(ii) class intervals
(iii) class size
(iv) class mark
(v) frequency
(vi) class limits
(vii) true class limits.
Solution:
(i) Variate : The observations of a data are called variate.
(ii) Class intervals : When the presentations of data in classes, or groups, then groups are called classes or class intervals.
(iii) Class size : The difference between upper limit and lower limit is called class size.
(iv) Class mark : The mean of lower limit and upper limit is called class mark or mid value. Therefore class mark
= \(\frac { lower limit + upper limit }{ 2 }\)
(v) Frequency : The number of times an observation occurs in the given data, is called frequency of that observation.
(vi) Class limits : Every class has two limits : lower limit and upper limit.
(vii) True class limits : Whenever inclusive method is used, it is necessary tp make an adjustment to determine the correct class intervals, and to have continuity. If a-b is a class in inclusive method, then in order to change it into exclusive method, it becomes
a – \(\frac { h }{ 2 }\) – b + \(\frac { h }{ 2 }\) where h = \(\frac { 1 }{ 2 }\) [lower limit of a class – upper limit of previous class]

Question 6.
The ages of ten students of a group are given below. The ages have been recorded in years and months.
8-6, 9-0, 8-4, 9-3, 7-8, 8-11, 8-7, 9-2, 7¬10, 8-8
(i) What is the lowest age?
(ii) What is the highest age?
(iii) Determine the range?
Solution:
From the given data
(i) Lowest age is 7 years 8 months
(ii) The highest age is 9 years, 3 months
(iii) Range = Highest term – Lowest term
= 9 years 3 months – 7 years 8 months
= 1 years 7 months

Question 7.
The monthly pocket money of six friends is given below:
₹45, ₹30, ₹40, ₹50, ₹25, ₹45
(i) What is the highest pocket money?
(ii) What is the lowest pocket money?
(iii) What is the range?
(iv) Arrange the amounts of pocket money in ascending order.
Solution:
From the given data
(i) Highest pocket money = ₹50
(ii) Lowest pocket money = ₹25
(iii) Range = Highest term – Lowest term = ₹50-₹25 = ₹25
(iv) In ascending order : ₹25, ₹30, ₹40, ₹45, ₹45, ₹50

Question 8.
Write the class-size in each of the following:
(i) 0-4,5-9,10-14
(ii) 10-19, 20-29, 30-39
(iii) 100-120, 120-140, 160-180
(iv) 0-0.25, 0.25-0.50, 0.50-0.75
(v) 5-5,01, 5.01-5.02, 5.02-5.03
Solution:
(i) In 0-4, 5-9, 10-14
0-4 means from 0 to 4, similarly 5-9 means 5 to 9 and 10-14 means 10 to 14
class-size is 5
(ii) In 10-19, 20-29, 30-39
Here 10-19, means 10 to 19, 20-29 means 20 to 29 and 30-39 means 30 to 39
Class-size = 10
(iii) 100-120, 120-140, 160-180
Here 100-120, 120-140, 160-180
Then 120 – 100 = 20, 140 – 120 = 20, 180 – 160 = 20 is class-size = 20
(iv) 0-0.25, 0.25-0.50, 0.50-0.75
Here 0.25 – 0 = 0.25, 0.50 – 0.25 = 0.25 and 0.75 – 0.50 = 0.25
∴ Class-size = 0.25
(v) 5-5.01, 5.01-5.02, 5.02-5.03
Here 5.01 – 5 = 0.01, 5.02 – 5.01 = 0.01 and 5.03 – 5.02 = 0.01
∴ Class-size = 0.01

Question 9.
The final marks in mathematics of 30 students are as follows:
53, 61, 48, 60, 78, 68, 55, 100, 67, 90
75, 88, 77, 37, 84, 58, 60, 48, 62, 56
44, 58, 52, 64, 98, 59, 70, 39, 50, 60
(i) Arrange these marks in the ascending order,30 to 39 one group, 40 to 49 second group, etc.
Now answer the following:
(ii) What is the highest score?
(iii) What is the lowest score?
(iv) What is the range?
(v) If 40 is the pass mark how many have failed?
(vi) How many have scored 75 or more?
(vii) Which observations between 50 and 60 have not actually appeared?
(viii)How many have scored less than 50?
Solution:
(i) Arranging in ascending order:
37, 39, 44, 48, 48, 50, 52, 53, 55, 56, 58, 58, 59, 60, 60, 60, 61, 62, 64, 67, 68, 70, 75, 77, 78, 84, 88, 90, 98, 100
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 9.1
(ii) Highest score =100
(iii) Lowest score = 37
(iv) Range =  Highest score – Lowest score = 100 – 37 = 63
(v) If 40 is marks, then the number of students who failed = 2
(vi) No. of students who scored 75 or more = 8
(vii) Between 50 and 60, the scores which are missing 51, 54, 57
(viii) Number of students who scored less then 50 = 2 + 3 = 5

Question 10.
The weights of new born babies (in kg) in a hospital on a particular day are as follows:
2.3, 2.2, 2.1, 2.7, 2.6, 3.0, 2.5, 2.9, 2.8, 3.1, 2.5, 2.8, 2.7, 2.9, 2.4
(i) Rearrange the weights in descending order.
(ii) Determine the highest weight.
(iii) Determine the lowest weight.
(iv) Determine the range.
(v) How many babies were bom on that day?
(vi) How many babies weigh below 2.5 kg?
(vii) How many babies weigh more than 2.8 kg?
(viii)How many babies weigh 2.8 kg?
Solution:
(i) Weights in descending order are
3.1, 3.0, 2.9, 2.9, 2.8, 2.8, 2.7, 2.7, 2.6, 2.5, 2.5, 2.4, 2.3, 2.2, 2.1
(ii) Highest weight = 3.1
(iii) Lowest weight = 2.1
(iv) Range = Highest weight – Lowest wight = 3.1 – 2.1 = 1.0
(v) No. of babies who bom = 15
(vi) No. of babies whose weights are below 2.5 kg = 4
(vii) No. of babies whose weight are more than 2.8 kg = 4.
(viii) No. of babies whose weight is 2.8 kg = 2

Question 11.
The number of runs scored by a cricket player in 25 innings are as follows:
26, 35, 94, 48, 82, 105, 53, 0, 39, 42, 71, 0, 64, 15, 34, 67, 0, 42, 124, 84, 54, 48, 139, 64, 47.
(i) Rearrange these runs in ascending order.
(ii) Determine the player, is highest score.
(ii) How many times did the player not score a run?
(iv) How many centuries did he score?
(v) How many times did he score more than 50 runs?
Solution:
(i) Arranging in ascending order
0, 0, 0, 15, 26, 34, 35, 39, 42, 42, 47, 48, 48, 53, 54, 64, 64, 67, 71, 82, 84, 94, 105, 124, 139
(ii) Highest score is 139
(iii) 3 times when his score is 0
(iv) No. of times, he made century = 3
(v) No. of times his score more then 50 runs = 12

Question 12.
The class size of a distribution is 25 and the first class-interval is 200-224. There are seven class-intervals.
(i) Write the class-intervals.
(ii) Write the class-marks of each interval
Solution:
Class size = 25
First class is 200-224
∴ Number of class = 7
∴ Class interval will be
(i) 200-224, 225-249, 250-274, 275-299, 300-324, 325-349, 350-374
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 12.1
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 12.2

Question 13.
Write the class size and class limits in each of the following:
(i) 104, 114, 124, 134, 144, 154 and 164
(ii) 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97 and 102
(iii) 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5
Solution:
(i) 104, 114, 124, 134, 144, 154 and 164
Here class size = 114 – 104 = 10
Here in first class, 104 – \(\frac { 10 }{ 2 }\)
= 104 – 5 = 99 and 104 + 5 = 109
∴ Class will be 99-109
In this way other classes will be 109-119, 119-129, 129-139, 139-149, 149-159, 159¬169
(ii) In 47, 52, 57, 62, 67, 72, 77, 82, 87, 92, 97, 102
Here class size = 52 – 47 = 5
∴ In first class, 47 – \(\frac { 5 }{ 2 }\) and 47 + \(\frac { 5 }{ 2 }\)
= 44.5-49.5
In this way other classes will be = 49.5-54.5, 54.5-59.5, 59.5-64.5, 64.5-69.5,69.5-74.5, 74.5-79.5, 79.5-84.5, 84.5-89.5, 89.5-94.5,94.5-99.5, 99.5-104.5 070 12.5, 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 47.5
Here class interval (size) = 17.5 – 12.5 = 5
In the class = 12.5 – \(\frac { 5 }{ 2 }\) , 12.5 + \(\frac { 5 }{ 2 }\)
⇒ 12.5 – 2.5, 12.5 + 2.5
⇒ 10, 15
∴ First class will be 10-15
In this way other classes 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50

Question 14.
Following data gives the number of children in 41 families:
1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3, 4, 2, 0, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2, 4, 3, 2, 1, 0, 5, 1, 2, 4, 3, 4, 1, 6, 2, 2.
Represent it in the form of a frequency distribution.
Solution:
Frequency distribution table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 14.1

Question 15.
The marks scored by 40 students of class IX in mathematics are given below:
81, 55, 68, 79, 85, 43, 29, 68, 54, 73, 47, 35, 72, 64, 95, 44, 50, 77, 64, 35, 79, 52, 45, 54, 70, 83, 62, 64, 72, 92, 84, 76, 63, 43, 54, 38, 73, 68, 52, 54.
Prepare a frequency distribution with class size of 10 marks.
Solution:
Maximum marks = 95,
minimum marks = 29,
range = 95 – 29 = 66
Frequency distribution is given below
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 15.1

Question 16.
The heights (in cm) of 30 students of class IX are given below:155, 158, 154, 158, 160, 148, 149, 150, 153, 159, 161, 148, 157, 153, 157, 162, 159, 151, 154, 156, 152, 156, 160, 152, 147, 155, 163, 155, 157, 153.
Prepare a frequency distribution table with 160-164 as one of the class intervals.
Solution:
Maximum height = 163 cm,
minimum height = 147 cm,
range 163 – 147 = 16
Frequency distribution of the given data is given below
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 16.1

Question 17.
The monthly wages of 30 workers in a factory are given below:
830, 835, 890, 810, 835, 836, 869, 845, 898, 890, 820, 860, 832, 833, 855, 845, 804, 808, 812, 840, 885, 835, 836, 878,840, 868, 890, 806, 840, 890.
Represent the data in the form of a frequency distribution with class size 10.
Solution:
Highest wage = ₹890,
lower wage = ₹804,
range = 890 – 804 = 86
Frequency distribution table is given below
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 17.1

Question 18.
The daily maximum temperatures (in degree Celsius) recorded in a certain city during the month of November are as follows:
25.8, 24.5, 25.6, 20.7, 21.8, 20.5, 20.6, 20.9, 22.3, 22.7, 23.1, 22.8, 22.9, 21.7, 21.3, 20.5, 20.9, 23.1, 22.4, 21.5, 22.7, 22.8, 22.0, 23.9, 24.7, 22.8, 23.8, 24.6, 23.9, 21.1
Represent them as a frequency distribution table with class size 1°C.
Solution:
Maximum temperature = 25.8
Minimum temperature = 20.5
Range = 25.8 – 20.5 = 5.3
Frequency distribution table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 18.1

Question 19.
Construct a frequency table with equal class intervals from the following data on the monthly wages (in rupees) of 28 labourers working in a factory, taking* one of the class intervals as 210-230 (230 not included):
220, 268, 258, 242, 210, 268, 272, 242, 311, 290, 300, 320, 319, 304, 302, 318, 306, 292, 254, 278, 210, 240, 280, 316, 306, 215, 256, 236.
Solution:
Maximum wages = ₹320
Minimum wages = ₹210
Range = 320 – 210 = 110
Required frequency table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 19.1

Question 20.
The blood groups of 30 students of class VIII are recorded as follows:
A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O
Represent this data in the form of a frequency distribution table. Find out which is the most common and which is the rarest blood group among these students. (NCERT)
Solution:
Frequency distribution table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 20.1

Question 21.
Three coins were tossed 30 times. Each time the number of heads occuring was noted down as follow:
0 1 2 2 1 2 3 1 3 0
1 3 1 1 2 2 0 1 2 1
3 0 0 1 1 2 3 2 2 0
Prepare a frequency distribution table for the data given above. (NCERT)
Solution:
Frequency distribution table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 21.1

Question 22.
Thirty children were asked about the number of hours they watched T.V. programmes in the previous week. The results were found as follows:
1 6 2 35 12 5 8 4 8
10 3 4 12 2 8 15 1 17 6
3 2 8 5 9 6 8 7 14 12
(i) Make a grouped frequency distribution table for this data, taking class width 5 and one of the class intervals as 5-10.
(ii) How many children watched television for 15 or more hours a week? (NCERT)
Solution:
Highest number of hours = 17
Lowest number of hours = 1
(i) The frequency table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 22.1
(ii) No. of children watching T.V. for 15 or more hours a week = 2

Question 23.
The daily minimum temperatures in degrees Celsius recorded in a certain Arctic region are as follows:
-12.5, -10.8, -18.6, -8.4, -10.8, -4.2, -4.8, -6.7, -13.2, -11.8, -2.3, 1.2, 2.6, 0, 2.4, 0, 3.2, 2.7, 3.4, 0, -2.4, -2.4, 0, 3.2, 2.7, 3.4, 0, -2.4, -5.8, -8.9, -14.6, -12.3, -11.5,-7.8,-2.9.
Represent them as frequency distribution table taking -19.9 to -15 as the first class interval.
Solution:
Maximum temperature = -18.6
Minimum temperature = 3.4
Range = 3.4 – (-18.6) = 3.4 + 18.6 = 22
The required frequency distribution table is given below:
RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 23.1
Hope given RD Sharma Class 9 Solutions Chapter 22 Tabular Representation of Statistical Data Ex 22.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B

RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 18 Area of a Trapezium and a Polygon Ex 18B.

Other Exercises

Question 1.
Solution:
In quad. ABCD
AC = 24 cm, BL ⊥ AC and DM ⊥ AC
BL = 8 cm and DM = 7 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 1.1

Question 2.
Solution:
In quad. ABCD, diagonal BD = 36 m
AL ⊥ BD and CM ⊥ BD
AL = 19 m and CM = 11 m
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 2.1

Question 3.
Solution:
In the given pentagon ABCDE,
BL ⊥ AC, DM ⊥ AC, EN ⊥ AC
AC = 18 cm, AM = 14 cm, AN = 6 cm,
BL = 4 cm, DM = 12 cm and EN = 9 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 3.1
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 3.2
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 3.3

Question 4.
Solution:
In hexagon ABCDEF, there are triangles and trapeziums
AP = 6 cm, PL = 2 cm, LN = 8 cm,
NM = 2 cm, MD = 3 cm, FP = 8 cm,
EN = 12 cm, BL = 8 cm and CM = 6 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 4.1
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 4.2
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 4.3
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 4.4

Question 5.
Solution:
In the given pentagon ABCDE,
BL ⊥ AC, CM ⊥ AD, EN ⊥ AD
AC = 10 cm, D = 12 cm, BL = 3 cm,
CM = 7 cm and EN = 5 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 5.1
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 5.2

Question 6.
Solution:
In the figure, ABCF is 0 square and CDEF is a trapezium
Now area of sq. ABCF
= (side)² = (20)² = 400 cm²
area of trap. CDEF
= \(\\ \frac { 1 }{ 2 } \) (ED + FC ) x height
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 6.1

Question 7.
Solution:
In the right ∆ABC
AB² = BC² + AC²
=> (5)² = (4)² + AC²
25 = 16 + AC²
AC² = 25 – 16 = 9 = (3)²
AC = 3 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 7.1
= 32 + 36
= 68 cm²

Question 8.
Solution:
AD = 23 cm, LM = 13 cm
AL = MD = \(\\ \frac { 23-13 }{ 2 } \) = \(\\ \frac { 10 }{ 2 } \) = 5 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18B 8.1

Hope given RS Aggarwal Solutions Class 8 Chapter 18 Area of a Trapezium and a Polygon Ex 18B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1

RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1

Other Exercises

Question 1.
Find the curved surface area of a cone, if its slant height is 60 cm and the radius of its base is 21 cm.
Solution:
Radius of the base of the cone = 21 cm
and slant height (l) = 60 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 1.1

Question 2.
The radius of a cone is 5 cm and vertical height is 12 cm. Find the area of the curved surface.
Solution:
Radius of the base of a cone = 5 cm
Vertical height (h) = 12 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 2.1

Question 3.
The radius of a cone is 7 cm and area of curved surface is 176 cm2. Find the slant height.
Solution:
Curved surface area of a cone = 176 cm2
and radius (r) = 1 cm2
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 3.1

Question 4.
The height of a cone is 21 cm. Find the area of the base if the slant height is 28 cm.
Solution:
Height of the cone (h) = 21 cm
Slant height (l) = 28 cm
∴ l2 = r2 + h2
⇒ r2 = l2– h2 = (28)2 – (21 )2
⇒ 784 – 441 = 343 …(i)
Now area of base = πr2
= \(\frac { 22 }{ 7 }\) x 343 [From (i)]
= 22 x 49 = 1078 cm2

Question 5.
Find the total surface area of a right circular cone with radius 6 cm and height 8 cm.
Solution:
Radius of base of cone (r) = 6 cm
and height (h) = 8 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 5.1

Question 6.
Find the curved surface area of a cone with base radius 5.25 cm and slant height 10 cm. [NCERT]
Solution:
Radius of base of a cone (r) = 5.25 cm
and slant height (l) = 10 cm
Curved surface area = πrl
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 6.1

Question 7.
Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m. [NCERT]
Solution:
Slant height of a cone (l) = 21 m
and diameter of its base = 24 m
∴ Radius (r) = \(\frac { 24 }{ 2 }\) = 12 m
Now total surface area = πr(l + r)
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 7.1

Question 8.
The area of the curved surface of a cone is 60π cm2. If the slant height of the cone be 8 cm, find the radius of the base.
Solution:
Curved surface area of a cone = 6071 cm2
Slant height (l) = 8 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 8.1

Question 9.
The curved surface area of a cone is 4070 cm2 and its diameter is 70 cm. What is the slant height ? (Use π = 22/7).
Solution:
Surface area of a cone = 4070 cm2
Diameter of its base = 70 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 9.1

Question 10.
The radius and slant height of a cone are in the ratio of 4 : 7. If its curved surface area is 792 cm2, find its radius. (Use π = 22/7)
Solution:
Curved surface area of a cone = 792 cm2
Ratio in radius and slant height = 4:7
Let radius = 4x
Then slant height = 7x
∴ Curved surface area πrl = 792
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 10.1

Question 11.
A Joker’s cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps. [NCERT]
Solution:
Radius of the base of a conical cap (r) = 7 cm
and height (h) = 24 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 11.1

Question 12.
Find the ratio of the curved surface areas of two cones if their diameters of the bases are equal and slant heights are in the ratio 4 : 3.
Solution:
Let diameters of each cone = d
Then radius (r) = \(\frac { d }{ 2 }\)
Ratio in their slant heights = 4 : 3
Let slant height of first cone = 4x
and height of second cone = 3x
Now curved surface area of the first cone = 2πrh
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 12.1

Question 13.
There are two cones. The curved surface area of one is twice that of the other. The slant height of the later is twice that of the former. Find the ratio of their radii.
Solution:
In two cones, curved surface of the first cone = 2 x curved surface of the second cone
Slant height of the second cone = 2 x slant height of first cone
Let r1 and r2 be the radii of the two cones
and let height of the first cone = h
Then height of second cone = 2h
∴ Curved surface of the first cone = 2πr1h
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 13.1

Question 14.
The diameters of two cones are equal. If their slant heights are in the ratio 5 : 4, find the ratio of their curved surfaces.
Solution:
Let diameter of one cone = d
and diameter of second cone = d
∴ Radius of the first cone (r) = \(\frac { d }{ 2 }\)
and of second cone (r2) = \(\frac { d }{ 2 }\)
Ratio in their slant heights = 5:4
Let slant height of the first cone = 5x
Then that of second cone = 4x
Now curved surface of the first cone = 2πrh
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 14.1

Question 15.
Curved surface area of a cone is 308 cm2 and its slant height is 14 cm. Find the radius of the base and total surface area of the cone. [NCERT]
Solution:
Area of curved surface of a cone = 308 cm2
and slant height (l) = 14 cm
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 15.1

Question 16.
The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of Rs. 210 per 100 m2. [NCERT]
Solution:
Slant height of a cone (l) = 25 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 16.1

Question 17.
A conical tent is 10 m high and the radius of its base is 24 m. Find the slant height of the tent. If the cost of 1 m2 canvas is Rs. 70, find the cost of the canvas required to make the tent. [NCERT]
Solution:
Height of conical tent (A) = 10 m
Radius of the base (r) = 24 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 17.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 17.2

Question 18.
The circumference of the base of a 10 m height conical tent is 44 metres. Calculate the length of canvas used in making the tent if width of canvas is 2 m. (Use π = 22/7)
Solution:
Circumference of the base of a conical tent = 44 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 18.1

Question 19.
What length of tarpaulin 3 m wide will be required to make a conical tent of height 8 m and base radius 6 m? Assum that the extra length of material will be required for stitching margins and wastage in cutting is approximately 20 cm. (Use π = 3.14) [NCERT]
Solution:
Height of the conical tent (h) = 8 m
and radius of the base (r) = 6 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 19.1
Now curved surface area of the tent = πrl = 3.14 x 6 x 10 = 188.4 m
Width of tarpaulin used = 3 m
∴ Length = 188.4 , 3 = 62.8 m
Extra length required = 20 cm = 0.2 m
∴ Total length of tarpaulin = 62.8 + 0.2 = 63 m

Question 20.
A bus stop is barricated from the remaining part of the road, by using 50 hollow cones made of recycled card-board. Each cone has a base diameter of 40 cm and height 1 m. If the outer side of each of the cones is to be painted and the cost of painting is ₹12 per m2, what will be the cost of painting these cones. (Use π = 3.14 and \(\sqrt { 1.04 } \) = 1.02) [NCERT]
Solution:
Diameter of the base of tent = 40 cm
∴ Radius of the base of cone (r) = \(\frac { 40 }{ 2 }\)
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 20.1

Question 21.
A cylinder and a cone have equal radii of their bases and equal heights. If their curved surface areas are in the ratio 8 : 5, show that the radius of each is to the height of each as 3 : 4.
Solution:
Let radius of cylinder = r
and radius of cone = r
and let height of cylinder = h
and height of cone = h
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 21.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 21.2

Question 22.
A tent is in the form of a right circular cylinder surmounted by a cone. The diameter of cylinder is 24 m. The height of the cylindrical portion is 11 m while the vertex of the cone is 16 m above the ground. Find the area of the canvas required for the tent.
Solution:
Diameter of the cylindrical portion = 24 m 24
∴ Radius (r) = \(\frac { 24 }{ 2 }\) = 12 m
Height of cylindrical portion = 11 m
and total height = 16 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 22.1
∴ Height of conical portion = 16 – 11 = 5 m
∴ Slant height of the conical portion (l)
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 22.2

Question 23.
A circus tent is cylindrical to a height of 3 meters and conical above it. If its diameter is 105 m and the slant height of the conical portion is 53 m, calculate the length of the canvas 5 m wide to make the required tent.
Solution:
Diameter of the cylindrical tent = 105 m
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 23.1
RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 23.2

 

Hope given RD Sharma Class 9 Solutions Chapter 20 Surface Areas and Volume of A Right Circular Cone Ex 20.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A

RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 23 Pie Charts Ex 23A.

Other Exercises

Question 1.
Solution:
Total expenditure = Rs. 4000 + 5400 + 2800 + 1800 + 400 = Rs. 14400
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 1.1
Construction of pie chart :
1. Draw a circle of any convenient radius.
2. Draw a horizontal radius.
3. Staring from this radius, draw sectors of central angle 100°, 135°, 70°, 45° and 10° respectively.
4. Shade these sectors with different colors or designs as shown in the figure.
This is the required pie chart.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 1.2

Question 2.
Solution:
Total number of creatures 900
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 2.1
(i) Draw a circle with a suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting from this radius, draw sectors whose central angles are 60°, 160°, 70°, 50° and 20° respectively.
(iv) Now shade each sector with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 2.2

Question 3.
Solution:
Total number of students = 350 + 245 + 210 + 175 + 280 = 1260
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 3.1
(i) Draw a circle with a suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting from this radius draw sectors whose central angles are 100°, 70°, 60°, 50° and 80° respectively.
(iv) Now shade each sector with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 3.2

Question 4.
Solution:
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 4.1
(i) Draw a circle with a suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting from this radius, draw sectors whose actual angles are 105°, 60°, 30°, 120° and 45° respectively.
(iv) Now shade each sector with different colours or design as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 4.2

Question 5.
Solution:
Here total number of workers = 1080
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 5.1
Now (i) Draw a circle with a suitable radius
(ii) Draw a horizontal radius
(iii) Starting from this radius, draw sectors whose central angle are 150°, 90°, 85°, 35° respectively.
(iv) Now shade the sectors with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 5.2

Question 6.
Solution:
Total marks obtained by Sudhir
= 105 + 75 + 150 + 120 + 90 = 540
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 6.1
(i) Draw a circle with a suitable radius
(ii) Draw a horizontal radius
(iii) Starting from this radius, draw sectors whose central angles are 70°, 50°, 100°, 80° and 60° respectively
(iv) Now shade these sectors with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 6.2

Question 7.
Solution:
Total number of fruits = 26 + 30 + 21 + 5 + 8 = 90
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 7.1
(i) Draw a circle with a suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting from this radius, draw sectors of central angles 104°, 120°, 84°, 20° and 32° respectively.
(iv) Shade these sectors with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 7.2

Question 8.
Solution:
Total number of million of tonnes of food grains = 57 + 76 + 38 + 19 = 190 million of tonnes
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 8.1
(i) Draw a circle with suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting with this radius, draw sectors of central angles 108°, 144°, 72° and 366 respectively.
(iv) Shade these sectors with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 8.2

Question 9.
Solution:
Total percentage = 25 + 45 + 20 + 10 = 100%
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 9.1
(i) Draw a circle with a suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting from this radius, draw sectors of central angles 90°, 162°, 72° and 36° respectively.
(iv) Shade these sectors with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 9.2

Question 10.
Solution:
Total percentage = 20 + 40 + 25 + 15 = 100%
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 10.1
(i) Draw a circle with a suitable radius.
(ii) Draw a horizontal radius.
(iii) Starting from this radius, draw sectors of central angles 72°, 144°, 90° and 54° respectively.
(iv) Now shade these sectors with different colours or designs as shown in the figure.
RS Aggarwal Class 8 Solutions Chapter 23 Pie Charts Ex 23A 10.2

 

Hope given RS Aggarwal Solutions Class 8 Chapter 23 Pie Charts Ex 23A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A

RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 18 Area of a Trapezium and a Polygon Ex 18A.

Other Exercises

Question 1.
Solution:
In trapezium ABCD,
Length of parallel sides
AB = 24 cm, DC = 20 cm
and distance between them = 15 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 1.1

Question 2.
Solution:
Parallel sides of a trapezium ABCD are
l1 = 38.7 cm. and l2 = 22.3 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 2.1

Question 3.
Solution:
Parallel sides of the trapezium = 1 m, 1.4 m
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 3.1

Question 4.
Solution:
Area of trapezium = 1080 cm²
Lengths of parallel sides are
l1 = 55 cm and l2 = 35 cm
Let h be the distance between them
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 4.1

Question 5.
Solution:
Area of trapezium shaped field = 1586m²
Distance between parallel sides = 26 m
Sum of the parallel sides = \(\frac { Area\times 2 }{ Altitude }\)
= \(\frac { 1586\times 2 }{ 26 } \) = 122 m
One side = 84 m
Second side = 122 – 84
= 38 m

Question 6.
Solution:
Area of trapezium = 405 cm²
Ratio in parallel sides = 4:5
and distance between them = 18 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 6.1

Question 7.
Solution:
Area of trapezium = 180 cm²
Height (h) = 9 cm.
Let l1 and l2 be the parallel sides,
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 7.1

Question 8.
Solution:
Let one of parallel sides = x
Then second sides = 2x
Area = 9450 m²
Distance between them = 84 m
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 8.1

Question 9.
Solution:
Perimeter of trapezium ABCD = 130 m
AB ⊥ AD and BC
BC = 54 m, CD = 19 m, AD = 42 m
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 9.1

Question 10.
Solution:
In the given trapezium ABCD, AC is
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 10.1

Question 11.
Solution:
In trapezium ABCD,
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 11.1
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 11.2
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 11.3

Question 12.
Solution:
In trapezium ABCD,
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 12.1
AB || DC
AB = 25 cm DC = 1 cm
AD = 13 cm and BC = 15 cm
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 12.2
RS Aggarwal Class 8 Solutions Chapter 18 Area of a Trapezium and a Polygon Ex 18A 12.3

 

Hope given RS Aggarwal Solutions Class 8 Chapter 18 Area of a Trapezium and a Polygon Ex 18A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Value Based Questions in Science for Class 9 Chapter 12 Sound

Value Based Questions in Science for Class 9 Chapter 12 Sound

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 12 Sound

VALUE BASED QUESTIONS

Question 1.
Mr. Ravi Bushan, father of Mr. Atul was hard of hearing. Doctor advised him to use hearing aid after diagnosing his ears. But he was not ready to listen to the advice of doctor because he felt that hearing aid is a machine and would cause harm to him. Mr. Atul told his father that hearing aid is not harmful, rather it would help him. Finally, Mr. Ravi decided to have the hearing aid.

  1. What values are shown by Mr. Atul ?
  2. On what principle, hearing aid works ?

Answer:

    1. Concern for his father and
    2. high degree of general awareness.
  1. Hearing aid works on the principle of multiple relfection of sound.

More Resources

Question 2.
Ajay’s uncle was advised by his doctor to have echocardiography. His uncle did not know anything regarding the echocardiography. He thought that this test is sensitive and hence he was not ready for it. When Ajay came to know about this, he decided to prepare his uncle for the test. He told his uncle that this test would help the doctor to know the condition of his heart and moreover, this test is very simple. Finally his uncle was convinced and had the echocardiography. The information obtained by the test helped his doctor to treat him well.

  1. What is echocardiography ?
  2. What values are shown by Ajay ?

Answer:

  1. Echocardiography is medical diagnostic technique to construct the image of heart using ultrasonice waves.
    1. Helpful,
    2. concern for his uncle, and
    3. high degree of general awareness.

Question 3.
Harsha was watching a programme based on ships on television. She saw a device attached to a ship through which the man on the ship located the enemy submarines and sent the message to the headquarters.

  1. Name the device fitted in the ship.
  2. On which principle does the device work ?
  3. What values are shown by Harsha ? (CBSE 2015)

Answer:

  1. SONAR
  2. SONAR works on the principle of reflection of sound waves (i.e. echo).
  3. Harsha is inquisitive. She has scientific temperament and takes interest in understanding scientific phenomena.

Question 4.
David while watching ‘National Geographic’ channel on television observed that Bats were easily flying during the night. He did not understand the concept and for this he surfed on internet, and finally found the answer that bats use ultrasound to fly and search their prey at night.

  1. What is ultrasound ? State its one application.
  2. State the principle used by bats.
  3. What value of David’s Nature is depicted from this context ? (CBSE 2015)

Answer:

  1. The sound waves having frequency greater than 20000 Hz are called ultrasound. Ultrasound is used to
    determine the depth of a sea.
  2. Bats use the principle of reflection of ultrasound (i.e. echo).
  3. David is inquisitive. He has scientific temperament and takes interest in understanding the natural phenomena.

Hope given Value Based Questions in Science for Class 9 Chapter 12 Sound are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

Value Based Questions in Science for Class 9 Chapter 10 Gravitation

Value Based Questions in Science for Class 9 Chapter 10 Gravitation

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 10 Gravitation

Question 1.
A spring balance for measuring weight of the range 0-0.5 kg wt has total 10 divisions on its scale. What is the least count of the spring balance ?
Answer:
Least count of the spring balance = Value of 1 division on its scale.
Here, 10 divisions = 0.5 kg wt
Value Based Questions in Science for Class 9 Chapter 10 Gravitation image - 1
Therefore, least count of the spring balance = 0.05 kg wt.

More Resources

Question 2.
A spring balance of the range 0-1 kg wt has total 100 divisions on its scale. What is the least count of the spring balance ?
Answer:
100 divisions = 1 kg wt
Value Based Questions in Science for Class 9 Chapter 10 Gravitation image - 2
Therefore, least count of the spring balance = 0.01 kg wt.

Question 3.
A spring balance of the range 0-2 kg wt has total 100 divisions on its scale. The pointer of the spring balance is in front of 10th division, when an object is suspended with the hook of the spring balance. What is the weight of the object ?
Answer:
100 divisions = 2 kg wt
Value Based Questions in Science for Class 9 Chapter 10 Gravitation image - 3

Hope given Value Based Questions in Science for Class 9 Chapter 10 Gravitation are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

HOTS Questions for Class 9 Science Chapter 12 Sound

HOTS Questions for Class 9 Science Chapter 12 Sound

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 12 Sound

Question 1.
Sound of explosions taking place on other planets are not heard by a person on the earth. Explain, why ?
(CBSE 2011)
Answer:
Sound needs material medium for its propagation from one place to another place. In other words, sound cannot travel through vacuum. Since there is a region in between the planets and the earth, where there is a vacuum, so the sound of explosions taking place on other planets cannot pass through this vaccum. Hence cannot reach the earth.

More Resources

Question 2.
Two astronauts on the surface of the moon cannot talk to each other. Explain, why ?
Answer:
Since there is no atmosphere on the surface of the moon (i.e. no medium for the propagation of sound), so the sound cannot travel from one astronaut to another astronaut on the surface of the moon.

Question 3.
A loud sound can be heard at a large distance but a feeble or soft sound cannot be heard at a large distance. Explain, why ?
Answer:
Sound is a form of energy which is transferred from one place to another place. As sound energy is directly proportional to the square of the amplitude of a vibrating body, so loud sound has large energy, whereas soft sound has small energy. As the sound travels through a medium, sound with small energy is absorbed after travelling a small distance in the medium but sound with large energy will be absorbed after travelling a large distance in the medium. Therefore, loud sound can be heard at a large distance but feeble sound cannot be heard at a large distance.

Question 4.
A sound wave travelling in a medium is represented as shown in figure,

  1. Which letter represents the amplitude of the sound wave ?
  2. Which letter represents the wavelength of the wave ?
  3. What is the frequency of the source of sound if the vibrating source of sound makes 360 oscillations in 2 minutes ?
    HOTS Questions for Class 9 Science Chapter 12 Sound image - 1

Answer:

  1. Letter X represents the amplitude of the sound wave.
  2. Letter Y represents the wavelength of the sound wave.
  3. Number of oscillations made in 2 minutes (120 s) = 360
    HOTS Questions for Class 9 Science Chapter 12 Sound image - 2
    Hence, frequency of the source of sound = 3 Hz

Question 5.
Represent the following sound waves,
(i) Waves having same amplitude but different frequencies
(ii) Waves having same frequency but different amplitudes
(iii) Waves having different amplitudes and different wave lengths.
(CBSE 2011, 2012)
Answer:
HOTS Questions for Class 9 Science Chapter 12 Sound image - 3

Question 6.
An echo is heard on a day when temperature is about 22° C. Will the echo be heard sooner or later if the temperature falls to 4°C ? (Similar CBSE 2014)
Distance
Answer:
HOTS Questions for Class 9 Science Chapter 12 Sound image - 4
Since, speed of sound in air decreases with the decrease in temperature, so the time after which the echo will be heard increases. Hence, the echo will be heard later than the echo heard when temperature was 22° C.

Question 7.
An echo is heard on a day when temperature is about 22° C. Will the echo be heard sooner or later if the temperature increases to 40° C ? (Similar CBSE 2014)
Answer:
HOTS Questions for Class 9 Science Chapter 12 Sound image - 5
Since, speed of sound in air increases with the increase in temperature, so the time after which the echo will be heard decreases. Hence, echo will be heard sooner than the echo heard when temperature was 22° C.

Question 8.
When we put our ear on a railway track, we can hear the sound of an approaching train even when the train is not visible but its sound cannot be heard through air. Why ? (CBSE 2015, 2016)
Answer:
Sound travels faster in solids than in gases. Therefore, we can hear the sound of an approaching train by putting our ear on a railway track even when the train is not visible.

Hope given HOTS Questions for Class 9 Science Chapter 12 Sound are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.