MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations with Answers

Permutations and Combinations Class 11 MCQ Online Test With Answers Questions

Check the below Online Education NCERT MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Permutations and Combinations Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 7 MCQ With Answers

Maths Class 11 Chapter 7 MCQs On Permutations and Combinations

MCQ Questions On Permutation And Combination Class 11 Question 1.
There are 12 points in a plane out of which 5 are collinear. The number of triangles formed by the points as vertices is
(a) 185
(b) 210
(c) 220
(d) 175

Answer

Answer: (b) 210
Hint:
Total number of triangles that can be formed with 12 points (if none of them are collinear)
= 12C3
(this is because we can select any three points and form the triangle if they are not collinear)
With collinear points, we cannot make any triangle (as they are in straight line).
Here 5 points are collinear. Therefore we need to subtract 5C3 triangles from the above count.
Hence, required number of triangles = 12C35C3 = 220 – 10 = 210


Permutation And Combination Class 11 MCQ Question 2.
The number of combination of n distinct objects taken r at a time be x is given by
(a) n/2Cr
(b) n/2Cr/2
(c) nCr/2
(d) nCr

Answer

Answer: (d) nCr
Hint:
The number of combination of n distinct objects taken r at a time be x is given by
nCr = n!/{(n – r)! × r!}
Let the number of combination of n distinct objects taken r at a time be x.
Now consider one of these n ways. There are e objects in this selection which can be arranged in r! ways.
So, each of the x combinations gives rise to r! permutations. So, x combinations will give rise to x×(r!).
Consequently, the number of permutations of n things, taken r at a time is x×(r!) and it is equal to nPr
So, x×(r!) = nPr
⇒ x×(r!) = n!/(n – r)!
⇒ x = n!/{(n – r)! × r!}
nCr = n!/{(n – r)! × r!}


MCQ On Permutation And Combination Class 11 Question 3.
Four dice are rolled. The number of possible outcomes in which at least one dice show 2 is
(a) 1296
(b) 671
(c) 625
(d) 585

Answer

Answer: (b) 671
Hint:
No. of ways in which any number appearing in one dice = 6
No. of ways in which 2 appear in one dice = 1
No. of ways in which 2 does not appear in one dice = 5
There are 4 dice.
Getting 2 in at least one dice = Getting any number in all the 4 dice – Getting not 2 in any of the 4 dice.
= (6×6×6×6) – (5×5×5×5)
= 1296 – 625
= 671


Permutation And Combination MCQ Question 4.
If repetition of the digits is allowed, then the number of even natural numbers having three digits is
(a) 250
(b) 350
(c) 450
(d) 550

Answer

Answer: (c) 450
Hint:
In a 3 digit number, 1st place can be filled in 5 different ways with (0, 2, 4, 6, 8)
10th place can be filled in 10 different ways.
100th place can be filled in 9 different ways.
So, the total number of ways = 5 × 10 × 9 = 450


MCQ On Permutation And Combination Question 5.
The number of ways in which 8 distinct toys can be distributed among 5 children is
(a) 58
(b) 85
(c) 8P5
(d) 5P5

Answer

Answer: (a) 58
Hint:
Total number of toys = 8
Total number of children = 5
Now, each toy can be distributed in 5 ways.
So, total number of ways = 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5
= 58


Permutation And Combination MCQ Class 11 Question 6.
The value of P(n, n – 1) is
(a) n
(b) 2n
(c) n!
(d) 2n!

Answer

Answer: (c) n!
Hint:
Given,
Given, P(n, n – 1)
= n!/{(n – (n – 1)}
= n!/(n – n + 1)}
= n!
So, P(n, n – 1) = n!


Class 11 Maths Chapter 7 MCQ With Answers Question 7.
In how many ways can 4 different balls be distributed among 5 different boxes when any box can have any number of balls?
(a) 54 – 1
(b) 54
(c) 45 – 1
(d) 45

Answer

Answer: (b) 54
Hint:
Here, both balls and boxes are different.
Now, 1st ball can be placed into any of the 5 boxes.
2nd ball can be placed into any of the 5 boxes.
3rd ball can be placed into any of the 5 boxes.
4th ball can be placed into any of the 5 boxes.
So, the required number of ways = 5 × 5 × 5 × 5 = 54


Permutations And Combinations MCQ Question 8.
The number of ways of painting the faces of a cube with six different colors is
(a) 1
(b) 6
(c) 6!
(d) None of these

Answer

Answer: (a) 1
Hint:
Since the number of faces is same as the number of colors,
therefore the number of ways of painting them is 1


MCQ Of Chapter 7 Maths Class 11 Question 9.
Out of 5 apples, 10 mangoes and 13 oranges, any 15 fruits are to be distributed among 2 persons. Then the total number of ways of distribution is
(a) 1800
(b) 1080
(c) 1008
(d) 8001

Answer

Answer: (c) 1008
Hint:
Given there are 5 apples, 10 mangoes and 13 oranges.
Let x1 is for apple, x2 is for mango and x3 is for orange.
Now, first we have to select total 15 fruits out of them.
x1 + x2 + x3 = 15 (where 0 ⇐ x1 ⇐ 5, 0 ⇐ x2 ⇐ 10, 0 ⇐ x3 ⇐ 13)
= (x0 + x1 + x2 +………+ x5)×(x0 + x1 + x2 +………+ x110)×(x0 + x1 + x2 +………+ x13)
= {(1- x6)/(1 – x)}×{(1- x11)/(1 – x)}×{(1- x14)/(1 – x)}
= {(1- x6)×(1- x11)×{(1- x14)}/(1 – x)³
= {(1- x6)×(1- x11)×{(1- x14)} × ∑3+r+1Cr × xr
= {(1- x11 – x6 + x17)×{(1- x14)} × ∑3+r+1Cr × xr
= {(1- x11 – x6 + x17 – x14 + x25 + x20 – x31)} × ∑2+rCr × xr
= 1 × ∑2+rCr × xr – x11 × ∑2+rCr × xr – x6 × ∑2+rCr × xr + x17 × ∑2+rCr × xr – x14 × ∑2+rCr × xr + x25 × ∑2+rCr × xr + x20 × ∑2+rCr × xr – x31 × ∑2+rCr × xr
= ∑2+rCr × xr – ∑2+rCr × xr+11 – ∑2+rCr × xr+6 + ∑2+rCr × xr+17 – ∑2+rCr × xr+14 + ∑2+rCr × xr+25 + ∑2+rCr × xr+20 – ∑2+rCr × xr+25
Now we have to find co-efficeient of x15
= 2+15C152+4C42+9C92+1C1 (rest all terms have greater than x15, so its coefficients are 0)
= 17C156C411C93C1
= 17C26C211C23C1
= {(17×16)/2} – {(6×5)/2} – {(11×10)/2} – 3
= (17×8) – (3×5) – (11×5) – 3
= 136 – 15 – 55 – 3
= 136 – 73
= 63
Again we have to distribute 15 fruits between 2 persons.
So x1 + x2 = 15
= 2-1+15C15
= 16C15
= 16C1
= 16
Now total number of ways of distribution = 16 × 63 = 1008


Permutation And Combination MCQs With Answers Question 10.
6 men and 4 women are to be seated in a row so that no two women sit together. The number of ways they can be seated is
(a) 604800
(b) 17280
(c) 120960
(d) 518400

Answer

Answer: (a) 604800
Hint:
6 men can be sit as
× M × M × M × M × M × M ×
Now, there are 7 spaces and 4 women can be sit as 7P4 = 7P3 = 7!/3! = (7 × 6 × 5 × 4 × 3!)/3!
= 7 × 6 × 5 × 4 = 840
Now, total number of arrangement = 6! × 840
= 720 × 840
= 604800


MCQ Of Permutation And Combination Class 11 Question 11.
The number of ways can the letters of the word ASSASSINATION be arranged so that all the S are together is
(a) 152100
(b) 1512
(c) 15120
(d) 151200

Answer

Answer: (d) 151200
Hint:
Given word is : ASSASSINATION
Total number of words = 13
Number of A : 3
Number of S : 4
Number of I : 2
Number of N : 2
Number of T : 1
Number of O : 1
Now all S are taken together. So it forms a single letter.
Now total number of words = 10
Now number of ways so that all S are together = 10!/(3!×2!×2!)
= (10×9×8×7×6×5×4×3!)/(3! × 2×2)
= (10×9×8×7×6×5×4)/(2×2)
= 10×9×8×7×6×5
= 151200
So total number of ways = 151200


MCQs On Permutation And Combination Question 12.
If repetition of the digits is allowed, then the number of even natural numbers having three digits is
(a) 250
(b) 350
(c) 450
(d) 550

Answer

Answer: (c) 450
Hint:
In a 3 digit number, 1st place can be filled in 5 different ways with (0, 2, 4, 6, 8)
10th place can be filled in 10 different ways.
100th place can be filled in 9 different ways.
So, the total number of ways = 5 × 10 × 9 = 450


MCQs On Permutations And Combinations Class 11 Question 13.
Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon on n sides. If Tn+1 – Tn = 21, then n equals
(a) 5
(b) 7
(c) 6
(d) 4

Answer

Answer: (b) 7
Hint:
The number of triangles that can be formed using the vertices of a regular polygon = nC3
Given, Tn+1 – Tn = 21
n+1C3nC3 = 21
nC2 + nC3nC3 = 21 {since n+1Cr = nCr-1 + nCr}
nC2 = 21
⇒ n(n – 1)/2 = 21
⇒ n(n – 1) = 21×2
⇒ n² – n = 42
⇒ n² – n – 42 = 0
⇒ (n – 7)×(n + 6) = 0
⇒ n = 7, -6
Since n can not be negative,
So, n = 7


Permutations And Combinations MCQ Class 11 Question 14.
How many ways are here to arrange the letters in the word GARDEN with the vowels in alphabetical order?
(a) 120
(b) 240
(c) 360
(d) 480

Answer

Answer: (c) 360
Hint:
Given word is GARDEN.
Total number of ways in which all letters can be arranged in alphabetical order = 6!
There are 2 vowels in the word GARDEN A and E.
So, the total number of ways in which these two vowels can be arranged = 2!
Hence, required number of ways = 6!/2! = 720/2 = 360


Permutations And Combinations Class 11 MCQ Questions Question 15.
How many factors are 25 × 36 × 52 are perfect squares
(a) 24
(b) 12
(c) 16
(d) 22

Answer

Answer: (a) 24
Hint:
Any factors of 25 × 36 × 52 which is a perfect square will be of the form 2a × 3b × 5c
where a can be 0 or 2 or 4, So there are 3 ways
b can be 0 or 2 or 4 or 6, So there are 4 ways
a can be 0 or 2, So there are 2 ways
So, the required number of factors = 3 × 4 × 2 = 24


Permutation And Combination Class 11 Extra Questions With Answers Question 16.
A student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the first five questions. The number of choices available to him is
(a) 40
(b) 196
(c) 280
(d) 346

Answer

Answer: (b) 196
Hint:
There are two cases
1. When 4 is selected from the first 5 and rest 6 from remaining 8
Total arrangement = 5C4 × 8C6
= 5C1 × 8C2
= 5 × (8×7)/(2×1)
= 5 × 4 × 7
= 140
2. When all 5 is selected from the first 5 and rest 5 from remaining 8
Total arrangement = 5C5 × 8C5
= 1 × 8C3
= (8×7×6)/(3×2×1)
= 8×7
= 56
Now, total number of choices available = 140 + 56 = 196


Permutation And Combination MCQs With Answers Pdf Question 17.
Four dice are rolled. The number of possible outcomes in which at least one dice show 2 is
(a) 1296
(b) 671
(c) 625
(d) 585

Answer

Answer: (b) 671
Hint:
No. of ways in which any number appearing in one dice = 6
No. of ways in which 2 appear in one dice = 1
No. of ways in which 2 does not appear in one dice = 5
There are 4 dice.
Getting 2 in at least one dice = Getting any number in all the 4 dice – Getting not 2 in any of the 4 dice.
= (6×6×6×6) – (5×5×5×5)
= 1296 – 625
= 671


Question 18.
In how many ways in which 8 students can be sated in a line is
(a) 40230
(b) 40320
(c) 5040
(d) 50400

Answer

Answer: (b) 40320
Hint:
The number of ways in which 8 students can be sated in a line = 8P8
= 8!
= 40320


Question 19.
The number of squares that can be formed on a chess board is
(a) 64
(b) 160
(c) 224
(d) 204

Answer

Answer: (d) 204
Hint:
A chess board contains 9 lines horizontal and 9 lines perpendicular to them.
To obtain a square, we select 2 lines from each set lying at equal distance and this equal
distance may be 1, 2, 3, …… 8 units, which will be the length of the corresponding square.
Now, two lines from either set lying at 1 unit distance can be selected in 8C1 = 8 ways.
Hence, the number of squares with 1 unit side = 8²
Similarly, the number of squares with 2, 3, ….. 8 unit side will be 7², 6², …… 1²
Hence, total number of square = 8² + 7² + ……+ 1² = 204


Question 20.
How many 3-letter words with or without meaning, can be formed out of the letters of the word, LOGARITHMS, if repetition of letters is not allowed
(a) 720
(b) 420
(c) none of these
(d) 5040

Answer

Answer: (a) 720
Hint:
The word LOGARITHMS has 10 different letters.
Hence, the number of 3-letter words(with or without meaning) formed by using these letters
= 10P3
= 10 ×9 ×8
= 720


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 7 Permutations and Combinations with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Permutations and Combinations MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 16 Probability with Answers

Probability Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 16 Probability with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Probability Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 16 MCQ With Answers

Maths Class 11 Chapter 16 MCQs On Probability

MCQ On Probability Class 11 Question 1.
Two cards from a pack of 52 cards are lost. One card is drawn from the remaining cards. If drawn card is diamond then the probability that the lost cards were both hearts is
(a) 143/1176
(b) 143/11760
(c) 143/11706
(d) 134/11760

Answer

Answer: (b) 143/11760
Hint:
Total number of cards = 52
Two cards are lost.
So remaining cards = 50
Now one card is drawn.
Probability that it is a diamond card = 13/50
Now probability that both lost cards are heart = 13/50 ×(11C2 / 49C2)
= 13/50 ×[{(11×10)/2}/{(49×48/2)}]
= 13/50 ×{(11×10)/(49×48)}
= {(13×11×10)/(50×49×48)}
= {(13×11)/(5×49×48)}
= 143/11760
So probability that both lost card are heart = 143/11760


Probability Class 11 MCQ Question 2.
If four whole numbers taken at random are multiplied together, then the chance that the last digit in the product is 1, 3, 5, 7 is
(a) 16/25
(b) 16/125
(c) 16/625
(d) none of these

Answer

Answer: (c) 16/625
Hint:
The last digit of the four whole number can be
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
The chance that any of the four numbers is divisible by 2 or 5 = 6/10 = 3/5
Hence, the chance that any of the four numbers is not divisible by 2 or 5 = 1 – 3/5 = 2/5
So, the chance that all of the four numbers are divisible by 2 or 5 = (2/5)×(2/5)×(2/5)×(2/5)
= 16/625
This is the chance that the last digit in the product will not be 0, 2, 4, 5, 6, 8 and this is also the chance that the last digit in the product is 1, 3, 7 or 9


Probability MCQ Class 11 Question 3.
Three identical dice are rolled. The probability that the same number will appear on each of them is
(a) 1/6
(b) 1/36
(c) 1/18
(d) 3/28

Answer

Answer: (b) 1/36
Hint:
Total number of cases = 6³ = 216
The same number can appear on each of the dice in the following ways:
(1, 1, 1), (2, 2, 2), ………….(3, 3, 3)
So, favourable number of cases = 6
Hence, required probability = 6/216 = 1/36


Probability Class 11 Extra Questions Question 4.
There are four machines and it is known that exactly two of them are faulty. They are tested, one by one, in a random order till both the faulty machines are identified. Then the probability that only two tests are needed is
(a) 1/3
(b) 1/6
(c) 1/2
(d) 1/4

Answer

Answer: (b) 1/6
Hint:
First, we choose 1 machine out of given 4.
The probability that it is fault = 2/4 = 1/2
Now, we have to pick the second fault machine.
The probability that it is fault = 1/3
So, required probability = (1/2)×(1/3) = 1/6


Class 11 Probability MCQ Question 5.
Two unbiased dice are thrown. The probability that neither a doublet nor a total of 10 will appear is
(a) 3/5
(b) 2/7
(c) 5/7
(d) 7/9

Answer

Answer: (d) 7/9
Hint:
When two dice are throw, then Total outcome = 36
A doublet: {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
Favourable outcome = 6
Sum is 10: {(4, 6), (5, 5), (6, 4)}
Favourable outcome = 3
Again, A doublet and sum is 10: (5, 5)
Favourable outcome = 1
Now, P(either dublet or a sum of 10 appears) = P(A dublet appear) + P(sum is 10) – P(A dublet appear and sum is 10)
⇒ P(either dublet or a sum of 10 appears) = 6/36 + 3/36 – 1/36
= (6 + 3 – 1)/36
= 8/36
= 2/9
So, P(neither dublet nor a sum of 10 appears) = 1 – 2/9 = 7/9


Probability Class 11 MCQ Questions Question 6.
Two dice are thrown the events A, B, C are as follows A: Getting an odd number on the first die. B: Getting a total of 7 on the two dice. C: Getting a total of greater than or equal to 8 on the two dice. Then AUB is equal to
(a) 15
(b) 17
(c) 19
(d) 21

Answer

Answer: (d) 21
Hint:
When two dice are thrown, then total outcome = 6×6 = 36
A: Getting an odd number on the first die.
A = {(1, 1), (1, 2), (1, 3), (1, 4),(1, 5), (1, 6), (3, 1), (3, 2), (3, 3), (3, 4),(3, 5), (3, 6), (5, 1), (5, 2), (5, 3), (5, 4),(5, 5), (5, 6)}
Total outcome = 18
B: Getting a total of 7 on the two dice.
B = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
Total outcome = 6
C: Getting a total of greater than or equal to 8 on the two dice.
C = {(2, 6), (3, 5), (3, 6), (4, 4),(4, 5), (4, 6), (5, 3), (5, 4), (5, 5), (5, 6),(6, 2), (6, 3), (6, 4), (6, 5), (6, 6)}
Total outcome = 15
Now n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
⇒ n(A ∪ B) = 18 + 6 – 3
⇒ n(A ∪ B) = 21


Class 11 Maths Probability Extra Questions Question 7.
Two numbers are chosen from {1, 2, 3, 4, 5, 6} one after another without replacement. Find the probability that the smaller of the two is less than 4.
(a) 4/5
(b) 1/15
(c) 1/5
(d) 14/15

Answer

Answer: (a) 4/5
Hint:
Total number of ways of choosing two numbers out of six = 6C2 = (6×5)/2 = 3×5 = 15
If smaller number is chosen as 3 then greater has choice are 4, 5, 6
So, total choices = 3
If smaller number is chosen as 2 then greater has choice are 3, 4, 5, 6
So, total choices = 4
If smaller number is chosen as 1 then greater has choice are 2, 3, 4, 5, 6
So, total choices = 5
Total favourable case = 3 + 4 + 5 = 12
Now, required probability = 12/15 = 4/5


Probability Class 11 Extra Questions With Solutions Question 8.
The probability that when a hand of 7 cards is drawn from a well-shuffled deck of 52 cards, it contains 3 Kings is
(a) 1/221
(b) 5/716
(c) 9/1547
(d) None of these

Answer

Answer: (c) 9/1547
Hint:
Total number of cards = 52
Number of king card = 4
Now, 7 cards are drawn from 52 cards.
P (3 cards are king) = {4C3 × 48C4}/52C7
= {4×(48×47×46×45)/(4×3×2×1)}/{(52×51×50×49×48×47×46)/(7×6×5×4×3×2×1)}
= {4×(48×47×46×45)×(7×6×5×4×3×2×1)}/{(4×3×2×1)×{(52×51×50×49×48×47×46)}
= (7×6×5×4×45)/(52×51×50×49)
= (6×5×4×45)/(52×51×50×7)
= (6×4×45)/(7×52×51×10)
= (6×45)/(7×13×51×10)
= (6×3)/(7×13×17×2)
= (3×3)/(7×13×17)
= 9/1547


MCQ Of Probability Class 11 Question 9.
A certain company sells tractors which fail at a rate of 1 out of 1000. If 500 tractors are purchased from this company, what is the probability of 2 of them failing within first year
(a) e-1/2/2
(b) e-1/2/4
(c) e-1/2/8
(d) none of these

Answer

Answer: (c) e-1/2/8
Hint:
This question is based on Poisson distribution.
Now, λ = np = 500×(1/1000) = 500/1000 = 1/2
Now, P(x = 2) = {e-1/2 × (1/2)²}/2! = e-1/2/(4×2) = e-1/2/8


Probability Class 11 Questions Question 10.
The probability that in a random arrangement of the letters of the word INSTITUTION the three T are together is
(a) 0.554
(b) 0.0554
(c) 0.545
(d) 0.0545

Answer

Answer: (d) 0.0545
Hint:
Given word: INSTITUTION
Total letters = 11
The word contains 3 I, 2 N, 1 S, 3 T, 1 U and 1 O
Total number of arrangement = 11!/(3!×2!×3!) = 554400
Now, taken 3 T are together.
So total latter = 9
The number of favorable cases = 9!/(3!×2!) = 30240
Now, P(3 T are together) = 30240/554400 = 0.0545


Class 11 Probability Questions Question 11.
Three houses are available in a locality. Three persons apply for the houses. Each applies for one house without consulting others. The probability that all the three apply for the same house is
(a) 2/9
(b) 1/9
(c) 8/9
(d) 7/9

Answer

Answer: (b) 1/9
Hint:
One person can select one house out of 3 = 3C1 = 3
So, three persons can select one house out of three = 3×3×3 = 27
Thus, probability that all the three can apply for the same house = 3/27 = 1/9


Extra Questions Of Probability Class 11 Question 12.
A bag contains 5 brown and 4 white socks . A man pulls out two socks. The probability that both the socks are of the same colour is
(a) 9/20
(b) 2/9
(c) 3/20
(d) 4/9

Answer

Answer: (d) 4/9
Hint:
Total number of shocks = 5 + 4 = 9
Two shocks are pulled.
Now, P(Both are same color) = (5C2 + 4C2)/9C2
= {(5×4)/(2×1) + (4×3)/(2×1)}/{(9×8)/(2×1)}
= {(5×4) + (4×3)/}/{(9×8)
= (5 + 3)/(9×2)
= 8/18
= 4/9


Probability Extra Questions Class 11 Question 13.
When a coin is tossed 8 times getting a head is a success. Then the probability that at least 2 heads will occur is
(a) 247/265
(b) 73/256
(c) 247/256
(d) 27/256

Answer

Answer: (c) 247/256
Hint:
Let x be number a discrete random variable which denotes the number of heads obtained in n (in this question n = 8)
The general form for probability of random variable x is
P(X = x) = nCx × px × qn-x
Now, in the question, we want at least two heads
Now, p = q = 1/2
So, P(X ≥ 2) = 8C2 × (1/2)² × (1/2)8-2
⇒ P(X ≥ 2) = 8C2 × (1/2)² × (1/2)6
⇒ 1 – P(X < 2) = 8C0 × (1/2)0 × (1/2)8 + 8C1 × (1/2)1 × (1/2)8-1
⇒ 1 – P(X < 2) = (1/2)8 + 8 × (1/2)1 × (1/2)7
⇒ 1 – P(X < 2) = 1/256 + 8 × (1/2)8
⇒ 1 – P(X < 2) = 1/256 + 8/256
⇒ 1 – P(X < 2) = 9/256
⇒ P(X < 2) = 1 – 9/256
⇒ P(X < 2) = (256 – 9)/256
⇒ P(X < 2) = 247/256


Probability Class 11 Important Questions Question 14.
A couple has two children. The probability that both children are females if it is known that the elder child is a female is
(a) 0
(b) 1
(c) 1/2
(d) 1/3

Answer

Answer: (c) 1/2
Hint:
Given, a couple has two children.
Let A denotes both children are females i.e. {FF}
Now, P(A) = (1/2)×(1/2) = 1/4
and B denotes elder children is a female i.e. {FF, FM}
P(B) = 1/4 + 1/4 = 1/2
Now, P(A ∩ B) = 1/4
Now, P(Both the children are female if elder child is female)
P(A/B) = P(A ∩ B)/P(B)
⇒ P(A/B) = (1/4)/(1/2)
⇒ P(A/B) = 1/2


Important Questions Of Probability Class 11 Question 15.
A certain company sells tractors which fail at a rate of 1 out of 1000. If 500 tractors are purchased from this company, what is the probability of 2 of them failing within first year
(a) e-1/2/2
(b) e--1/2/4
(c) e-1/2/8
(d) none of these

Answer

Answer: (c) e-1/2/8
Hint:
This question is based on Poisson distribution.
Now, λ = np = 500×(1/1000) = 500/1000 = 1/2
Now, P(x = 2) = {e-1/2 × (1/2)²}/2! = e-1/2 /(4×2) = e-1/2/8


Probability Important Questions Class 11 Question 16.
A random variable X has poison distribution with mean 2. Then, P (X > 1.5) equals
(a) 1 – 3/e²
(b) 2/e²
(c) 3/e²
(d) 0

Answer

Answer: (a) 1 – 3/e²
Hint:
Here m = 2
Now, P(X > 1.5) = ∑r {(e-2 × 2r)/r!} {2 ≤ r ≤ ∞}
= e-2 {2²/2! + 2³/3! + 24/4! + …}
= e-2 {(1 + 2 /1! + 2²/2! + 2³/3! + …) – 1 – 2}
= e-2 (e² – 3)
= 1 – 3e-2
= 1 – 3/e²


Class 11 Probability Important Questions Question 17.
Let A and B are two mutually exclusive events and if P(A) = 0.5 and P(B ̅) = 0.6 then P(A∪B) is
(a) 0
(b) 1
(c) 0.6
(d) 0.9

Answer

Answer: (d) 0.9
Hint:
Given, A and B are two mutually exclusive events.
So, P(A ∩ B) = 0
Again given P(A) = 0.5 and P(B ̅) = 0.6
P(B) = 1 – P(B ̅) = 1 – 0.6 = 0.4
Now, P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
⇒ P(A ∪ B) = P(A) + P(B)
⇒ P(A ∪ B) = 0.5 + 0.4 = 0.9


Probability Questions Class 11 Question 18.
The probability of getting 53 Sundays in a leap year is
(a) 1/7
(b) 2/7
(c) 3/7
(d) None of these

Answer

Answer: (b) 2/7
Hint:
In a leap year, the total number of days = 366 days.
In 366 days, there are 52 weeks and 2 days.
Now two days may be
(i) Sunday and Monday
(ii) Monday and Tuesday
(iii) Tuesday and Wednesday
(iv) Wednesday and Thursday
(v) Thursday and Friday
(vi) Friday and Saturday
(vii) Saturday and Sunday
Now there are total 7 possibilities, So total outcomes = 7
In 7 possibilities, Sunday came two times.
So, favorable case = 2
Hence, the probabilities of getting 53 Sundays in a leap year = 2/7


Questions On Probability Class 11 Question 19.
The probability of getting the number 6 at least once in a regular die if it can roll it 6 times?
(a) 1 – (5/6)6
(b) 1 – (1/6)6
(c) (5/6)6
(d) (1/6)6

Answer

Answer: (a) 1 – (5/6)6
Hint:
Let A is the event that 6 does not occur at all.
Now, the probability of at least one 6 occur = 1 – P(A)
= 1 – (5/6)6


Question 20.
On his vacation, Rahul visits four cities (A, B, C, and D) in a random order. The probability that he visits A first and B last is
(a) 1/2
(b) 1/6
(c) 1/10
(d) 1/12

Answer

Answer: (d) 1/12
Hint:
Total cities are 4 i.e. A, B, C, D
Given, Rahul visit four cities, So, n(S) = 4! = 24
Now, sample space IS:
S = {ABCD, ABDC, ACBD, ACDB, ADBC, ADCB, BACD, BADC, BDAC, BDCA, BCAD, BCDA, CABD, CADB, CBDA, CDAD, CDAB,CDBA, DABC, DACB, DBCA, DBAC, DCAB, DCBA}
Let G = Rahul visits A firsta and B last
⇒ G = {ACDB, ADCB}
⇒ n(G) = 2
So, P(G) = n(G)/n(S) = 2/24 = 1/12


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 16 Probability with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Probability MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 15 Statistics with Answers

Statistics Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 15 Statistics with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Statistics Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 15 MCQ With Answers

Maths Class 11 Chapter 15 MCQs On Statistics

Statistics Class 11 MCQ Question 1.
The sum of 10 items is 12 and the sum of their squares is 18. The standard deviation is
(a) 1/5
(b) 2/5
(c) 3/5
(d) 4/5

Answer

Answer: (c) 3/5
Hint:
Given, ∑x = 12 and ∑x² = 18
Now, varience = ∑x²/n – (∑x/n)²
⇒ varience = 18/10 – (12/10)²
⇒ varience = 9/5 – (6/5)²
⇒ varience = 9/5 – 36/25
⇒ varience = (9 × 5 – 36)/25
⇒ varience = (45 – 36)/25
⇒ varience = 9/25
⇒ Standard deviation = √(9/25)
⇒ Standard deviation = 3/5


MCQ On Statistics Class 11 Question 2.
The algebraic sum of the deviation of 20 observations measured from 30 is 2. So, the mean of observations is
(a) 30.0
(b) 30.1
(c) 30.2
(d) 30.3

Answer

Answer: (b) 30.1
Hint:
Given, algebraic sum of of the deviation of 20 observations measured from 30 is 2
⇒ ∑(xi – 30) = 2 {1 ≤ i ≤ 20}
⇒ ∑xi – 30 × 20 = 2
⇒ (∑xi)/20 – (30 × 20)/20 = 2/20
⇒ (∑xi)/20 – 30 = 0.1
⇒ Mean – 30 = 0.1
⇒ Mean = 30 + 0.1
⇒ Mean = 30.1


Statistics MCQ Class 11 Question 3.
The coefficient of variation is computed by
(a) S.D/.Mean×100
(b) S.D./Mean
(c) Mean./S.D×100
(d) Mean/S.D.

Answer

Answer: (b) S.D./Mean
Hint:
The coefficient of variation = S.D./Mean


Class 11 Statistics MCQ Question 4.
When tested the lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623. The mean of the lives of 5 bulbs is
(a) 1445
(b) 1446
(c) 1447
(d) 1448

Answer

Answer: (b) 1446
Hint:
Given, lives (in hours) of 5 bulbs were noted as follows: 1357, 1090, 1666, 1494, 1623
Now, mean = (1357 + 1090 + 1666 + 1494 + 1623)/5
= 7230/5
= 1446


MCQ Of Statistics Class 11 Question 5.
If mode of a series exceeds its mean by 12, then mode exceeds the median by
(a) 4
(b) 8
(c) 6
(d) 12

Answer

Answer: (b) 8
Hint:
Given, Mode = Mean + 12
⇒ Mode – 12 = Mean
Now, Mode = 3×Median – 2×Mean
⇒ Mode = 3×Median – 2(Mode – 12)
⇒ Mode = 3×Median – 2×Mode + 24
⇒ Mode + 2×Mode = 3×Median + 24
⇒ 3×Mode = 3×Median = 24
⇒ Mode = Median + 8
So, mode exceeds the median by 8


Class 11 Maths Chapter 15 MCQ Question 6.
The median and SD of a distributed are 20 and 4 respectively. If each item is increased by 2, the new median and SD are
(a) 20, 4
(b) 22, 6
(c) 22, 4
(d) 20, 6

Answer

Answer: (c) 22, 4
Hint:
Since each value is increased by 2, therefore the median value is also increased by
2. So, new median = 22
Again, the variance is independent of the change of origin. So it remains the same.


Class 11 Maths Statistics MCQ Question 7.
Range of the data 4, 7, 8, 9, 10, 12, 13 and 17 is
(a) 4
(b) 17
(c) 13
(d) 21

Answer

Answer: (c) 13
Hint:
Give, data are: 4, 7, 8, 9, 10, 12, 13 and 17
Range = Maximum value – Minimum Value
= 17 – 4
= 13


MCQs Statistics Class 11 Question 8.
If Mean = Median = Mode, then it is
(a) Symmetric distribution
(b) Asymmetric distribution
(c) Both symmetric and asymmetric distribution
(d) None of these

Answer

Answer: (a) Symmetric distribution
Hint:
In a symmetric distribution,
Mean = Median = Mode


Class 11 Maths Chapter 15 MCQ With Answers Question 9.
If the difference of mode and median of a data is 24, then the difference of median and mean is
(a) 12
(b) 24
(c) 8
(d) 36

Answer

Answer: (a) 12
Hint:
Given the difference of mode and median of a data is 24
⇒ Mode – Median = 24
⇒ Mode = Median + 24
Now, Mode = 3×Median – 2×Mean
⇒ Median + 24 = 3×Median – 2×Mean
⇒ 24 = 3×Median – 2×Mean – Median
⇒ 24 = 2×Median – 2×Mean
⇒ Median – Mean = 24/2
⇒ Median – Mean = 12


Statistics Class 11 MCQ Questions Question 10.
If r is the correlation coefficient, then
(a) |r| ≤ 1
(b) r ≤ 1
(c) |r| ≥ 1
(d) r ≥ 1

Answer

Answer: (a) |r| ≤ 1
Hint:
If r is the correlation coefficient, then |r| ≤ 1


Class 11 Maths Ch 15 MCQ Question 11.
If the varience of the data is 121 then the standard deviation of the data is
(a) 121
(b) 11
(c) 12
(d) 21

Answer

Answer: (b) 11
Hint:
Given, varience of the data = 121
Now, the standard deviation of the data = √(121) = 11


Ch 15 Maths Class 11 MCQ Question 12.
If the mean of the following data is 20.6, then the value of p is
x = 10  15   p   25  35
f =   3   10  25   7    5
(a) 30
(b) 20
(c) 25
(d) 10

Answer

Answer: (b) 20
Hint:
Mean = ∑ f i× x i /∑ f i
⇒ 20.6 = (10 × 3 + 15 × 10 + p × 25 + 25 × 7 + 35 × 5)/(3 + 10 + 25 + 7 + 5)
⇒ 20.6 = (30 + 150 + 25p + 175 + 175)/50
⇒ 20.6 = (530 + 25p)/50
⇒ 530 + 25p = 20.6 × 50
⇒ 530 + 25p = 1030
⇒ 25p = 1030 – 530
⇒ 25p = 500
⇒ p = 500/25
⇒ p = 20
So, the value of p is 20


MCQs On Statistics Class 11 Question 13.
If the mean of first n natural numbers is 5n/9, then n =
(a) 5
(b) 4
(c) 9
(d) 10

Answer

Answer: (c) 9
Hint:
Given mean of first n natural number is 5n/9
⇒ (n+1)/2 = 5n/9
⇒ n + 1 = (5n×2)/9
⇒ n + 1 = 10n/9
⇒ 9(n + 1) = 10n
⇒ 9n + 9 = 10n
⇒ 10n – 9n = 9
⇒ n = 9


MCQ On Statistics Class 11 Maths Question 14.
If one of the observation is zero then geometric mean is
(a) (Sum of observation)/n
(b) (Multiplication of all observations)n
(c) (Multiplication of all observations)1/n
(d) 0

Answer

Answer: (d) 0
Hint:
Let the observations are 0, a, b, c, ……… up to n
Now, geometric mean = (0 × a × b × c × ……… up to n)1/n
= 0
So, geometric mean is 0


MCQ For Statistics Class 11 Question 15.
Which one is measure of dispersion method
(a) Renge
(b) Quartile deviation
(c) Mean deviation
(d) all of the above

Answer

Answer: (d) all of the above
Hint:
Range, Quartile deviation, Mean deviation all are the measure of dispersions method.


MCQs Of Statistics Class 11 Question 16.
If a variable takes discrete values x + 4, x – 7/2, x – 5/2, x – 3, x – 2, x + 1/2, x – 1/2, x + 5 (x > 0), then the median is
(a) x – 5/4
(b) x – 1/2
(c) x – 2
(d) x + 5/4

Answer

Answer: (a) x – 5/4
Hint:
Given, discrete values x + 4, x – 7/2, x – 5/2, x – 3, x – 2, x + 1/2, x – 1/2, x + 5
Now, arrange them in ascending order, we get
x – 7/2, x – 3, x – 5/2, x – 2, x – 1/2, x + 1/2, x + 4, x + 5
Total observations = 8
Now, median = AM of 4th and 5th observations
= AM of (x – 2) and (x – 1/2) observations
= (x – 2 + x – 1/2)/2
= (2x – 5/2)/2
= x – 5/4


Statistics Class 11 MCQs Question 17.
If covariance between two variables is 0, then the correlation coefficient between them is
(a) nothing can be said
(b) 0
(c) positive
(d) negative

Answer

Answer: (b) 0
Hint:
The relationship between the correlation coefficient and covariance for two variables as shown below:
r(x, y) = COV(x, y)/{sx × sy}
r(x, y) = correlation of the variables x and y
COV(x, y) = covariance of the variables x and y
sx = sample standard deviation of the random variable x
sx = sample standard deviation of the random variable y
Now given COV(x, y) = 0
Then r(x, y) = 0


Statistics MCQs Class 11 Question 18.
The mean of a group of 100 observations was found to be 20. Later on, it was found that three observations were incorrect, which was recorded as 21, 21 and 18. Then the mean if the incorrect observations are omitted is
(a) 18
(b) 20
(c) 22
(d) 24

Answer

Answer: (b) 20
Hint:
Given mean of 100 observations is 20
Now
∑ xi/100 = 20 (1 = i = 100)
⇒ ∑xi = 100×20
⇒ ∑xi = 2000
3 observations 21, 21 and 18 are recorded in-correctly.
So ∑xi = 2000 – 21 – 21 – 18
⇒ ∑xi = 2000 – 60
⇒ ∑xi = 1940
Now new mean is
∑ xi/100 = 1940/97 = 20
So, the new mean is 20


Statistics Class 11 MCQ Maths Question 19.
Varience is independent of change of
(a) origin only
(b) scale only
(c) origin and scale both
(d) None of these

Answer

Answer: (a) origin only
Hint:
Varience is independent of change of origin only.


MCQ Of Chapter 15 Maths Class 11 Question 20.
Let x1, x2, x3, ……… , xn, be n observations and X be the arithmetic mean. Then formula for the standard deviation is given by
(a) ∑(xi – mean)²
(b) ∑(xi – mean)2 /n
(c) √{∑(xi – mean)²/n}
(d) None of these

Answer

Answer: (c) √{∑(xi – mean)²/n}
Hint:
Given, x1, x2, x3, ………. , xn be n observations and X be the arithmetic mean.
Now standard deviation = √{∑(xi – mean)²/n}


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 15 Statistics with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Statistics MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers

Limits and Derivatives Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Limits and Derivatives Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 13 MCQ With Answers

Maths Class 11 Chapter 13 MCQs On Limits and Derivatives

Limits Class 11 MCQ Question 1.
The value of the limit Limx→0 (cos x)cot2 x is
(a) 1
(b) e
(c) e1/2
(d) e-1/2

Answer

Answer: (d) e-1/2
Hint:
Given, Limx→0 (cos x)cot² x
= Limx→0 (1 + cos x – 1)cot² x
= eLimx→0 (cos x – 1) × cot² x
= eLimx→0 (cos x – 1)/tan² x
= e-1/2


Limits And Derivatives Class 11 MCQ Question 2.
The value of limit Limx→0 {sin (a + x) – sin (a – x)}/x is
(a) 0
(b) 1
(c) 2 cos a
(d) 2 sin a

Answer

Answer: (c) 2 cos a
Hint:
Given, Limx→0 {sin (a + x) – sin (a – x)}/x
= Limx→0 {2 × cos a × sin x}/x
= 2 × cos a × Limx→0 sin x/x
= 2 cos a


MCQ On Limits Class 11 Question 3.
Limx→-1 [1 + x + x² + ……….+ x10] is
(a) 0
(b) 1
(c) -1
(d) 2

Answer

Answer: (b) 1
Hint:
Given, Limx→-1 [1 + x + x² + ……….+ x10]
= 1 + (-1) + (-1)² + ……….+ (-1)10
= 1 – 1 + 1 – ……. + 1
= 1


Limits MCQ Class 11 Question 4.
The value of Limx→01 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2

Answer

Answer: (c) 2
Hint:
Given, Limx→0 (1/x) × sin-1 {2x/(1 + x²)
= Limx→0 (2× tan-1 x)/x
= 2 × 1
= 2


Limits And Derivatives Class 11 MCQ Questions Question 5.
Limx→0 log(1 – x) is equals to
(a) 0
(b) 1
(c) 1/2
(d) None of these

Answer

Answer: (a) 0
Hint:
We know that
log(1 – x) = -x – x²/2 – x³/3 – ……..
Now,
Limx→0 log(1 – x) = Limx→0 {-x – x²/2 – x³/3 – ……..}
⇒ Limx→0 log(1 – x) = Limx→0 {-x} – Limx→0 {x²/2} – Limx→0 {x³/3} – ……..
⇒ Limx→0 log(1 – x) = 0


MCQ On Limits And Derivatives Class 11 Question 6.
Limx→0 {(ax – bx)/ x} is equal to
(a) log a
(b) log b
(c) log (a/b)
(d) log (a×b)

Answer

Answer: (c) log (a/b)
Hint:
Given, Limx→0 {(ax – bx)/ x}
= Limx→0 {(ax – bx – 1 + 1)/ x}
= Limx→0 {(ax – 1) – (bx – 1)}/ x
= Limx→0 {(ax – 1)/x – (bx – 1)/x}
= Limx→0 (ax – 1)/x – Limx→0 (bx – 1)/x
= log a – log b
= log (a/b)


Class 11 Limits MCQ Question 7.
The value of limy→0 {(x + y) × sec (x + y) – x × sec x}/y is
(a) x × tan x × sec x
(b) x × tan x × sec x + x × sec x
(c) tan x × sec x + sec x
(d) x × tan x × sec x + sec x

Answer

Answer: (d) x × tan x × sec x + sec x
Hint:
Given, limy→0 {(x + y) × sec (x + y) – x×sec x}/y
= limy→0 {x sec (x + y) + y sec (x + y) – x×sec x}/y
= limy→0 [x{ sec (x + y) – sec x} + y sec (x + y)]/y
= limy→0 x{ sec (x + y) – sec x}/y + limy→0 {y sec (x + y)}/y
= limy→0 x{1/cos (x + y) – 1/cos x}/y + limy→0 {y sec (x + y)}/y
= limy→0 [{cos x – cos (x + y)} × x/{y×cos (x + y)×cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 [{2sin (x + y/2) × sin(y/2)} × 2x/{2y×cos (x + y)×cos x}] + limy→0 {y sec (x + y)}/y
= limy→0 {sin (x + y/2) × limy→0 {sin(y/2)/(2y/2)} × limy→0 { x/{y×cos (x + y)×cos x}] + sec x
= sin x × 1 × x/cos² x + sec x
= x × tan x × sec x + sec x
So, limy→0 {(x + y) × sec (x + y) – x×sec x}/y = x × tan x × sec x + sec x


Class 11 Maths Chapter 13 MCQ Question 8.
Limy→∞ {(x + 6)/(x + 1)}(x+4) equals
(a) e
(b) e³
(c) e5
(d) e6

Answer

Answer: (c) e5
Hint:
Given, Limy→∞ {(x + 6)/(x + 1)}(x + 4)
= Limy→∞ {1 + 5/(x + 1)}(x + 4)
= eLimy→∞ 5(x + 4)/(x + 1)
= eLimy→∞ 5(1 + 4/x)/(1 + 1/x)
= e5(1 + 4/∞)/(1 + 1/∞)
= e5/(1 + 0)
= e5


Limits MCQs With Answers Question 9.
The derivative of [1+(1/x)] /[1-(1/x)] is
(a) 1/(x-1)²
(b) -1/(x-1)²
(c) 2/(x-1)²
(d) -2/(x-1)²

Answer

Answer: (d) A
Hint:
Let y = [1+(1/x)] /[1-(1/x)]
then dy/dx = [{1-(1/x)}*(-1/x²)]/[{1+(1/x)}*(1/x²)]
= (1/x²) [(1/x) -1 – 1 – (1/x)]/[1-(1/x)]²
= [-2/x²]/[(x-1)/x]²
= -2/(x-1)²


Limits And Derivatives MCQ Question 10.
The expansion of log(1 – x) is
(a) x – x²/2 + x³/3 – ……..
(b) x + x²/2 + x³/3 + ……..
(c) -x + x²/2 – x³/3 + ……..
(d) -x – x²/2 – x³/3 – ……..

Answer

Answer: (d) -x – x²/2 – x³/3 – ……..
Hint:
log(1 – x) = -x – x²/2 – x³/3 – ……..


MCQs Of Limits Class 11 Question 11.
If f(x) = x × sin(1/x), x ≠ 0, then Limx→0 f(x) is
(a) 1
(b) 0
(c) -1
(d) does not exist

Answer

Answer: (b) 0
Hint:
Given, f(x) = x × sin(1/x)
Now, Limx→0 f(x) = Limx→0 x × sin(1/x)
⇒ Limx→0 f(x) = 0


Ch 13 Maths Class 11 MCQ Question 12.
The value of Limn→∞ {1² + 2² + 3² + …… + n²}/n³ is
(a) 0
(b) 1
(c) -1
(d) n

Answer

Answer: (a) 0
Hint:
Given, Limn→∞ {1² + 2² + 3² + …… + n²}/n³
= Limn→∞ [{n×(n + 1)×(2n + 1)}/6]/{n(n + 1)/2}²
= Limn→∞ [{n×n×n ×(1 + 1/n)×(2 + 1/n)}/6]/{n × n ×(1 + 1/n)/2}²
= Limn→∞ [{n³ ×(1 + 1/n)×(2 + 1/n)}/6]/{n² ×(1 + 1/n)/2}²
= Limn→∞ [{(1 + 1/n)×(2 + 1/n)}/6]/[n4 × {(1 + 1/n)/2}²]
⇒ Limn→∞ [{(1 + 1/n)×(2 + 1/n)}/6]/[n × {(1 + 1/n)/2}²]
= [{(1 + 1/∞)×(2 + 1/∞)}/6]/[∞×{(1 + 1/∞)/2}²
= [{(1 + 0)×(2 + 0)}/6]/∞ {since 1/∞ = 0}
= {(1 × 2)/6}/∞
= (2/6)/∞
= (1/3)/∞
= 0
So, Limn→∞ {1² + 2² + 3² + …… + n²}/n³ = 0


MCQ Of Limits And Derivatives Class 11 Question 13.
The value of Limn→∞ (sin x/x) is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (a) 0
Hint:
Limn→∞ (sin x/x) = Limy→0 {y × sin (1/y)} = 0


Class 11 Maths Limits MCQ Question 14.
The value of Limx→0 ax is
(a) 0
(b) 1
(c) 1/2
(d) 3/2

Answer

Answer: (b) 1
Hint:
We know that
ax = 1 + x/1! × (log a) + x²/2! × (log a)² + x³/3! × (log a)³ + ………..
Now,
Limx→0 ax = Limx→0 {1 + x/1! × (log a) + x²/2! × (log a)² + x³/3! × (log a)³ + …}
⇒ Limx→0 ax = Limx→0 1 + Limx→0 {x/1! × (log a)} + Limx→0 {x² /2! × (log a)²}+ ………
⇒ Limx→0 ax = 1


MCQ Of Limits Class 11 Question 15.
Let f(x) = cos x, when x ≥ 0 and f(x) = x + k, when x < 0 Find the value of k given that Limx→0 f(x) exists.
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (b) 1
Hint:
Given, Limx→0 f(x) exists
⇒ Limx→0 – f(x) = Limx→0 + f(x)
⇒ Limx→0 (x + k) = Limx→0 cos x
⇒ k = cos 0
⇒ k = 1


MCQ On Limits Class 11 Pdf Question 16.
The value of Limx→0 (1/x) × sin-1 {2x/(1 + x²) is
(a) 0
(b) 1
(c) 2
(d) -2

Answer

Answer: (c) 2
Hint:
Given, Limx→0 (1/x) × sin-1 {2x/(1 + x²)
= Limx→0 (2 × tan-1 x)/x
= 2 × 1
= 2


Limit Class 11 MCQ Question 17.
Limx→0 sin (ax)/bx is
(a) 0
(b) 1
(c) a/b
(d) b/a

Answer

Answer: (c) a/b
Hint:
Given, Limx→0 sin (ax)/bx
= Limx→0 [{sin (ax)/ax} × (ax/bx)]
⇒ (a/b) Limx→0 sin (ax)/ax
= a/b


Class 11 Maths Ch 13 MCQ Question 18.
The value of the limit Limx→0 {log(1 + ax)}/x is
(a) 0
(b) 1
(c) a
(d) 1/a

Answer

Answer: (c) a
Hint:
Given, Limx→0 {log(1 + ax)}/x
= Limx→0 {ax – (ax)² /2 + (ax)³ /3 – (ax)4 /4 + …….}/x
= Limx→0 {ax – a² x² /2 + a³ x³ /3 – a4 x4 /4 + …….}/x
= Limx→0 {a – a² x /2 + a³ x² /3 – a4 x³ /4 + …….}
= a – 0
= a


MCQs On Limits Class 11 Question 19.
If f(x) = (x + 1)/x then df(x)/dx is
(a) 1/x
(b) -1/x
(c) -1/x²
(d) 1/x²

Answer

Answer: (c) -1/x²
Hint:
Given, f(x) = (x + 1)/x
Now, df(x)/dx = d{(x + 1)/x}/dx
= {1 × x – (x + 1)×1}/x²
= (x – x – 1)/x²
= -1/x²


Class 11 Maths Chapter 13 MCQ With Answers Question 20.
Limx→0 (e – cos x)/x² is equals to
(a) 0
(b) 1
(c) 2/3
(d) 3/2

Answer

Answer: (d) 3/2
Hint:
Given, Limx→0 (e – cos x)/x²
= Limx→0 (e – cos x -1 + 1)/x²
= Limx→0 {(e – 1)/x² + (1 – cos x)}/x²
= Limx→0 {(e – 1)/x² + Limx→0 (1 – cos x)}/x²
= 1 + 1/2
= (2 + 1)/2
= 3/2


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 13 Limits and Derivatives with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Limits and Derivatives MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 1 Sets with Answers

Sets Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 1 Sets with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Sets Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 1 MCQ With Answers

Maths Class 11 Chapter 1 MCQs On Sets

Sets Class 11 MCQ Question 1.
If A, B and C are any three sets, then A – (B ∪ C) is equal to
(a) (A – B) ∪ (A – C)
(b) (A – B) ∪ C
(c) (A – B) ∩ C
(d) (A – B) ∩ (A – C)

Answer

Answer: (d) (A – B) ∩ (A – C)
Hint:
Given A, B and C are any three sets.
Now, A – (B ∪ C) = (A – B) ∩ (A – C)


Sets MCQ Questions Class 11 Question 2.
(A’)’ = ?
(a) ∪ – A
(b) A’
(c) ∪
(d) A

Answer

Answer: (d) A
Hint:
(A’)’ = A


MCQ On Sets Class 11 Question 3.
A – B is read as?
(a) Difference of A and B of B and A
(b) None of the above
(c) Difference of B and A
(d) Both a and b

Answer

Answer: (a) Difference of A and B of B and A
Hint:
A – B will read as difference of A and B of B and A
Ex: Let A = {1, 2, 3, 4, 5} and B = {1, 3, 5, 7}
Now, A – B = {2, 4}


Class 11 Sets MCQ Questions Question 4.
If A, B and C are any three sets, then A × (B ∪ C) is equal to
(a) (A × B) ∪ (A × C)
(b) (A ∪ B) × (A ∪ C)
(c) None of these
(d) (A × B) ∩ (A × C)

Answer

Answer: (a) (A × B) ∪ (A × C)
Hint:
Given A, B and C are any three sets.
Now, A × (B ∪ C) = (A × B) ∪ (A × C)


MCQ Of Sets Class 11 Question 5.
IF A = [5, 6, 7] and B = [7, 8, 9] then A ∪ B is equal to
(a) [5, 6, 7, 8, 9]
(b) [5, 6, 7]
(c) [7, 8, 9]
(d) None of these

Answer

Answer: (a) [5, 6, 7, 8, 9]
Hint:
Given A = [5, 6, 7] and B = [7, 8, 9]
then A ∪ B = [5, 6, 7, 8, 9]


Class 11 Maths Chapter 1 MCQ Question 6.
Which of the following sets are null sets
(a) {x: |x |< -4, x ?N}
(b) 2 and 3
(c) Set of all prime numbers between 15 and 19
(d) {x: x < 5, x > 6}

Answer

Answer: (b) 2 and 3
Hint:
2 and 3 is the null set.


Class 11 Maths Chapter 1 MCQ With Answers Question 7.
IF R = {(2, 1),(4, 3),(4, 5)}, then range of the function is?
(a) Range R = {2, 4}
(b) Range R = {1, 3, 5}
(c) Range R = {2, 3, 4, 5}
(d) Range R {1, 1, 4, 5}

Answer

Answer: (b) Range R = {1, 3, 5}
Hint:
Given R = {(2, 1),(4, 3),(4, 5)}
then Range(R) = {1, 3, 5}


Class 11 Maths MCQ Chapter 1 Question 8.
The members of the set S = {x | x is the square of an integer and x < 100} is
(a) {0, 2, 4, 5, 9, 58, 49, 56, 99, 12}
(b) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
(c) {1, 4, 9, 16, 25, 36, 64, 81, 85, 99}
(d) {0, 1, 4, 9, 16, 25, 36, 49, 64, 121}

Answer

Answer: (b) {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}
Hint:
The set S consists of the square of an integer less than 100
So, S = {0, 1, 4, 9, 16, 25, 36, 49, 64, 81}


Class 11 Maths Ch 1 MCQ Question 9.
In a class of 120 students numbered 1 to 120, all even numbered students opt for Physics, whose numbers are divisible by 5 opt for Chemistry and those whose numbers are divisible by 7 opt for Math. How many opt for none of the three subjects?
(a) 19
(b) 41
(c) 21
(d) 57

Answer

Answer: (b) 41
Hint:
The number of students who took at least one of the three subjects can be found by finding out A ∪ B ∪ C, where A is the set of those who took Physics, B the set of those who took Chemistry and C the set of those who opted for Math.
Now, A ∪ B ∪ C = A + B + C – (A ∩ B + B ∩ C + C ∩ A) + (A ∩ B ∩ C)
A is the set of those who opted for Physics = 120/2 = 60 students
B is the set of those who opted for Chemistry = 120/5 = 24
C is the set of those who opted for Math = 120/7 = 17
The 10th, 20th, 30th….. numbered students would have opted for both Physics and Chemistry.
Therefore, A ∩ B = 120/10 = 12
The 14th, 28th, 42nd….. Numbered students would have opted for Physics and Math.
Therefore, C ∩ A = 120/14 = 8
The 35th, 70th…. numbered students would have opted for Chemistry and Math.
Therefore, B ∩ C = 120/35 = 3
And the 70th numbered student would have opted for all three subjects.
Therefore, A ∪ B ∪ C = 60 + 24 + 17 – (12 + 8 + 3) + 1 = 79
Number of students who opted for none of the three subjects = 120 – 79 = 41


MCQ Questions For Class 11 Maths With Answers Chapter 1 Question 10.
{ (A, B) : A² +B² = 1} on the sets has the following relation
(a) reflexive
(b) symmetric
(c) none
(d) reflexive and transitive

Answer

Answer: (b) symmetric
Hint:
Given {(a, b) : a² + b² = 1} on the set S.
Now a² +b² = b² + a² = 1
So, the given relation is symmetric.


MCQ Class 11 Maths Chapter 1 Question 11.
Two finite sets have N and M elements. The number of elements in the power set of first set is 48 more than the total number of elements in power set of the second test. Then the value of M and N are
(a) 7, 6
(b) 6, 4
(c) 7, 4
(d) 6, 3

Answer

Answer: (b) 6, 4
Hint:
Let A and B be two sets having m and n numbers of elements respectively
Number of subsets of A = 2m
Number of subsets of B = 2n
Now, according to question
2m – 2n = 48
⇒ 2n(2m – n – 1) = 24(22 – 1)
So, n = 4
and m – n = 2
⇒ m – 4 = 2
⇒ m = 2 + 4
⇒ m = 6


MCQ Questions On Sets Class 11 Question 12.
The range of the function f(x) = 3x – 2‚ is
(a) (- ∞, ∞)
(b) R – {3}
(c) (- ∞, 0)
(d) (0, – ∞)

Answer

Answer: (a) (- ∞, ∞)
Hint:
Let the given function is
y = 3x – 2
⇒ y + 2 = 3x
⇒ x = (y + 2)/3
Now x is saisfied by all values.
So, Range{f(x)} = R = (-∞, ∞)


Ch 1 Maths Class 11 MCQ Question 13.
If A, B, C be three sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C, then,
(a) B = C
(b) A = C
(c) A = B = C
(d) A = B

Answer

Answer: (a) B = C
Hint:
Given A, B, C be three sets such that A ∪ B = A ∪ C and A ∩ B = A ∩ C then B = C


MCQ On Sets For Class 11 Pdf With Answers Question 14.
In 2nd quadrant?
(a) X < 0, Y < 0
(b) X < 0, Y > 0
(c) X > 0, Y > 0
(d) X > 0, Y < 0

Answer

Answer: (b) X < 0, Y > 0
Hint:
In the second quadrant,
MCQ Questions for Class 11 Maths Chapter 1 Sets with Answers 1
X < 0, Y > 0


MCQ Of Chapter Sets Class 11 Question 15.
How many rational and irrational numbers are possible between 0 and 1?
(a) 0
(b) Finite
(c) Infinite
(d) 1

Answer

Answer: (c) Infinite
Hint:
There are infinite many rational and irrational numbers are possible between 0 and 1
This is because between any two numbers, there are infinite numbers.


Question 16.
Empty set is a?
(a) Finite Set
(b) Invalid Set
(c) None of the above
(d) Infinite Set

Answer

Answer: (a) Finite Set
Hint:
In mathematics, and more specifically set theory, the empty set is the unique set having no elements and its size or cardinality (count of elements in a set) is zero.
So, an empty set is a finite set.


Question 17.
If A = [5, 6, 7] and B = [7, 8, 9] then A U B is equal to
(a) [5, 6, 7, 8, 9]
(b) [5, 6, 7]
(c) [7, 8, 9]
(d) None of these

Answer

Answer: (a) [5, 6, 7, 8, 9]
Hint:
Given A = [5, 6, 7] and B = [7, 8, 9]
then A U B = [5, 6, 7, 8, 9]


Question 18.
Which of the following two sets are equal?
(a) A = {1, 2} and B = {1}
(b) A = {1, 2} and B = {1, 2, 3}
(c) A = {1, 2, 3} and B = {2, 1, 3}
(d) A = {1, 2, 4} and B = {1, 2, 3}

Answer

Answer: (c) A = {1, 2, 3} and B = {2, 1, 3}
Hint:
Two sets are equal if and only if they have the same elements.
So, A = {1, 2, 3} and B = {2, 1, 3} are equal sets.


Question 19.
In a class of 50 students, 10 did not opt for math, 15 did not opt for science and 2 did not opt for either. How many students of the class opted for both math and science.
(a) 24
(b) 25
(c) 26
(d) 27

Answer

Answer: (d) 27
Hint:
Total students = 50
Students who did not opt for math = 10
Students who did not opt for Science = 15
Students who did not opt for either maths or science = 2
Total of 40 students in math and 13 did not opt for science but did for math = 40 – 13 = 27
So, students of the class opted for both math and science is 27


Question 20.
In last quadrant?
(a) X < 0, Y > 0
(b) X < 0, Y < 0
(c) X > 0, Y < 0
(d) X > 0, Y > 0

Answer

Answer: (d) X > 0, Y > 0
Hint:
In the last quadrant,
MCQ Questions for Class 11 Maths Chapter 1 Sets with Answers 2
X > 0, Y > 0


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 1 Sets with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Sets MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 10 Straight Lines with Answers

Straight Lines Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 10 Straight Lines with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Straight Lines Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 10 MCQ With Answers

Maths Class 11 Chapter 10 MCQs On Straight Lines

Straight Lines Class 11 MCQ Question 1.
The locus of a point, whose abscissa and ordinate are always equal is
(a) x + y + 1 = 0
(b) x – y = 0
(c) x + y = 1
(d) none of these.

Answer

Answer: (b) x – y = 0
Hint:
Let the coordinate of the variable point P is (x, y)
Now, the abscissa of this point = x
and its ordinate = y
Given, abscissa = ordinate
⇒ x = y
⇒ x – y = 0
So, the locus of the point is x – y = 0


MCQ On Straight Lines Class 11 Question 2.
The equation of straight line passing through the point (1, 2) and parallel to the line y = 3x + 1 is
(a) y + 2 = x + 1
(b) y + 2 = 3 × (x + 1)
(c) y – 2 = 3 × (x – 1)
(d) y – 2 = x – 1

Answer

Answer: (c) y – 2 = 3 × (x – 1)
Hint:
Given straight line is: y = 3x + 1
Slope = 3
Now, required line is parallel to this line.
So, slope = 3
Hence, the line is
y – 2 = 3 × (x – 1)


Straight Lines Class 11 MCQ Questions Question 3.
What can be said regarding if a line if its slope is negative
(a) θ is an acute angle
(b) θ is an obtuse angle
(c) Either the line is x-axis or it is parallel to the x-axis.
(d) None of these

Answer

Answer: (b) θ is an obtuse angle
Hint:
Let θ be the angle of inclination of the given line with the positive direction of x-axis in the anticlockwise sense.
Then its slope is given by m = tan θ
Given, slope is positive
⇒ tan θ < 0
⇒ θ lies between 0 and 180 degree
⇒ θ is an obtuse angle


Straight Lines MCQ Class 11 Question 4:
The equation of the line which cuts off equal and positive intercepts from the axes and passes through the point (α, β) is
(a) x + y = α + β
(b) x + y = α
(c) x + y = β
(d) None of these

Answer

Answer: (a) x + y = α + β
Hint:
Let the equation of the line be x/a + y/b = 1 which cuts off intercepts a and b with
the coordinate axes.
It is given that a = b, therefore the equation of the line is
x/a + y/a = 1
⇒ x + y = a …..1
But it is passes through (α, β)
So, α + β = a
Put this value in equation 1, we get
x + y = α + β


Straight Line Class 11 MCQ Question 5.
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are coincedent if
(a) a1/a2 = b1/b2 ≠ c1/c2
(b) a1/a2 ≠ b1/b2 = c1/c2
(c) a1/a2 ≠ b1/b2 ≠ c1/c2
(d) a1/a2 = b1/b2 = c1/c2

Answer

Answer: (d) a1/a2 = b1/b2 = c1/c2
Hint:
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are coincedent if
a1/a2 = b1/b2 = c1/c2


MCQ Of Straight Line Class 11 Question 6:
The equation of the line passing through the point (2, 3) with slope 2 is
(a) 2x + y – 1 = 0
(b) 2x – y + 1 = 0
(c) 2x – y – 1 = 0
(d) 2x + y + 1 = 0

Answer

Answer: (c) 2x – y – 1 = 0
Hint:
Given, the point (2, 3) and slope of the line is 2
By, slope-intercept formula,
y – 3 = 2(x – 2)
⇒ y – 3 = 2x – 4
⇒ 2x – 4 – y + 3 = 0
⇒ 2x – y – 1 = 0


Class 11 Maths Chapter 10 MCQ Question 7.
The slope of the line ax + by + c = 0 is
(a) a/b
(b) -a/b
(c) -c/b
(d) c/b

Answer

Answer: (b) -a/b
Hint:
Give, equation of line is ax + by + c = 0
⇒ by = -ax – c
⇒ y = (-a/b)x – c/b
It is in the form of y = mx + c
Now, slope m = -a/b


Class 11 Straight Lines MCQ Question 8.
Equation of the line passing through (0, 0) and slope m is
(a) y = mx + c
(b) x = my + c
(c) y = mx
(d) x = my

Answer

Answer: (c) y = mx
Hint:
Equation of the line passing through (x1, y1) and slope m is
(y – y1) = m(x – x1)
Now, required line is
(y – 0 ) = m(x – 0)
⇒ y = mx


Class 11 Maths Straight Lines MCQ Question 9.
The angle between the lines x – 2y = y and y – 2x = 5 is
(a) tan-1 (1/4)
(b) tan-1 (3/5)
(c) tan-1 (5/4)
(d) tan-1 (2/3)

Answer

Answer: (c) tan-1 (5/4)
Hint:
Given, lines are:
x – 2y = 5 ………. 1
and y – 2x = 5 ………. 2
From equation 1,
x – 5 = 2y
⇒ y = x/2 – 5/2
Here, m1 = 1/2
From equation 2,
y = 2x + 5
Here. m2 = 2
Now, tan θ = |(m1 + m2)/{1 + m1 × m2}|
= |(1/2 + 2)/{1 + (1/2) × 2}|
= |(5/2)/(1 + 1)|
= |(5/2)/2|
= 5/4
⇒ θ = tan-1 (5/4)


Straight Line MCQ Questions Question 10.
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are parallel if
(a) a1/a2 = b1/b2 ≠ c1/c2
(b) a1/a2 ≠ b1/b2 = c1/c2
(c) a1/a2 ≠ b1/b2 ≠ c1/c2
(d) a1/a2 = b1/b2 = c1/c2

Answer

Answer: (a) a1/a2 = b1/b2 ≠ c1/c2
Hint:
Two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 are parallel if
a1/a2 = b1/b2 ≠ c1/c2


MCQ Questions On Straight Lines For Class 11 Question 11.
The locus of a point, whose abscissa and ordinate are always equal is
(a) x + y + 1 = 0
(b) x – y = 0
(c) x + y = 1
(d) none of these.

Answer

Answer: (b) x – y = 0
Hint:
Let the coordinate of the variable point P is (x, y)
Now, the abscissa of this point = x
and its ordinate = y
Given, abscissa = ordinate
⇒ x = y
⇒ x – y = 0
So, the locus of the point is x – y = 0


Class 11 Maths Ch 10 MCQ Question 12.
In a ΔABC, if A is the point (1, 2) and equations of the median through B and C are respectively x + y = 5 and x = 4, then B is
(a) (1, 4)
(b) (7, – 2)
(c) none of these
(d) (4, 1)

Answer

Answer: (b) (7, – 2)
Hint:
The equation of median through B is x + y = 5
The point B lies on it.
Let the coordinates of B are (x1, 5 – x1)
Now CF is a median through C,
So co-ordiantes of F i.e. mid-point of AB are
((x1+1)/2, (5 – x1+ 2)/2)
Now since this lies on x = 4
⇒ (x1 + 1)/2 = 4
⇒ x1 + 1 = 8
⇒ x1 = 7
Hence, the co-oridnates of B are (7, -2)


Ch 10 Maths Class 11 MCQ Question 13.
The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150 degrees with the positive direction of the y-axis. Then the equation of line is
(a) x + y = 14
(b) √3y + x = 14
(c) √3x + y = 14
(d) None of these

Answer

Answer: (c) √3x + y = 14
Hint:
Given, The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150 degrees with the positive direction of the y-axis.
Now, equation of line is
x × cos 30 + y × sin 30 = 7
⇒ √3x/2 + y/2 = 7
⇒ √3x + y = 7×2
⇒ √3x + y = 14


MCQs On Straight Lines Class 11 Question 14.
If two vertices of a triangle are (3, -2) and (-2, 3) and its orthocenter is (-6, 1) then its third vertex is
(a) (5, 3)
(b) (-5, 3)
(c) (5, -3)
(d) (-5, -3)

Answer

Answer: (d) (-5, -3)
Hint:
Let the third vertex of the triangle is C(x, y)
Given, two vertices of a triangle are A(3,-2) and B(-2,3)
Now given orthocentre of the circle = H(-6, 1)
So, AH ⊥ BC and BH ⊥ AC
Since the product of the slope of perpendicular lines equal to -1
Now, AH ⊥ BC
⇒ {(-2 – 1)/(3 + 6)} × {(y + 2)/(x – 3)} = -1
⇒ (-3/9) × {(y + 2)/(x – 3)} = -1
⇒ (-1/3)×{(y – 3)/(x + 2)} = -1
⇒ (y – 3)/{3×(x + 2)} = 1
⇒ (y – 3) = 3×(x + 2)
⇒ y – 3 = 3x + 6
⇒ 3x + 6 – y = -3
⇒ 3x – y = -3 – 6
⇒ 3x – 2y = -9 ………… 1
Again, BH ⊥ AC
⇒ {(3 – 1)/(-2 + 6)} × {(y – 3)/(x + 2)} = -1
⇒ (2/4) × {(y – 3)/(x + 2)} = -1
⇒ (1/2)×{(y – 3)/(x + 2)} = -1
⇒ (y – 3)/{2×(x + 2)} = 1
⇒ (y – 3) = 2×(x + 2)
⇒ y – 3 = 2x + 4
⇒ 2x + 4 – y = -3
⇒ 2x – y = -3 – 4
⇒ 2x – y = -7 ………… 2
Multiply equation 2 by 2, we get
4x – 2y = -14 ……… 3
Subtract equation 1 and we get
-x = 5
⇒ x = -5
From equation 2, we get
2×(-5) – y = -7
⇒ -10 – y = -7
⇒ y = -10 + 7
⇒ y = -3
So, the third vertex of the triangle is (-5, -3)


MCQ Questions On Straight Lines Class 11 Question 15.
The sum of squares of the distances of a moving point from two fixed points (a, 0) and (-a, 0) is equal to 2c² then the equation of its locus is
(a) x² – y² = c² – a²
(b) x² – y² = c² + a²
(c) x² + y² = c² – a²
(d) x² + y² = c² + a²

Answer

Answer: (c) x² + y² = c² – a²
Hint:
Let P(h, k) be any position of the moving point and let A(a, 0) and B(-a, 0) be the given points. Then
PA² + PB² = 2c²
⇒ (h – a)² + (k – 0)² + (h + a)² + (k – 0)² = 2c²
⇒ h² – 2ah + a² + k² + h² + 2ah + a² + k² = 2c²
⇒ 2h² + 2k² + 2a² = 2c²
⇒ h² + k² + a² = c²
⇒ h² + k² = c² – a²
Hence, the locus of (h, k) is x² + y² = c² – a²


Question 16.
The equation of the line through the points (1, 5) and (2, 3) is
(a) 2x – y – 7 = 0
(b) 2x + y + 7 = 0
(c) 2x + y – 7 = 0
(d) x + 2y – 7 = 0

Answer

Answer: (c) 2x + y – 7 = 0
Hint:
Given, points are: (1, 5) and (2, 3)
Now, equation of line is
y – y1 = {(y2 – y1)/(x2 – x1)} × (x – x1)
⇒ y – 5 = {(3 – 5)/(2 – 1)} × (x – 1)
⇒ y – 5 = (-2) × (x – 1)
⇒ y – 5 = -2x + 2
⇒ 2x + y – 5 – 2 = 0
⇒ 2x + y – 7 = 0


Question 17.
What can be said regarding if a line if its slope is zero
(a) θ is an acute angle
(b) θ is an obtuse angle
(c) Either the line is x-axis or it is parallel to the x-axis.
(d) None of these

Answer

Answer: (c) Either the line is x-axis or it is parallel to the x-axis.
Hint:
Let θ be the angle of inclination of the given line with the positive direction of x- axis in the anticlockwise sense.
Then its slope is given by m = tan θ
Given, slope is zero
⇒ tan θ = 0
⇒ θ = 0°
⇒ Either the line is x-axis or it is parallel to the x-axis.


Question 18.
Two lines are perpendicular if the product of their slopes is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (c) -1
Hint:
Let m1 is the slope of first line and m2 is the slope of second line.
Now, two lines are perpendicular if m1 × m2 = -1
i.e. the product of their slopes is equals to -1


Question 19.
y-intercept of the line 4x – 3y + 15 = 0 is
(a) -15/4
(b) 15/4
(c) -5
(d) 5

Answer

Answer: (d) 5
Hint:
Given, equation of line is 4x – 3y + 15 = 0
⇒ 4x – 3y = -15
⇒ 4x/(-15) + (-3)y/(-15) = 1
⇒ x/(-15/4) + 3y/15 = 1
⇒ x/(-15/4) + y/(15/3) = 1
⇒ x/(-15/4) + y/5 = 1
Now, compare with x/a + y/b = 1, we get
y-intercept b = 5


Question 20.
The equation of the locus of a point equidistant from the point A(1, 3) and B(-2, 1) is
(a) 6x – 4y = 5
(b) 6x + 4y = 5
(c) 6x + 4y = 7
(d) 6x – 4y = 7

Answer

Answer: (b) 6x + 4y = 5
Hint:
Let P(h, k) be any point on the locus. Then
Given, PA = PB
⇒ PA² = PB²
⇒ (h – 1)² + (k – 3)² = (h + 2)² + (k – 1)²
⇒ h² – 2h + 1 + k² – 6k + 9 = h² + 4h + 4 + k² – 2k + 1
⇒ -2h – 6k + 10 = 4h – 2k + 5
⇒ 6h + 4k = 5
Hence, the locus of (h, k) is 6x + 4y = 5


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 10 Straight Lines with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Straight Lines MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers

Trigonometric Functions Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Trigonometric Functions Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 3 MCQ With Answers

Maths Class 11 Chapter 3 MCQs On Trigonometric Functions

MCQ On Trigonometry For Class 11 Pdf Question 1.
The value of cos² x + cos² y – 2cos x × cos y × cos (x + y) is
(a) sin (x + y)
(b) sin² (x + y)
(c) sin³ (x + y)
(d) sin4 (x + y)

Answer

Answer: (b) sin² (x + y)
Hint:
cos² x + cos² y – 2cos x × cos y × cos(x + y)
{since cos(x + y) = cos x × cos y – sin x × sin y }
= cos² x + cos² y – 2cos x × cos y × (cos x × cos y – sin x × sin y)
= cos² x + cos² y – 2cos² x × cos² y + 2cos x × cos y × sin x × sin y
= cos² x + cos² y – cos² x × cos² y – cos² x × cos² y + 2cos x × cos y × sin x × sin y
= (cos² x – cos² x × cos² y) + (cos² y – cos² x × cos² y) + 2cos x × cos y × sin x × sin y
= cos² x(1- cos² y) + cos² y(1 – cos² x) + 2cos x × cos y × sin x × sin y
= sin² y × cos² x + sin² x × cos² y + 2cos x × cos y × sin x × sin y (since sin² x + cos² x = 1 )
= sin² x × cos² y + sin² y × cos² x + 2cos x × cos y × sin x × sin y
= (sin x × cos y)² + (sin y × cos x)² + 2cos x × cos y × sin x × sin y
= (sin x × cos y + sin y × cos x)²
= {sin (x + y)}²
= sin² (x + y)


Trigonometry MCQ Class 11 Question 2.
If a×cos x + b × cos x = c, then the value of (a × sin x – b²cos x)² is
(a) a² + b² + c²
(b) a² – b² – c²
(c) a² – b² + c²
(d) a² + b² – c²

Answer

Answer: (d) a² + b² – c²
Hint:
We have
(a×cos x + b × sin x)² + (a × sin x – b × cos x)² = a² + b²
⇒ c² + (a × sin x – b × cos x)² = a² + b²
⇒ (a × sin x – b × cos x)² = a² + b² – c²


Trigonometry Class 11 MCQ Question 3.
If cos a + 2cos b + cos c = 2 then a, b, c are in
(a) 2b = a + c
(b) b² = a × c
(c) a = b = c
(d) None of these

Answer

Answer: (a) 2b = a + c
Hint:
Given, cos A + 2 cos B + cos C = 2
⇒ cos A + cos C = 2(1 – cos B)
⇒ 2 cos((A + C)/2) × cos((A-C)/2 = 4 sin²(B/2)
⇒ 2 sin(B/2)cos((A-C)/2) = 4sin² (B/2)
⇒ cos((A-C)/2) = 2sin (B/2)
⇒ cos((A-C)/2) = 2cos((A+C)/2)
⇒ cos((A-C)/2) – cos((A+C)/2) = cos((A+C)/2)
⇒ 2sin(A/2)sin(C/2) = sin(B/2)
⇒ 2{√(s-b)(s-c)√bc} × {√(s-a)(s-b)√ab} = √(s-a)(s-c)√ac
⇒ 2(s – b) = b
⇒ a + b + c – 2b = b
⇒ a + c – b = b
⇒ a + c = 2b


Trigonometric Functions Class 11 MCQ Question 4.
The value of cos 5π is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (c) -1
Hint:
Given, cos 5π = cos (π + 4π) = cos π = -1


Class 11 Trigonometry MCQ Questions Question 5.
In a triangle ABC, cosec A (sin B cos C + cos B sin C) equals
(a) none of these
(b) c/a
(c) 1
(d) a/c

Answer

Answer: (c) 1
Hint:
Given cosec A (sin B cos C + cos B sin C)
= cosec A × sin(B+C)
= cosec A × sin(180 – A)
= cosec A × sin A
= cosec A × 1/cosec A
= 1


Class 11 Maths Chapter 3 MCQ With Answers Question 6.
If the angles of a triangle be in the ratio 1 : 4 : 5, then the ratio of the greatest side to the smallest side is
(a) 4 : (√5 – 1)
(b) 5 : 4
(c) (√5 – 1) : 4
(d) none of these

Answer

Answer: (a) 4 : (√5 – 1)
Hint:
Given, the angles of a triangle be in the ratio 1 : 4 : 5
⇒ x + 4x + 5x = 180
⇒ 10x = 180
⇒ x = 180/10
⇒ x = 18
So, the angle are: 18, 72, 90
Since a : b : c = sin A : sin B : sin C
⇒ a : b : c = sin 18 : sin 72 : sin 90
⇒ a : b : c = (√5 – 1)/4 : {√(10 + 2√5)}/4 : 1
⇒ a : b : c = (√5 – 1) : {√(10 + 2√5)} : 4
Now, c /a = 4/(√5 – 1)
⇒ c : a = 4 : (√5 – 1)


MCQ On Trigonometry For Class 11 Pdf Download Question 7.
The value of cos 180° is
(a) 0
(b) 1
(c) -1
(d) infinite

Answer

Answer: (c) -1
Hint:
180 is a standard degree generally we all know their values but if we want to go theoretically then
cos(90 + x) = – sin(x)
So, cos 180 = cos(90 + 90)
= -sin 90
= -1 {sin 90 = 1}
So, cos 180 = -1


MCQ Of Trigonometry Class 11 Question 8.
The perimeter of a triangle ABC is 6 times the arithmetic mean of the sines of its angles. If the side b is 2, then the angle B is
(a) 30°
(b) 90°
(c) 60°
(d) 120°

Answer

Answer: (b) 90°
Hint:
Let the lengths of the sides if ∆ABC be a, b and c
Perimeter of the triangle = 2s = a + b + c = 6(sinA + sinB + sinC)/3
⇒ (sinA + sinB + sinC) = ( a + b + c)/2
⇒ (sinA + sinB + sinC)/( a + b + c) = 1/2
From sin formula,Using
sinA/a = sinB/b = sinC/c = (sinA + sinB + sinC)/(a + b + c) = 1/2
Now, sinB/b = 1/2
Given b = 2
So, sinB/2 = 1/2
⇒ sinB = 1
⇒ B = π/2


Trigonometry Objective Questions For Class 11 Question 9:
If 3 × tan(x – 15) = tan(x + 15), then the value of x is
(a) 30
(b) 45
(c) 60
(d) 90

Answer

Answer: (b) 45
Hint:
Given, 3×tan(x – 15) = tan(x + 15)
⇒ tan(x + 15)/tan(x – 15) = 3/1
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = (3 + 1)/(3 – 1)
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 4/2
⇒ {tan(x + 15) + tan(x – 15)}/{tan(x + 15) – tan(x – 15)} = 2
⇒ sin(x + 15 + x – 15)/sin(x + 15 – x + 15) = 2
⇒ sin 2x/sin 30 = 2
⇒ sin 2x/(1/2) = 2
⇒ 2 × sin 2x = 2
⇒ sin 2x = 1
⇒ sin 2x = sin 90
⇒ 2x = 90
⇒ x = 45


MCQ Questions On Trigonometry Class 11 Question 10.
If the sides of a triangle are 13, 7, 8 the greatest angle of the triangle is
(a) π/3
(b) π/2
(c) 2π/3
(d) 3π/2

Answer

Answer: (c) 2π/3
Hint:
Given, the sides of a triangle are 13, 7, 8
Since greatest side has greatest angle,
Now Cos A = (b² + c² – a²)/2bc
⇒ Cos A = (7² + 8² – 13²)/(2×7×8)
⇒ Cos A = (49 + 64 – 169)/(2×7×8)
⇒ Cos A = (113 – 169)/(2×7×8)
⇒ Cos A = -56/(2×56)
⇒ Cos A = -1/2
⇒ Cos A = Cos 2π/3
⇒ A = 2π/3
So, the greatest angle is
= 2π/3


MCQ On Trigonometry For Class 11 Question 11.
The value of tan 20 × tan 40 × tan 80 is
(a) tan 30
(b) tan 60
(c) 2 tan 30
(d) 2 tan 60

Answer

Answer: (b) tan 60
Hint:
Given, tan 20 × tan 40 × tan 80
= tan 40 × tan 80 × tan 20
= [{sin 40 × sin 80}/{cos 40 × cos 80}] × (sin 20/cos 20)
= [{2 * sin 40 × sin 80}/{2 × cos 40 × cos 80}] × (sin 20/cos 20)
= [{cos 40 – cos 120}/{cos 120 + cos 40}] × (sin 20/cos 20)
= [{cos 40 – cos (90 + 30)}/{cos (90 + 30) + cos 40}] × (sin 20/cos 20)
= [{cos 40 + sin30}/{-sin30 + cos 40}] × (sin 20/cos 20)
= [{(2 × cos 40 + 1)/2}/{(-1 + cos 40)/2}] × (sin 20/cos 20)
= [{2 × cos 40 + 1}/{-1 + cos 40}] × (sin 20/cos 20)
= [{2 × cos 40 × sin 20 + sin 20}/{-cos 20 + cos 40 × cos 20}]
= (sin 60 – sin 20 + sin 20)/(-cos 20 + cos 60 + cos 20)
= sin 60/cos 60
= tan 60
So, tan 20 × tan 40 × tan 80 = tan 60


MCQ Trigonometry Class 11 Question 12.
If the angles of a triangle be in the ratio 1 : 4 : 5, then the ratio of the greatest side to the smallest side is
(a) 4 : (√5 – 1)
(b) 5 : 4
(c) (√5 – 1) : 4
(d) none of these

Answer

Answer: (a) 4 : (√5 – 1)
Hint:
Given, the angles of a triangle be in the ratio 1 : 4 : 5
⇒ x + 4x + 5x = 180
⇒ 10x = 180
⇒ x = 180/10
⇒ x = 18
So, the angle are: 18, 72, 90
Since a : b : c = sin A : sin B : sin C
⇒ a : b : c = sin 18 : sin 72 : sin 90
⇒ a : b : c = (√5 – 1)/4 : {√(10 + 2√5)}/4 : 1
⇒ a : b : c = (√5 – 1) : {√(10 + 2√5)} : 4
Now, c /a = 4/(√5 – 1)
⇒ c : a = 4 : (√5 – 1)


Class 11 Maths Trigonometry MCQ Questions Question 13.
The general solution of √3 cos x – sin x = 1 is
(a) x = n × π + (-1)n × (π/6)
(b) x = π/3 – n × π + (-1)n × (π/6)
(c) x = π/3 + n × π + (-1)n × (π/6)
(d) x = π/3 – n × π + (π/6)

Answer

Answer: (c) x = π/3 + n × π + (-1)n × (π/6)
Hint:
√3 cos x-sin x=1
⇒ (√3/2)cos x – (1/2)sin x = 1/2
⇒ sin 60 × cos x – cos 60 × sin x = 1/2
⇒ sin (x – 60) = 1/2
⇒ sin (x – π/3) = sin 30
⇒ sin (x – π/3) = sinπ/6
⇒ x – π/3 = n × π + (-1)n × (π/6) {where n ∈ Z}
⇒ x = π/3 + n × π + (-1)n × (π/6)


Class 11 Maths Trigonometry MCQs Question 14.
If tan² θ = 1 – e², then the value of sec θ + tan³ θ × cosec θ is
(a) 2 – e²
(b) (2 – e²)1/2
(c) (2 – e²)²
(d) (2 – e²)3/2

Answer

Answer: (d) (2 – e²)3/2
Hint:
Given, tan² θ = 1 – e²
⇒ tan θ = √(1 – e²)
MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers 1
From the figure and Pythagorus theorem,
AC² = AB² + BC²
⇒ AC² = {√(1 – e²)}² + 12
⇒ AC² = 1 – e² + 1
⇒ AC² = 2 – e²
⇒ AC = √(2 – e²)
Now, sec θ = √(2 – e²)
cosec θ = √(2 – e²)/√(1 – e²)
and tan θ = √(1 – e²)
Given, sec θ + tan³ θ × cosec θ
= √(2 – e²) + {(1 – e²)3/2 × √(2 – e²)/√(1 – e²)}
= √(2 – e²) + {(1 – e²) × (1 – e²) × √(2 – e²)/√(1 – e²)}
= √(2 – e²) + (1 – e²) × √(2 – e²)
= √(2 – e²) × (1 + 1 – e²)
= √(2 – e²) × (2 – e²)
= (2 – e²)3/2
So, sec θ + tan³ θ × cosec θ = (2 – e²)3/2


Trigonometry Class 11 MCQ With Answers Question 15.
The value of cos 20 + 2sin² 55 – √2 sin65 is
(a) 0
(b) 1
(c) -1
(d) None of these

Answer

Answer: (b) 1
Hint:
Given, cos 20 + 2sin² 55 – √2 sin65
= cos 20 + 1 – cos 110 – √2 sin65 {since cos 2x = 1 – 2sin² x}
= 1 + cos 20 – cos 110 – √2 sin65
= 1 – 2 × sin {(20 + 110)/2 × sin{(20 – 110)/2} – √2 sin65 {Apply cos C – cos D formula}
= 1 – 2 × sin 65 × sin (-45) – √2 sin65
= 1 + 2 × sin 65 × sin 45 – √2 sin65
= 1 + (2 × sin 65)/√2 – √2 sin65
= 1 + √2 ( sin 65 – √2 sin 65
= 1
So, cos 20 + 2sin² 55 – √2 sin65 = 1


Question 16.
If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ ( = PR), then the angle P is
(a) 2π/3
(b) π/3
(c) π/2
(d) π/6

Answer

Answer: (a) 2π/3
Hint:
Let S be the center of the circumcircle of triangle PQR.
So, SP = SQ = SR = PQ = PR, where SP, SQ & SR are radii.
Thus SPQ & SPR are equilateral triangles.
⇒ ∠QSP = 60°;
Similarly ∠RQP = 60°
⇒ Angle at the center QSP = 120°
So, SRPQ is a rhombus, since all the four sides are equal.
Hence, its opposite angles are equal; so ∠P = ∠QSP = 120°


Question 17.
If cos a + 2cos b + cos c = 2 then a, b, c are in
(a) 2b = a + c
(b) b² = a × c
(c) a = b = c
(d) None of these

Answer

Answer: (a) 2b = a + c
Hint:
Given, cos A + 2 cos B + cos C = 2
⇒ cos A + cos C = 2(1 – cos B)
⇒ 2 cos((A + C)/2) × cos((A-C)/2 = 4 sin² (B/2)
⇒ 2 sin(B/2)cos((A-C)/2) = 4sin² (B/2)
⇒ cos((A-C)/2) = 2sin (B/2)
⇒ cos((A-C)/2) = 2cos((A+C)/2)
⇒ cos((A-C)/2) – cos((A+C)/2) = cos((A+C)/2)
⇒ 2sin(A/2)sin(C/2) = sin(B/2)
⇒ 2{√(s-b)(s-c)√bc} × {√(s-a)(s-b)√ab} = √(s-a)(s-c)√ac
⇒ 2(s – b) = b
⇒ a + b + c – 2b = b
⇒ a + c – b = b
⇒ a + c = 2b


Question 18.
The value of 4 × sin x × sin(x + π/3) × sin(x + 2π/3) is
(a) sin x
(b) sin 2x
(c) sin 3x
(d) sin 4x

Answer

Answer: (c) sin 3x
Hint:
Given, 4 × sin x × sin(x + π/3) × sin(x + 2π/3)
= 4 × sin x × {sin x × cos π/3 + cos x × sin π/3} × {sin x × cos 2π/3 + cos x × sin 2π/3}
= 4 × sin x × {(sin x)/2 + (√3 × cos x)/2} × {-(sin x)/2 + (√3 × cos x)/2}
= 4 × sin x × {-(sin 2x)/4 + (3 × cos 2x)/4}
= sin x × {-sin 2x + 3 × cos 2x}
= sin x × {-sin 2x + 3 × (1 – sin 2x)}
= sin x × {-sin 2x + 3 – 3 × sin 2x}
= sin x × {3 – 4 × sin 2x}
= 3 × sin x – 4 sin 3x
= sin 3x
So, 4 × sin x × sin(x + π/3) × sin(x + 2π/3) = sin 3x


Question 19.
If tan A – tan B = x and cot B – cot A = y, then the value of cot (A – B) is
(a) x + y
(b) 1/x + y
(c) x + 1/y
(d) 1/x + 1/y

Answer

Answer: (d) 1/x + 1/y
Hint:
Given,
tan A – tan B = x ……………. 1
and cot B – cot A = y ……………. 2
From equation,
1/cot A – 1/cot B = x
⇒ (cot B – cot A)/(cot A × cot B) = x
⇒ y/(cot A × cot B) = x {from equation 2}
⇒ y = x × (cot A × cot B)
⇒ cot A × cot B = y/x
Now, cot (A – B) = (cot A × cot B + 1)/(cot B – cot A)
⇒ cot (A – B) = (y/x + 1)/y
⇒ cot (A – B) = (y/x) × (1/y) + 1/y
⇒ cot (A – B) = 1/x + 1/y


Question 20.
The value of (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x) is
(a) tan 6x
(b) 2 tan 6x
(c) 3 tan 6x
(d) 4 tan 6x

Answer

Answer: (b) 2 tan 6x
Hint:
Given, (sin 7x + sin 5x) /(cos 7x + cos 5x) + (sin 9x + sin 3x) / (cos 9x + cos 3x)
⇒ [{2 × sin(7x+5x)/2 × cos(7x-5x)/2}/{2 × cos(7x+5x)/2 × cos(7x-5x)/2}] + [{2 × sin(9x+3x)/2 × cos(9x-3x)/2}/{2 × cos(9x+3x)/2 × cos(9x-3x)/2}]
⇒ [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}] + [{2 × sin 6x × cosx}/{2 × cos 6x × cosx}]
⇒ (sin 6x/cos 6x) + (sin 6x/cos 6x)
⇒ tan 6x + tan 6x
⇒ 2 tan 6x


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 3 Trigonometric Functions with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Trigonometric Functions MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 9 Sequences and Series with Answers

Sequences and Series Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 9 Sequences and Series with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Sequences and Series Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 9 MCQ With Answers

Maths Class 11 Chapter 9 MCQs On Sequences and Series

Sequence And Series Class 11 MCQ Question 1.
If a, b, c are in G.P., then the equations ax² + 2bx + c = 0 and dx² + 2ex + f = 0 have a common root if d/a, e/b, f/c are in
(a) AP
(b) GP
(c) HP
(d) none of these

Answer

Answer: (a) AP
Hint:
Given a, b, c are in GP
⇒ b² = ac
⇒ b² – ac = 0
So, ax² + 2bx + c = 0 have equal roots.
Now D = 4b² – 4ac
and the root is -2b/2a = -b/a
So -b/a is the common root.
Now,
dx² + 2ex + f = 0
⇒ d(-b/a)² + 2e×(-b/a) + f = 0
⇒ db2 /a² – 2be/a + f = 0
⇒ d×ac /a² – 2be/a + f = 0
⇒ dc/a – 2be/a + f = 0
⇒ d/a – 2be/ac + f/c = 0
⇒ d/a + f/c = 2be/ac
⇒ d/a + f/c = 2be/b²
⇒ d/a + f/c = 2e/b
⇒ d/a, e/b, f/c are in AP


MCQ On Sequence And Series Class 11 Question 2.
If a, b, c are in AP then
(a) b = a + c
(b) 2b = a + c
(c) b² = a + c
(d) 2b² = a + c

Answer

Answer: (b) 2b = a + c
Hint:
Given, a, b, c are in AP
⇒ b – a = c – b
⇒ b + b = a + c
⇒ 2b = a + c


Calculate the common ratio calculator of geometric sequence using our geometric sequence calculator tool in split seconds provided with steps.

MCQ Of Sequence And Series Class 11 Question 3:
Three numbers form an increasing GP. If the middle term is doubled, then the new numbers are in Ap. The common ratio of GP is
(a) 2 + √3
(b) 2 – √3
(c) 2 ± √3
(d) None of these

Answer

Answer: (a) 2 + √3
Hint:
Let the three numbers be a/r, a, ar
Since the numbers form an increasing GP, So r > 1
Now, it is given that a/r, 2a, ar are in AP
⇒ 4a = a/r + ar
⇒ r² – 4r + 1 = 0
⇒ r = 2 ± √3
⇒ r = 2 + √3 {Since r > 1}


Class 11 Sequence And Series MCQ Question 4:
The sum of n terms of the series (1/1.2) + (1/2.3) + (1/3.4) + …… is
(a) n/(n+1)
(b) 1/(n+1)
(c) 1/n
(d) None of these

Answer

Answer: (a) n/(n+1)
Hint:
Given series is:
S = (1/1·2) + (1/2·3) + (1/3·4) – ………………. 1/n.(n+1)
⇒ S = (1 – 1/2) + (1/2 – 1/3) + (1/3 – 1.4) -……… (1/n – 1/(n+1))
⇒ S = 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 – ……….. 1/n – 1/(n+1)
⇒ S = 1 – 1/(n+1)
⇒ S = (n + 1 – 1)/(n+1)
⇒ S = n/(n+1)


Class 11 Maths Chapter 9 MCQ Question 5:
If 1/(b + c), 1/(c + a), 1/(a + b) are in AP then
(a) a, b, c are in AP
(b) a², b², c² are in AP
(c) 1/1, 1/b, 1/c are in AP
(d) None of these

Answer

Answer: (b) a², b², c² are in AP
Hint:
Given, 1/(b + c), 1/(c + a), 1/(a + b)
⇒ 2/(c + a) = 1/(b + c) + 1/(a + b)
⇒ 2b² = a² + c²
⇒ a², b², c² are in AP


Sequence And Series Class 11 MCQ Questions Question 6:
The sum of series 1/2! + 1/4! + 1/6! + ….. is
(a) e² – 1 / 2
(b) (e – 1)² /2 e
(c) e² – 1 / 2 e
(d) e² – 2 / e

Answer

Answer: (b) (e – 1)² /2 e
Hint:
We know that,
ex = 1 + x/1! + x² /2! + x³ /3! + x4 /4! + ………..
Now,
e1 = 1 + 1/1! + 1/2! + 1/3! + 1/4! + ………..
e-1 = 1 – 1/1! + 1/2! – 1/3! + 1/4! + ………..
e1 + e-1 = 2(1 + 1/2! + 1/4! + ………..)
⇒ e + 1/e = 2(1 + 1/2! + 1/4! + ………..)
⇒ (e² + 1)/e = 2(1 + 1/2! + 1/4! + ………..)
⇒ (e² + 1)/2e = 1 + 1/2! + 1/4! + ………..
⇒ (e² + 1)/2e – 1 = 1/2! + 1/4! + ………..
⇒ (e² + 1 – 2e)/2e = 1/2! + 1/4! + ………..
⇒ (e – 1)² /2e = 1/2! + 1/4! + ………..


MCQ Questions On Sequence And Series Class 11 Question 7:
The third term of a geometric progression is 4. The product of the first five terms is
(a) 43
(b) 45
(c) 44
(d) none of these

Answer

Answer: (b) 45
Hint:
here it is given that T3 = 4.
⇒ ar² = 4
Now product of first five terms = a.ar.ar².ar³.ar4
= a5r10
= (ar2)5
= 45


Class 11 Maths Ch 9 MCQ Question 8:
Let Tr be the r th term of an A.P., for r = 1, 2, 3, … If for some positive integers m, n, we have Tm = 1/n and Tn = 1/m, then Tm n equals
(a) 1/m n
(b) 1/m + 1/n
(c) 1
(d) 0

Answer

Answer: (c) 1
Hint:
Let first term is a and the common difference is d of the AP
Now, Tm = 1/n
⇒ a + (m-1)d = 1/n ………… 1
and Tn = 1/m
⇒ a + (n-1)d = 1/m ………. 2
From equation 2 – 1, we get
(m-1)d – (n-1)d = 1/n – 1/m
⇒ (m-n)d = (m-n)/mn
⇒ d = 1/mn
From equation 1, we get
a + (m-1)/mn = 1/n
⇒ a = 1/n – (m-1)/mn
⇒ a = {m – (m-1)}/mn
⇒ a = {m – m + 1)}/mn
⇒ a = 1/mn
Now, Tmn = 1/mn + (mn-1)/mn
⇒ Tmn = 1/mn + 1 – 1/mn
⇒ Tmn = 1


MCQ Of Chapter 9 Maths Class 11 Question 9.
The sum of two numbers is 13/6 An even number of arithmetic means are being inserted between them and their sum exceeds their number by 1. Then the number of means inserted is
(a) 2
(b) 4
(c) 6
(d) 8

Answer

Answer: (c) 6
Hint:
Let a and b are two numbers such that
a + b = 13/6
Let A1, A2, A3, ………A2n be 2n arithmetic means between a and b
Then, A1 + A2 + A3 + ………+ A2n = 2n{(n + 1)/2}
⇒ n(a + b) = 13n/6
Given that A1 + A2 + A3 + ………+ A2n = 2n + 1
⇒ 13n/6 = 2n + 1
⇒ n = 6


Class 11 Maths Chapter 9 MCQ With Answers Question 10.
If the sum of the roots of the quadratic equation ax² + bx + c = 0 is equal to the sum of the squares of their reciprocals, then a/c, b/a, c/b are in
(a) A.P.
(b) G.P.
(c) H.P.
(d) A.G.P.

Answer

Answer: (c) H.P.
Hint:
Given, equation is
ax² + bx + c = 0
Let p and q are the roots of this equation.
Now p+q = -b/a
and pq = c/a
Given that
p + q = 1/p² + 1/q²
⇒ p + q = (p² + q²)/(p² ×q²)
⇒ p + q = {(p + q)² – 2pq}/(pq)²
⇒ -b/a = {(-b/a)² – 2c/a}/(c/a)²
⇒ (-b/a)×(c/a)² = {b²/a² – 2c/a}
⇒ -bc²/a³ = {b² – 2ca}/a²
⇒ -bc²/a = b² – 2ca
Divide by bc on both side, we get
⇒ -c /a = b/c – 2a/b
⇒ 2a/b = b/c + c/a
⇒ b/c, a/b, c/a are in AP
⇒ c/a, a/b, b/c are in AP
⇒ 1/(c/a), 1/(a/b), 1/(b/c) are in HP
⇒ a/c, b/a, c/b are in HP


Ch 9 Maths Class 11 MCQ Question 11.
If 1/(b + c), 1/(c + a), 1/(a + b) are in AP then
(a) a, b, c are in AP
(b) a², b², c² are in AP
(c) 1/1, 1/b, 1/c are in AP
(d) None of these

Answer

Answer: (b) a², b², c² are in AP
Hint:
Given, 1/(b + c), 1/(c + a), 1/(a + b)
⇒ 2/(c + a) = 1/(b + c) + 1/(a + b)
⇒ 2b² = a² + c²
⇒ a², b², c² are in AP


Sequence And Series MCQ Questions Class 11 Question 12.
The 35th partial sum of the arithmetic sequence with terms an = n/2 + 1
(a) 240
(b) 280
(c) 330
(d) 350

Answer

Answer: (d) 350
Hint:
The 35th partial sum of this sequence is the sum of the first thirty-five terms.
The first few terms of the sequence are:
a1 = 1/2 + 1 = 3/2
a2 = 2/2 + 1 = 2
a3 = 3/2 + 1 = 5/2
Here common difference d = 2 – 3/2 = 1/2
Now, a35 = a1 + (35 – 1)d = 3/2 + 34 ×(1/2) = 17/2
Now, the sum = (35/2) × (3/2 + 37/2)
= (35/2) × (40/2)
= (35/2) × 20
= 35 × 10
= 350


Chapter 9 Maths Class 11 MCQs Question 13.
The sum of two numbers is 13/6 An even number of arithmetic means are being inserted between them and their sum exceeds their number by 1. Then the number of means inserted is
(a) 2
(b) 4
(c) 6
(d) 8

Answer

Answer: (c) 6
Hint:
Let a and b are two numbers such that
a + b = 13/6
Let A1, A2, A3, ………A2n be 2n arithmetic means between a and b
Then, A1 + A2 + A3 + ………+ A2n = 2n{(n + 1)/2}
⇒ n(a + b) = 13n/6
Given that A1 + A2 + A3 + ………+ A2n = 2n + 1
⇒ 13n/6 = 2n + 1
⇒ n = 6


MCQs On Sequence And Series Class 11 Question 14.
The first term of a GP is 1. The sum of the third term and fifth term is 90. The common ratio of GP is
(a) 1
(b) 2
(c) 3
(d) 4

Answer

Answer: (c) 3
Hint:
Let first term of the GP is a and common ratio is r.
3rd term = ar²
5th term = ar4
Now
⇒ ar² + ar4 = 90
⇒ a(r² + r4) = 90
⇒ r² + r4 = 90
⇒ r² ×(r² + 1) = 90
⇒ r²(r² + 1) = 3² ×(3² + 1)
⇒ r = 3
So the common ratio is 3


Class 11 Maths Sequence And Series MCQ Question 15.
The sum of AP 2, 5, 8, …..up to 50 terms is
(a) 3557
(b) 3775
(c) 3757
(d) 3575

Answer

Answer: (b) 3775
Hint:
Given, AP is 2, 5, 8, …..up to 50
Now, first term a = 2
common difference d = 5 – 2 = 3
Number of terms = 50
Now, Sum = (n/2)×{2a + (n – 1)d}
= (50/2)×{2×2 + (50 – 1)3}
= 25×{4 + 49×3}
= 25×(4 + 147)
= 25 × 151
= 3775


Sequence And Series MCQ Questions Question 16.
If 2/3, k, 5/8 are in AP then the value of k is
(a) 31/24
(b) 31/48
(c) 24/31
(d) 48/31

Answer

Answer: (b) 31/48
Hint:
Given, 2/3, k, 5/8 are in AP
⇒ 2k = 2/3 + 5/8
⇒ 2k = 31/24
⇒ k = 31/48
So, the value of k is 31/48


Sequence And Series Class 11 MCQ Pdf Question 17.
The sum of n terms of the series (1/1.2) + (1/2.3) + (1/3.4) + …… is
(a) n/(n+1)
(b) 1/(n+1)
(c) 1/n
(d) None of these

Answer

Answer: (a) n/(n+1)
Hint:
Given series is:
S = (1/1·2) + (1/2·3) + (1/3·4) – ……………….1/n.(n+1)
⇒ S = (1 – 1/2) + (1/2 – 1/3) + (1/3 – 1.4) -………(1/n – 1/(n+1))
⇒ S = 1 – 1/2 + 1/2 – 1/3 + 1/3 – 1/4 – ……….. 1/n – 1/(n+1)
⇒ S = 1 – 1/(n+1)
⇒ S = (n + 1 – 1)/(n+1)
⇒ S = n/(n+1)


Sequence And Series Class 11 MCQs Question 18.
If the third term of an A.P. is 7 and its 7 th term is 2 more than three times of its third term, then the sum of its first 20 terms is
(a) 228
(b) 74
(c) 740
(d) 1090

Answer

Answer: (c) 740
Hint:
Let a is the first term and d is the common difference of AP
Given the third term of an A.P. is 7 and its 7th term is 2 more than three times of its third term
⇒ a + 2d = 7 ………….. 1
and
3(a + 2d) + 2 = a + 6d
⇒ 3×7 + 2 = a + 6d
⇒ 21 + 2 = a + 6d
⇒ a + 6d = 23 ………….. 2
From equation 1 – 2, we get
4d = 16
⇒ d = 16/4
⇒ d = 4
From equation 1, we get
a + 2×4 = 7
⇒ a + 8 = 7
⇒ a = -1
Now, the sum of its first 20 terms
= (20/2)×{2×(-1) + (20-1)×4}
= 10×{-2 + 19×4)}
= 10×{-2 + 76)}
= 10 × 74
= 740


MCQ Of Ch 9 Maths Class 11 Question 19.
If the sum of the first 2n terms of the A.P. 2, 5, 8, ….., is equal to the sum of the first n terms of the A.P. 57, 59, 61, ….., then n equals
(a) 10
(b) 12
(c) 11
(d) 13

Answer

Answer: (c) 11
Hint:
Given,
the sum of the first 2n terms of the A.P. 2, 5, 8, …..= the sum of the first n terms of the A.P. 57, 59, 61, ….
⇒ (2n/2)×{2×2 + (2n-1)3} = (n/2)×{2×57 + (n-1)2}
⇒ n×{4 + 6n – 3} = (n/2)×{114 + 2n – 2}
⇒ 6n + 1 = {2n + 112}/2
⇒ 6n + 1 = n + 56
⇒ 6n – n = 56 – 1
⇒ 5n = 55
⇒ n = 55/5
⇒ n = 11


Sequences And Series Class 11 MCQ Question 20.
If a is the A.M. of b and c and G1 and G2 are two GM between them then the sum of their cubes is
(a) abc
(b) 2abc
(c) 3abc
(d) 4abc

Answer

Answer: (b) 2abc
Hint:
Given, a is the A.M. of b and c
⇒ a = (b + c)
⇒ 2a = b + c ………… 1
Again, given G1 and G1 are two GM between b and c,
⇒ b, G1, G2, c are in the GP having common ration r, then
⇒ r = (c/b)1/(2+1) = (c/b)1/3
Now,
G1 = br = b×(c/b)1/3
and G1 = br = b×(c/b)2/3
Now,
(G1)³ + (G2)3 = b³ ×(c/b) + b³ ×(c/b)²
⇒ (G1)³ + (G2)³ = b³ ×(c/b)×( 1 + c/b)
⇒ (G1)³ + (G2)³ = b³ ×(c/b)×( b + c)/b
⇒ (G1)³ + (G2)³ = b² ×c×( b + c)/b
⇒ (G1)³ + (G2)³ = b² ×c×( b + c)/b ………….. 2
From equation 1
2a = b + c
⇒ 2a/b = (b + c)/b
Put value of(b + c)/b in eqaution 2, we get
(G1)³ + (G2)³ = b² × c × (2a/b)
⇒ (G1)³ + (G2)³ = b × c × 2a
⇒ (G1)³ + (G2)³ = 2abc


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 9 Sequences and Series with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Sequences and Series MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry with Answers

Introduction to Three Dimensional Geometry Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Introduction to Three Dimensional Geometry Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 12 MCQ With Answers

Maths Class 11 Chapter 12 MCQs On Introduction to Three Dimensional Geometry

MCQ On Three Dimensional Geometry Class 11 Question 1.
The cartesian equation of the line is 3x + 1 = 6y – 2 = 1 – z then its direction ratio are
(a) 1/3, 1/6, 1
(b) -1/3, 1/6, 1
(c) 1/3, -1/6, 1
(d) 1/3, 1/6, -1

Answer

Answer: (a) 1/3, 1/6, 1
Hint:
Given 3x + 1 = 6y – 2 = 1 – z
= (3x + 1)/1 = (6y – 2)/1 = (1 – z)/1
= (x + 1/3)/(1/3) = (y – 2/6)/(1/6) = (1 – z)/1
= (x + 1/3)/(1/3) = (y – 1/3)/(1/6) = (1 – z)/1
Now, the direction ratios are: 1/3, 1/6, 1


MCQ On Three Dimensional Geometry Question 2.
The image of the point P(1, 3, 4) in the plane 2x – y + z = 0 is
(a) (-3, 5, 2)
(b) (3, 5, 2)
(c) (3, -5, 2)
(d) (3, 5, -2)

Answer

Answer: (a) (-3, 5, 2)
Hint:
Let image of the point P(1, 3, 4) is Q in the given plane.
The equation of the line through P and normal to the given plane is
(x-1)/2 = (y-3)/-1 = (z-4)/1
Since the line passes through Q, so let the coordinate of Q are (2r + 1, -r + 3, r + 4)
Now, the coordinate of the mid-point of PQ is
(r + 1, -r/2 + 3, r/2 + 4)
Now, this point lies in the given plane.
2(r + 1) – (-r/2 + 3) + (r/2 + 4) + 3 = 0
⇒ 2r + 2 + r/2 – 3 + r/2 + 4 + 3 = 0
⇒ 3r + 6 = 0
⇒ r = -2
Hence, the coordinate of Q is (2r + 1, -r + 3, r + 4) = (-4 + 1, 2 + 3, -2 + 4)
= (-3, 5, 2)


Introduction To 3d Geometry Class 11 Extra Questions Question 3.
Three planes x + y = 0, y + z = 0, and x + z = 0
(a) none of these
(b) meet in a line
(c) meet in a unique point
(d) meet taken two at a time in parallel lines

Answer

Answer: (c) meet in a unique point
Hint:
Given, three planes are
x + y = 0 …….. 1
y + z = 0 …….. 2
and x + z = 0 ……… 3
add these planes, we get
2(x + y + z) = 0
⇒ x + y + z = 0 ……… 4
From equation 1
0 + z = 0
⇒ z = 0
From equation 2
x + 0 = 0
⇒ x = 0
From equation 3
y + 0 = 0
⇒ y = 0
So, (x, y, z) = (0, 0, 0)
Hence, the three planes meet in a unique point.


Important Questions Of 3d Geometry Class 11 Question 4.
The coordinate of foot of perpendicular drawn from the point A(1, 0, 3) to the join of the point B(4, 7, 1) and C(3, 5, 3) are
(a) (5/3, 7/3, 17/3)
(b) (5, 7, 17)
(c) (5/3, -7/3, 17/3)
(d) (5/7, -7/3, -17/3)

Answer

Answer: (a) (5/3, 7/3, 17/3)
Hint:
Let D be the foot of perpendicular and let it divide BC in the ration m : 1
Then the coordinates of D are {(3m + 4)/(m + 1), (5m + 7)/(m + 1), (3m + 1)/(m + 1)}
Now, AD ⊥ BC
⇒ AD . BC = 0
⇒ -(2m + 3) – 2(5m + 7) – 4 = 0
⇒ m = -7/4
So, the coordinate of D are (5/3, 7/3, 17/3)


MCQ On Introduction To Three Dimensional Geometry Class 11 Question 5.
The locus of a point which moves so that the difference of the squares of its distances from two given points is constant, is a
(a) Straight line
(b) Plane
(c) Sphere
(d) None of these

Answer

Answer: (b) Plane
Hint:
Let the position vectors of the given points A and B be a and b respectively and that of the variable point be r.
Now, given that
PA² – PB² = k (constant)
⇒ |AP|² – |BP|² = k
⇒ |r – a|² – |r – b|² = k
⇒ (|r|² + |a|² – 2r.a) – (|r|² + |b|² – 2r.b) = k
⇒ 2r.(b – a) = k + |b|² – |a|²
⇒ r.(b – a) = (k + |b|² – |a|²)/2
⇒ r.(b – a) = C where C = (k + |b|² – |a|²)/2 = constant
So, it represents the equation of a plane.


3d Geometry Class 11 Questions Question 6.
The equation of the set of point P, the sum of whose distance from A(4, 0, 0) and B(-4, 0, 0) is equal to 10 is
(a) 9x² + 25y² + 25z² + 225 = 0
(b) 9x² + 25y² + 25z² – 225 = 0
(c) 9x² + 25y² – 25z² – 225 = 0
(d) 9x² – 25y² – 25z² – 225 = 0

Answer

Answer: (b) 9x² + 25y² + 25z² – 225 = 0
Hint:
Let the point P is (x, y, z)
Now given that
PA + PB = 10
⇒ √{(x-4)² + y² + z²} + √{(x+4)² + y² + z²} = 10
⇒ √{(x-4)² + y² + z²} = 10 – √{(x+4)² + y² + z²}
Now square both side
[√{(x-4)² + y² + z²}]² = (10)² + [{(x+4)² + y² + z²}]² – 2 ×10×√{(x+4)² + y² + z²}
⇒ {(x-4)² + y² + z²} = 100 + {(x+4)² + y² + z²} – 20×√{(x+4)² + y² + z²}
⇒ x² + 16 – 8x + y² + z² = 100 + x² + 16 + 8x + y² + z² – 20×√{(x+4)² + y² + z²}
⇒ – 8x = 100 + 8x – 20×√{(x+4)² + y² + z²}
⇒ -8x -8x – 100 = – 20×√{(x+4)² + y² + z²}
⇒ -16x -100 = – 20×√{(x+4)² + y² + z²}
⇒ 4x + 25 = 5×√{(x+4)² + y² + z²}
Again square both side,
(4x + 25)² = 25 ×[√{(x+4)² + y² + z²}]²
⇒ 16x² + 625 + 200x = 25×{(x+4)² + y² + z²}
⇒ 16x² + 625 + 200x = 25×(x² + 16 + 8x + y² + z²)
⇒ 16x² + 625 + 200x = 25x² + 400 + 200x + 25y² + 25z²
⇒ 25x² + 400 + 200x + 25y² + 25z² – 16x² – 625 – 200x = 0
⇒ 9x² + 25y² + 25z² – 225 = 0


Important Questions Of Three Dimensional Geometry Class 11 Question 7.
The maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is
(a) 3
(b) 4
(c) 5
(d) Can not be find

Answer

Answer: (c) 5
Hint:
Given two points are (3sin θ, 0, 0) and (4cos θ, 0, 0)
Now distance = √{(4cos θ – 3sin θ)² + (0 – 0)² + (0 – 0)²}
⇒ distance = √{(4cos θ – 3sin θ)²}
⇒ distance = 4cos θ – 3sin θ ……………. 1
Now, maximum value of 4cos θ – 3sin θ = √{(4² + (-3)²}
= √(16 + 9)
= √25
= 5
From equation 1, we get
distance = 5
So, the maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is 5


MCQ On 3d Geometry Class 11 Question 8.
A vector r is equally inclined with the coordinate axes. If the tip of r is in the positive octant and |r| = 6, then r is
(a) 2√3(i – j + k)
(b) 2√3(-i + j + k)
(c) 2√3(i + j – k)
(d) 2√3(i + j + k)

Answer

Answer: (d) 2√3(i + j + k)
Hint:
Let l, m, n are DCs of r.
Given, l = m = n
⇒ l² + m² + n² = 1
⇒ 3l² = 1
⇒ l² = 1/3
⇒ l = m = n = 1/√3
So, r = |r|(li + mj + nk)
⇒ r = 6(i/√3 + j/√3 + k/√3)
⇒ r = 2√3(i + j + k)


Class 11 Maths Chapter 12 Important Questions Question 9.
The plane 2x – (1 + a)y + 3az = 0 passes through the intersection of the planes
2x – y = 0 and y + 3z = 0
2x – y = 0 and y – 3z = 0
2x + 3z = 0 and y = 0
2x – 3z = 0 and y = 0

Answer

Answer: (d) A
Hint:
Given, equation of plane is:
2x – (1 + a)y + 3az = 0
=> (2x – y) + a(-y + 3z) = 0
which is passing through the intersection of the planes
2x – y = 0 and -y + 3z = 0
2x – y = 0 and y – 3z = 0


Introduction To 3d Geometry Class 11 Questions Question 10.
If the end points of a diagonal of a square are (1, -2, 3) and (2, -3, 5) then the length of the side of square is
(a) √3 unit
(b) 2√3 unit
(c) 3√3 unit
(d) 4√3 unit

Answer

Answer: (a) √3 unit
Hint:
Let a is the length of the side of a square.
Given, the diagonal of a square are (1,–2,3) and (2, -3, 5)
Now, length of the diagonal of square = √{(1 – 2)² + (-2 + 3)² + (3 – 5)²}
= √{1 + 1 + 4}
= √6
Again length of the diagonal of square is √2 times the length of side of the square.
⇒ a√2 = √6
⇒ a√2 = √3×√2
⇒ a = √3
So, the length of side of square is √3 unit


MCQ Questions For Class 11 Maths With Answers Pdf Download Question 11.
The coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ plane is
(a) (0, 17/2, 13/2)
(b) (0, -17/2, -13/2)
(c) (0, 17/2, -13/2)
(d) None of these

Answer

Answer: (c) (0, 17/2, -13/2)
Hint:
The line passing through the points (5, 1, 6) and (3, 4, 1) is given as
(x-5)/(3-5) = (y-1)/(4-1) = (z-6)/(1-6)
⇒ (x-5)/(-2) = (y-1)/3 = (z-6)/(-5) = k(say)
⇒ (x-5)/(-2) = k
⇒ x – 5 = -2k
⇒ x = 5 – 2k
(y-1)/3 = k
⇒ y – 1 = 3k
⇒ y = 3k + 1
and (z-6)/(-5) = k
⇒ z – 6 = -5k
⇒ z = 6 – 5k
Now, any point on the line is of the form (5 – 2k, 3k + 1, 6 – 5k)
The equation of YZ-plane is x = 0
Since the line passes through YZ-plane
So, 5 – 2k = 0
⇒ k = 5/2
Now, 3k + 1 = 3 × 5/2 + 1 = 15/2 + 1 = 17/2
and 6 – 5k = 6 – 5×5/2 = 6 – 25/2 = -13/2
Hence, the required point is (0, 17/2, -13/2)


Class 11 Maths MCQ Questions Question 12.
The angle between the vectors with direction ratios are 4, -3, 5 and 3, 4, 5 is
(a) π/2
(b) π/3
(c) π/4
(d) π/6

Answer

Answer: (b) π/3
Hint:
Let a is a vector parallel to the vector having direction ratio is 4, -3, 5
⇒ a = 4i – 3j + 5k
Let b is a vector parallel to the vector having direction ratio is 3 ,4, 5
⇒ b = 3i + 4j + 5k
Let θ be the angle between the given vectors.
Now, cos θ = (a . b)/(|a|×|b|)
⇒ cos θ = (12 – 12 + 25)/{√(16 + 9 + 25)×√(9 + 16 + 25)}
⇒ cos θ = 25/{√(50)×√(50)}
⇒ cos θ = 25/50
⇒ cos θ = 1/2
⇒ cos θ = π/3
⇒ θ = π/3
So, the angle between the vectors with direction ratios are 4, -3, 5 and 3, 4, 5 is π/3


Chapter 12 Class 11 Maths Question 13.
The equation of plane passing through the point i + j + k and parallel to the plane r . (2i – j + 2k) = 5 is
(a) r . (2i – j + 2k) = 2
(b) r . (2i – j + 2k) = 3
(c) r . (2i – j + 2k) = 4
(d) r . (2i – j + 2k) = 5

Answer

Answer: (b) r . (2i – j + 2k) = 3
Hint:
The equation of plane parallel to the plane r . (2i – j + 2k) = 5 is
r . (2i – j + 2k) = d
Since it passes through the point i + j + k, therefore
(i + j + k) . (2i – j + 2k) = d
⇒ d = 2 – 1 + 2
⇒ d = 3
So, the required equation of the plane is
r . (2i – j + 2k) = 3


Questions On 3d Geometry Question 14.
A vector r is equally inclined with the coordinate axes. If the tip of r is in the positive octant and |r| = 6, then r is
(a) 2√3(i – j + k)
(b) 2√3(-i + j + k)
(c) 2√3(i + j – k)
(d) 2√3(i + j + k)

Answer

Answer: (d) 2√3(i + j + k)
Hint:
Let l, m, n are DCs of r.
Given, l = m = n
⇒ l² + m² + n² = 1
⇒ 3l² = 1
⇒ l² = 1/3
⇒ l = m = n = 1/√3
So, r = |r|(li + mj + nk)
⇒ r = 6(i/√3 + j/√3 + k/√3)
⇒ r = 2√3(i + j + k)


Chapter 12 Maths Class 11 Question 15.
The maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is
(a) 3
(b) 4
(c) 5
(d) Can not be find

Answer

Answer: (c) 5
Hint:
Given two points are (3sin θ, 0, 0) and (4cos θ, 0, 0)
Now distance = √{(4cos θ – 3sin θ)² + (0 – 0)² + (0 – 0)²}
⇒ distance = √{(4cos θ – 3sin θ)²}
⇒ distance = 4cos θ – 3sin θ …………….1
Now, maximum value of 4cos θ – 3sin θ = √{(4² + (-3)²}
= √(16 + 9)
= √25
= 5
From equation 1, we get
distance = 5
So, the maximum distance between points (3sin θ, 0, 0) and (4cos θ, 0, 0) is 5


Introduction To 3d Geometry Class 11 Formulas Question 16.
The image of the point P(1, 3, 4) in the plane 2x – y + z = 0 is
(a) (-3, 5, 2)
(b) (3, 5, 2)
(c) (3, -5, 2)
(d) (3, 5, -2)

Answer

Answer: (a) (-3, 5, 2)
Hint:
Let image of the point P(1, 3, 4) is Q in the given plane.
The equation of the line through P and normal to the given plane is
(x-1)/2 = (y-3)/-1 = (z-4)/1
Since the line passes through Q, so let the coordinate of Q are (2r + 1, -r + 3, r + 4)
Now, the coordinate of the mid-point of PQ is
(r + 1, -r/2 + 3, r/2 + 4)
Now, this point lies in the given plane.
2(r + 1) – (-r/2 + 3) + (r/2 + 4) + 3 = 0
⇒ 2r + 2 + r/2 – 3 + r/2 + 4 + 3 = 0
⇒ 3r + 6 = 0
⇒ r = -2
Hence, the coordinate of Q is (2r + 1, -r + 3, r + 4) = (-4 + 1, 2 + 3, -2 + 4)
= (-3, 5, 2)


Introduction To Three Dimensional Geometry Ncert Solutions Question 17.
The points on the y- axis which are at a distance of 3 units from the point (2, 3, -1) is
(a) either (0, -1, 0) or (0, -7, 0)
(b) either (0, 1, 0) or (0, 7, 0)
(c) either (0, 1, 0) or (0, -7, 0)
(d) either (0, -1, 0) or (0, 7, 0)

Answer

Answer: (d) either (0, -1, 0) or (0, 7, 0)
Hint:
Let the point on y-axis is O(0, y, 0)
Given point is A(2, 3, -1)
Given OA = 3
⇒ OA² = 9
⇒ (2 – 0)² + (3 – y)² + (-1 – 0)² = 9
⇒ 4 + (3 – y)² + 1 = 9
⇒ 5 + (3 – y)² = 9
⇒ (3 – y)² = 9 – 5
⇒ (3 – y)² = 4
⇒ 3 – y = √4
⇒ 3 – y = ±4
⇒ 3 – y = 4 and 3 – y = -4
⇒ y = -1, 7
So, the point is either (0, -1, 0) or (0, 7, 0)


Question 18.
If α, β, γ are the angles made by a half ray of a line respectively with positive directions of X-axis Y-axis and Z-axis, then sin² α + sin² β + sin² γ =
(a) 1
(b) 0
(c) -1
(d) None of these

Answer

Answer: (d) None of these
Hint:
Let l, m, n be the direction cosines of the given vector.
Then, α, β, γ
l = cos α
m = cos β
n = cos γ
Now, l² + m² + n² = 1
⇒ cos² α + cos² β + cos² γ = 1
⇒ 1 – sin² α + 1 – sin² β + 1 – sin² γ = 1
⇒ 3 – sin² α – sin² β – sin² γ = 1
⇒ 3 – 1 = sin² α + sin² β + sin² γ
⇒ sin² α + sin² β + sin² γ = 2


Question 19.
If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R(3, 5, 6) such that the projections of OP on the axes are 13/5, 19/5, 26/5 respectively, then P divides QR in the ration
(a) 1 : 2
(b) 3 : 2
(c) 2 : 3
(d) 1 : 3

Answer

Answer: (b) 3 : 2
Hint:
Since OP has projections 13/5, 19/5 and 26/5 on the coordinate axes, therefore
OP = 13i/5 + 19j/5 + 26/5k
Let P divides the join of Q(2, 2, 4) and R(3, 5, 6) in the ratio m : 1
Then the position vector of P is
{(3m + 2)/(m + 1), (5m + 2)/(m + 1), (6m + 4)/(m + 1)}
So, 13i/5 + 19j/5 + 26/5k = (3m + 2)/(m + 1)+ (5m + 2)/(m + 1)+ (6m + 4)/(m + 1)
⇒ (3m + 2)/(m + 1) = 13/5
⇒ 2m = 3
⇒ m = 3/2
⇒ m : 1 = 3 : 2
Hence, P divides QR in the ration 3 : 2


Question 20.
In a three dimensional space, the equation 3x – 4y = 0 represents
(a) a plane containing Y axis
(b) none of these
(c) a plane containing Z axis
(d) a plane containing X axis

Answer

Answer: (c) a plane containing Z axis
Hint:
Given, equation is 3x – 4y = 0
Here z = 0
So, the given equation 3x – 4y = 0 represents a plane containing Z axis.


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 12 Introduction to Three Dimensional Geometry with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Introduction to Three Dimensional Geometry MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers

Principle of Mathematical Induction Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Principle of Mathematical Induction Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 4 MCQ With Answers

Maths Class 11 Chapter 4 MCQs On Principle of Mathematical Induction

Mathematical Induction MCQ Question 1.
The sum of the series 1³ + 2³ + 3³ + ………..n³ is
(a) {(n + 1)/2}²
(b) {n/2}²
(c) n(n + 1)/2
(d) {n(n + 1)/2}²

Answer

Answer: (d) {n(n + 1)/2}²
Hint:
Given, series is 1³ + 2³ + 3³ + ……….. n³
Sum = {n(n + 1)/2}²


MCQ On Mathematical Induction Question 2.
If n is an odd positive integer, then an + bn is divisible by :
(a) a² + b²
(b) a + b
(c) a – b
(d) none of these

Answer

Answer: (b) a + b
Hint:
Given number = an + bn
Let n = 1, 3, 5, ……..
an + bn = a + b
an + bn = a³ + b³ = (a + b) × (a² + b² + ab) and so on.
Since, all these numbers are divisible by (a + b) for n = 1, 3, 5,…..
So, the given number is divisible by (a + b)


MCQ Questions On Mathematical Induction Question 3.
1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)}
(a) n(n + 1)
(b) n/(n + 1)
(c) 2n/(n + 1)
(d) 3n/(n + 1)

Answer

Answer: (b) n/(n + 1)
Hint:
Let the given statement be P(n). Then,
P(n): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{n(n + 1)} = n/(n + 1).
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2) = and RHS = 1/(1 + 1) = 1/2.
LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)} = k/(k + 1) ..…(i)
Now 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)} + 1/{(k + 1)(k + 2)}
[1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ….. + 1/{k(k + 1)}] + 1/{(k + 1)(k + 2)}
= k/(k + 1)+1/{ (k + 1)(k + 2)}.
{k(k + 2) + 1}/{(k + 1)²/[(k + 1)k + 2)] using …(ii)
= {k(k + 2) + 1}/{(k + 1)(k + 2}
= {(k + 1)² }/{(k + 1)(k + 2)}
= (k + 1)/(k + 2) = (k + 1)/(k + 1 + 1)
⇒ P(k + 1): 1/(1 ∙ 2) + 1/(2 ∙ 3) + 1/(3 ∙ 4) + ……… + 1/{ k(k + 1)} + 1/{(k + 1)(k + 2)}
= (k + 1)/(k + 1 + 1)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1)is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Mathematical Induction MCQs Pdf Question 4.
The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Answer

Answer: (d) n(n + 1)(2n + 1)/6
Hint:
Given, series is 1² + 2² + 3² + ………..n²
Sum = n(n + 1)(2n + 1)/6


Class 11 Maths Chapter 4 MCQ With Answers Question 5.
{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R

Answer

Answer: (a) 1/(n + 1) for all n ∈ N.
Hint:
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Mathematical Induction MCQs Question 6.
For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Answer

Answer: (c) 5
Hint:
Given, 7n – 2n
Let n = 1
7n – 2n = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7n – 2n = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7n – 2n = 73 – 23 = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7n – 2n is divisible by 5


Principle Of Mathematical Induction Class 11 MCQs Question 7.
1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + …….. + 1/{n(n + 1)(n + 2)} =
(a) {n(n + 3)}/{4(n + 1)(n + 2)}
(b) (n + 3)/{4(n + 1)(n + 2)}
(c) n/{4(n + 1)(n + 2)}
(d) None of these

Answer

Answer: (a) {n(n + 3)}/{4(n + 1)(n + 2)}
Hint:
Let P (n): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……. + 1/{n(n + 1)(n + 2)} = {n(n + 3)}/{4(n + 1)(n + 2)} .
Putting n = 1 in the given statement, we get
LHS = 1/(1 ∙ 2 ∙ 3) = 1/6 and RHS = {1 × (1 + 3)}/[4 × (1 + 1)(1 + 2)] = ( 1 × 4)/(4 × 2 × 3) = 1/6.
Therefore LHS = RHS.
Thus, the given statement is true for n = 1, i.e., P(1) is true.
Let P(k) be true. Then,
P(k): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……… + 1/{k(k + 1)(k + 2)} = {k(k + 3)}/{4(k + 1)(k + 2)}. ……. (i)
Now, 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………….. + 1/{k(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}
= [1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ………..…. + 1/{ k(k + 1)(k + 2}] + 1/{(k + 1)(k + 2)(k + 3)}
= [{k(k + 3)}/{4(k + 1)(k + 2)} + 1/{(k + 1)(k + 2)(k + 3)}] [using(i)]
= {k(k + 3)² + 4}/{4(k + 1)(k + 2)(k + 3)}
= (k³ + 6k² + 9k + 4)/{4(k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 1)(k + 4)}/{4 (k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 4)}/{4(k + 2)(k + 3)
⇒ P(k + 1): 1/(1 ∙ 2 ∙ 3) + 1/(2 ∙ 3 ∙ 4) + ……….….. + 1/{(k + 1)(k + 2)(k + 3)}
= {(k + 1)(k + 2)}/{4(k + 2)(k + 3)}
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


MCQs On Mathematical Induction Question 8.
The nth terms of the series 3 + 7 + 13 + 21 +………. is
(a) 4n – 1
(b) n² + n + 1
(c) none of these
(d) n + 2

Answer

Answer: (b) n² + n + 1
Hint:
Let S = 3 + 7 + 13 + 21 +……….an-1 + an …………1
and S = 3 + 7 + 13 + 21 +……….an-1 + an …………2
Subtract equation 1 and 2, we get
S – S = 3 + (7 + 13 + 21 +……….an-1 + an) – (3 + 7 + 13 + 21 +……….an-1 + an)
⇒ 0 = 3 + (7 – 3) + (13 – 7) + (21 – 13) + ……….+ (an – an-1) – an
⇒ 0 = 3 + {4 + 6 + 8 + ……(n-1)terms} – an
⇒ an = 3 + {4 + 6 + 8 + ……(n-1)terms}
⇒ an = 3 + (n – 1)/2 × {2 ×4 + (n – 1 – 1)2}
⇒ an = 3 + (n – 1)/2 × {8 + (n – 2)2}
⇒ an = 3 + (n – 1) × {4 + n – 2}
⇒ an = 3 + (n – 1) × (n + 2)
⇒ an = 3 + n² + n – 2
⇒ an = n² + n + 1
So, the nth term is n² + n + 1


MCQ On Principle Of Mathematical Induction Question 9.
n(n + 1)(n + 5) is a multiple of ____ for all n ∈ N
(a) 2
(b) 3
(c) 5
(d) 7

Answer

Answer: (b) 3
Hint:
Let P(n) : n(n + 1)(n + 5) is a multiple of 3.
For n = 1, the given expression becomes (1 × 2 × 6) = 12, which is a multiple of 3.
So, the given statement is true for n = 1, i.e. P(1) is true.
Let P(k) be true. Then,
P(k) : k(k + 1)(k + 5) is a multiple of 3
⇒ K(k + 1)(k + 5) = 3m for some natural number m, … (i)
Now, (k + 1)(k + 2)(k + 6) = (k + 1)(k + 2)k + 6(k + 1)(k + 2)
= k(k + 1)(k + 2) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5 – 3) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5) – 3k(k + 1) + 6(k + 1)(k + 2)
= k(k + 1)(k + 5) + 3(k + 1)(k +4) [on simplification]
= 3m + 3(k + 1 )(k + 4) [using (i)]
= 3[m + (k + 1)(k + 4)], which is a multiple of 3
⇒ P(k + 1) : (k + 1 )(k + 2)(k + 6) is a multiple of 3
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Mathematical Induction MCQ Questions Question 10.
Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Answer

Answer: (b) n(n+1)(n+2)/6
Hint:
Let each side of the base contains n shots,
then the number of shots in the lowest layer = n + (n – 1) + (n – 2) + ………..+ 1
= n(n + 1)/2
= (n² + n)/2
Now, write (n – 1), (n – 2), ….. for n, then we obtain the number of shots in 2nd, 3rd…layers
So, Total shots = ∑(n² + n)/2
= (1/2)×{∑n² + ∑n}
= (1/2)×{n(n+1)(2n+1)/6 + n(n+1)/2}
= n(n+1)(n+2)/6


Principle Of Mathematical Induction MCQs Question 11.
For any natural number n, 7n – 2n is divisible by
(a) 3
(b) 4
(c) 5
(d) 7

Answer

Answer: (c) 5
Hint:
Given, 7n – 2n
Let n = 1
7n – 2n = 71 – 21 = 7 – 2 = 5
which is divisible by 5
Let n = 2
7n – 2n = 72 – 22 = 49 – 4 = 45
which is divisible by 5
Let n = 3
7n – 2n = 7³ – 2³ = 343 – 8 = 335
which is divisible by 5
Hence, for any natural number n, 7n – 2n is divisible by 5


Principle Of Mathematical Induction MCQ Question 12.
(n² + n) is ____ for all n ∈ N.
(a) Even
(b) odd
(c) Either even or odd
(d) None of these

Answer

Answer: (a) Even
Hint:
Let P(n): (n² + n) is even.
For n = 1, the given expression becomes (1² + 1) = 2, which is even.
So, the given statement is true for n = 1, i.e., P(1)is true.
Let P(k) be true. Then,
P(k): (k² + k) is even
⇒ (k² + k) = 2m for some natural number m. ….. (i)
Now, (k + 1)² + (k + 1) = k² + 3k + 2
= (k² + k) + 2(k + 1)
= 2m + 2(k + 1) [using (i)]
= 2[m + (k + 1)], which is clearly even.
Therefore, P(k + 1): (k + 1)² + (k + 1) is even
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n)is true for all n ∈ N.


Principle Of Mathematical Induction Class 11 Extra Questions Question 13.
For all n ∈ N, 3×52n+1 + 23n+1 is divisible by
(a) 19
(b) 17
(c) 23
(d) 25

Answer

Answer: (b) 17
Hint:
Given, 3 × 52n+1 + 23n+1
Let n = 1,
3 × 52×1+1 + 23×1+1 = 3 × 52+1 + 23+1 = 3 × 5³ + 24 = 3 × 125 + 16 = 375 + 16 = 391
Which is divisible by 17
Let n = 2,
3 × 52×2+1 + 23×2+1 = 3 × 54+1 + 26+1 = 3 × 55 + 27 = 3 × 3125 + 128 = 9375 + 128
= 9503
Which is divisible by 17
Hence, For all n ∈ N, 3 × 52n+1 + 23n+1 is divisible by 17


Maths MCQs For Class 11 With Answers Pdf Question 14.
Find the number of shots arranged in a complete pyramid the base of which is an equilateral triangle, each side containing n shots.
(a) n(n+1)(n+2)/3
(b) n(n+1)(n+2)/6
(c) n(n+2)/6
(d) (n+1)(n+2)/6

Answer

Answer: (b) n(n+1)(n+2)/6
Hint:
Let each side of the base contains n shots,
then the number of shots in the lowest layer = n + (n – 1) + (n – 2) + ………..+ 1
= n(n + 1)/2
= (n² + n)/2
Now, write (n – 1), (n – 2), ….. for n, then we obtain the number of shots in 2nd, 3rd…layers
So, Total shots = ∑(n² + n)/2
= (1/2) × {∑n² + ∑n}
= (1/2) × {n(n+1)(2n+1)/6 + n(n+1)/2}
= n(n+1)(n+2)/6


Question 15.
{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} =
(a) 1/(n + 1) for all n ∈ N.
(b) 1/(n + 1) for all n ∈ R
(c) n/(n + 1) for all n ∈ N.
(d) n/(n + 1) for all n ∈ R

Answer

Answer: (a) 1/(n + 1) for all n ∈ N.
Hint:
Let the given statement be P(n). Then,
P(n): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. {1 – 1/(n + 1)} = 1/(n + 1).
When n = 1, LHS = {1 – (1/2)} = ½ and RHS = 1/(1 + 1) = ½.
Therefore LHS = RHS.
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 1)
Now, [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] ∙ [1 – {1/(k + 2)}]
= [1/(k + 1)] ∙ [{(k + 2 ) – 1}/(k + 2)}]
= [1/(k + 1)] ∙ [(k + 1)/(k + 2)]
= 1/(k + 2)
Therefore p(k + 1): [{1 – (1/2)}{1 – (1/3)}{1 – (1/4)} ……. [1 – {1/(k + 1)}] = 1/(k + 2)
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Question 16.
(1 + x)n ≥ ____ for all n ∈ N,where x > -1
(a) 1 + nx
(b) 1 – nx
(c) 1 + nx/2
(d) 1 – nx/2

Answer

Answer: (a) 1 + nx
Hint:
Let P(n): (1 + x) )n ≥ (1 + nx).
For n = 1, we have LHS = (1 + x))1 = (1 + x), and
RHS = (1 + 1 ∙ x) = (1 + x).
Therefore LHS ≥ RHS is true.
Thus, P(1) is true.
Let P(k) is true. Then,
P(k): (1 + x)1 ≥ (1 + kx). …….. (i)
Now,(1 + x)k+1 = (1 + x)k (1 + x)
≥ (1 + kx)(1 + x) [using (i)]
=1 + (k + 1)x + kx²
≥ 1 + (k + 1)x + x [Since kx² ≥ 0]
Therefore P(k + 1) : (1 + x)k + 1 ≥ 1 + (k + 1)x
⇒ P(k +1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true. Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Question 17.
102n-1 + 1 is divisible by ____ for all N ∈ N
(a) 9
(b) 10
(c) 11
(d) 13

Answer

Answer: (c) 11
Hint:
Let P (n): (102n-1 + 1) is divisible by 11.
For n=1, the given expression becomes {10(2×1-1) + 1} = 11, which is divisible by 11.
So, the given statement is true for n = 1, i.e., P (1) is true.
Let P(k) be true. Then,
P(k): (102k-1 + 1) is divisible by 11
⇒ (102k-1 + 1) = 11 m for some natural number m.
Now, {102(k-1)-1 – 1 + 1} = (102k+1 + 1) = {10² ∙ 10(2k+1)+ 1}
= 100 × {102k-1 + 1 } – 99
= (100 × 11 m) – 99
= 11 × (100 m – 9), which is divisible by 11
⇒ P (k + 1) : {102(k-1) – 1 + 1} is divisible by 11
⇒ P (k + 1) is true, whenever P(k) is true.
Thus, P (1) is true and P(k + 1) is true , whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for all n ∈ N.


Question 18.
For all n∈N, 72n − 48n−1 is divisible by :
(a) 25
(b) 2304
(c) 1234
(d) 26

Answer

Answer: (b) 2304
Hint:
Given number = 72n − 48n − 1
Let n = 1, 2 ,3, 4, ……..
72n − 48n − 1 = 7² − 48 − 1 = 49 – 48 – 1 = 49 – 49 = 0
72n − 48n − 1 = 74 − 48 × 2 − 1 = 2401 – 96 – 1 = 2401 – 97 = 2304
72n − 48n − 1 = 76 − 48 × 3 − 1 = 117649 – 144 – 1 = 117649 – 145 = 117504 = 2304 × 51
Since, all these numbers are divisible by 2304 for n = 1, 2, 3,…..
So, the given number is divisible by 2304


Question 19.
The sum of the series 1² + 2² + 3² + ………..n² is
(a) n(n + 1)(2n + 1)
(b) n(n + 1)(2n + 1)/2
(c) n(n + 1)(2n + 1)/3
(d) n(n + 1)(2n + 1)/6

Answer

Answer: (d) n(n + 1)(2n + 1)/6
Hint:
Given, series is 1² + 2² + 3² + ………..n²
Sum = n(n + 1)(2n + 1)/6


Question 20.
{1/(3 ∙ 5)} + {1/(5 ∙ 7)} + {1/(7 ∙ 9)} + ……. + 1/{(2n + 1)(2n + 3)} =
(a) n/(2n + 3)
(b) n/{2(2n + 3)}
(c) n/{3(2n + 3)}
(d) n/{4(2n + 3)}

Answer

Answer: (c) n/{3(2n + 3)}
Hint:
Let the given statement be P(n). Then,
P(n): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + ……. + 1/{(2n + 1)(2n + 3)} = n/{3(2n + 3).
Putting n = 1 in the given statement, we get
and LHS = 1/(3 ∙ 5) = 1/15 and RHS = 1/{3(2 × 1 + 3)} = 1/15.
LHS = RHS
Thus, P(1) is true.
Let P(k) be true. Then,
P(k): {1/(3 ∙ 5) + 1/(5 ∙ 7) + 1/(7 ∙ 9) + …….. + 1/{(2k + 1)(2k + 3)} = k/{3(2k + 3)} ….. (i)
Now, 1/(3 ∙ 5) + 1/(5 ∙ 7) + ..…… + 1/[(2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}2(k + 1) + 3
= {1/(3 ∙ 5) + 1/(5 ∙ 7) + ……. + [1/(2k + 1)(2k + 3)]} + 1/{(2k + 3)(2k + 5)}
= k/[3(2k + 3)] + 1/[2k + 3)(2k + 5)] [using (i)]
= {k(2k + 5) + 3}/{3(2k + 3)(2k + 5)}
= (2k² + 5k + 3)/[3(2k + 3)(2k + 5)]
= {(k + 1)(2k + 3)}/{3(2k + 3)(2k + 5)}
= (k + 1)/{3(2k + 5)}
= (k + 1)/[3{2(k + 1) + 3}]
= P(k + 1) : 1/(3 ∙ 5) + 1/(5 ∙ 7) + …….. + 1/[2k + 1)(2k + 3)] + 1/[{2(k + 1) + 1}{2(k + 1) + 3}]
= (k + 1)/{3{2(k + 1) + 3}]
⇒ P(k + 1) is true, whenever P(k) is true.
Thus, P(1) is true and P(k + 1) is true, whenever P(k) is true.
Hence, by the principle of mathematical induction, P(n) is true for n ∈ N.


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 4 Principle of Mathematical Induction with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Principle of Mathematical Induction MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ:

MCQ Questions for Class 11 Maths Chapter 11 Conic Sections with Answers

Conic Sections Class 11 MCQ Online Test With Answers Questions

Check the below NCERT MCQ Questions for Class 11 Maths Chapter 11 Conic Sections with Answers Pdf free download. MCQ Questions for Class 11 Maths with Answers were prepared based on the latest exam pattern. We have provided Conic Sections Class 11 Maths MCQs Questions with Answers to help students understand the concept very well.

Class 11 Maths Chapter 11 MCQ With Answers

Maths Class 11 Chapter 11 MCQs On Conic Sections

MCQ On Conic Sections Class 11 Chapter 11 Question 1.
The locus of the point from which the tangent to the circles x² + y² – 4 = 0 and x² + y² – 8x + 15 = 0 are equal is given by the equation
(a) 8x + 19 = 0
(b) 8x – 19 = 0
(c) 4x – 19 = 0
(d) 4x + 19 = 0

Answer

Answer: (b) 8x – 19 = 0
Hint:
Given equation of circles are x² + y² – 4 = 0 and x² + y² – 8x + 15 = 0
Now, the required line is the radical axis of the two circles are
(x² + y² – 4) – (x² + y² – 8x + 15) = 0
⇒ x² + y² – 4 – x² – y² + 8x – 15 = 0
⇒ 8x – 19 = 0


MCQ On Circle Class 11 Chapter 11 Question 2.
The perpendicular distance from the point (3, -4) to the line 3x – 4y + 10 = 0
(a) 7
(b) 8
(c) 9
(d) 10

Answer

Answer: (a) 7
Hint:
The perpendicular distance = {3 × 3 – 4 × (-4) + 10}/√(3² + 4²)
= {9 + 16 + 10}/√(9 + 16)
= 35/√25
= 35/5
= 7


Conic Sections Class 11 MCQ Chapter 11 Question 3.
A man running a race course notes that the sum of the distances from the two flag posts from him is always 10 meter and the distance between the flag posts is 8 meter. The equation of posts traced by the man is
(a) x²/9 + y²/5 = 1
(b) x²/9 + y2 /25 = 1
(c) x²/5 + y²/9 = 1
(d) x²/25 + y²/9 = 1

Answer

Answer: (d) x²/25 + y²/9 = 1
Hint:
MCQ Questions for Class 11 Maths Chapter 11 Conic Sections with Answers 1
From the question, it is clear that the path traced by the man is an ellipse having its foci at two posts.
Let the equation of the ellipse be
x²/a² + y²/b² = 1
It is given that the sum of the distances of the man from the two flag posts is 10 m
This means that the sum of focal distances of a point on the ellipse is 10 m
⇒ PS + PS1 = 10
⇒ 2a = 10
⇒ a = 5
Again, given that the distance between the flag posts is 8 meters
⇒ 2ae = 8
⇒ ae = 4
Now, b² = a² (1 – e²)
⇒ b² = a² – a² e²
⇒ b² = a² – (ae)²
⇒ b² = 5² – 4²
⇒ b² = 25 – 16
⇒ b² = 9
⇒ b = 3
Hence, the equation of the path is x²/5² + y²/3² = 1
⇒ x²/25 + y²/9 = 1


Conic Section MCQ Chapter 11 Question 4.
The center of the ellipse (x + y – 2)² /9 + (x – y)² /16 = 1 is
(a) (0, 0)
(b) (0, 1)
(c) (1, 0)
(d) (1, 1)

Answer

Answer: (d) (1, 1)
Hint:
The center of the given ellipse is the point of intersection of the lines
x + y – 2 = 0 and x – y = 0
After solving, we get
x = 1, y = 1
So, the center of the ellipse is (1, 1)


Question 5.
The parametric coordinate of any point of the parabola y² = 4ax is
(a) (-at², -2at)
(b) (-at², 2at)
(c) (a sin²t, -2a sin t)
(d) (a sin t, -2a sin t)

Answer

Answer: (c) (a sin²t, -2a sin t)
Hint:
The point (a sin²t, -2a sin t) satisfies the equation of the parabola y² = 4ax for all
values of t. So, the parametric coordinate of any point of the parabola y² = 4ax is
(a sin²t, -2a sin t)


Question 6.
The equation of parabola with vertex at origin the axis is along x-axis and passing through the point (2, 3) is
(a) y² = 9x
(b) y² = 9x/2
(c) y² = 2x
(b) y² = 2x/9

Answer

Answer: (b) y² = 9x/2
Hint:
A parabola with its axis along the x-axis and vertex(0, 0) and direction x = -a has the equation:
y² = 4ax ………….. 1
Given, point (2,3) lies on the parabola,
⇒ 3² = 4a × 2
⇒ 9 = 4a × 2
⇒ 9/2 = 4a
From equation 1, we get
y² = (9/2)x
⇒ y² = 9x/2
This is the required equation of the parabola.


Question 7.
At what point of the parabola x² = 9y is the abscissa three times that of ordinate
(a) (1, 1)
(b) (3, 1)
(c) (-3, 1)
(d) (-3, -3)

Answer

Answer: (b) (3, 1)
Hint:
Given, parabola is x² = 9y
Let P(h, k) is the point on the parabola such that abscissa is 3 times the ordinate.
So, h = 3k ……… 1
Since P(h, k) lies on the parabola
So, h² = 9k ……… 2
From equation 1 and 2, we get
(3k)² = 9k
⇒ 9k² = 9k
⇒ 9k² – 9k = 0
⇒ 9k(k – 1) = 0
⇒ k = 0, 1
When k = 0, h = 0
So k = 1
Now, from equation 1,
h = 3 × 1 = 3
So, the point is (3, 1)


Question 8.
The number of tangents that can be drawn from (1, 2) to x² + y² = 5 is
(a) 0
(b) 1
(c) 2
(d) More than 2

Answer

Answer: (b) 1
Hint:
Given point (1, 2) and equation of circle is x² + y² = 5
Now, x² + y² – 5 = 0
Put (1, 2) in this equation, we get
1² + 2² – 5 = 1 + 4 – 5 = 5 – 5 = 0
So, the point (1, 2) lies on the circle.
Hence, only one tangent can be drawn.


Question 9.
In an ellipse, the distance between its foci is 6 and its minor axis is 8 then its eccentricity is
(a) 4/5
(b) 1/√52
(c) 3/5
(d) 1/2

Answer

Answer: (c) 3/5
Hint:
Given, distance between foci = 6
⇒ 2ae = 6
⇒ ae = 3
Again minor axis = 8
⇒ 2b = 8
⇒ b = 4
⇒ b² = 16
⇒ a² (1 – e²) = 16
⇒ a² – a² e² = 16
⇒ a² – (ae)² = 16
⇒ a² – 3² = 16
⇒ a² – 9 = 16
⇒ a² = 9 + 16
⇒ a² = 25
⇒ a = 5
Now, ae = 3
⇒ 5e = 3
⇒ e = 3/5
So, the eccentricity is 3/5


Question 10.
If the length of the tangent from the origin to the circle centered at (2, 3) is 2 then the equation of the circle is
(a) (x + 2)² + (y – 3)² = 3²
(b) (x – 2)² + (y + 3)² = 3²
(c) (x – 2)² + (y – 3)² = 3²
(d) (x + 2)² + (y + 3)² = 3²

Answer

Answer: (c) (x – 2)² + (y – 3)² = 3²
Hint:
Radius of the circle = √{(2 – 0)² + (3 – 0)² – 2²}
= √(4 + 9 – 4)
= √9
= 3
So, the equation of the circle = (x – 2)² + (y – 3)² = 3²


Question 11.
The equation of parabola whose focus is (3, 0) and directrix is 3x + 4y = 1 is
(a) 16x² – 9y² – 24xy – 144x + 8y + 224 = 0
(b) 16x² + 9y² – 24xy – 144x + 8y – 224 = 0
(c) 16x² + 9y² – 24xy – 144x – 8y + 224 = 0
(d) 16x² + 9y² – 24xy – 144x + 8y + 224 = 0

Answer

Answer: (d) 16x² + 9y² – 24xy – 144x + 8y + 224 = 0
Hint:
Given focus S(3, 0)
and equation of directrix is: 3x + 4y = 1
⇒ 3x + 4y – 1 = 0
Let P (x, y) be any point on the required parabola and let PM be the length of the perpendicular from P on the directrix
Then, SP = PM
⇒ SP² = PM²
⇒ (x – 3)² + (y – 0)² = {(3x + 4y – 1) /{√(3² + 4²)}²
⇒ x² + 9 – 6x + y² = (9x² + 16y² + 1 + 24xy – 8y – 6x)/25
⇒ 25(x² + 9 – 6x + y²) = 9x² + 16y² + 1 + 24xy – 8y – 6x
⇒ 25x² + 225 – 150x + 25y² = 9x² + 16y² + 1 + 24xy – 8y – 6x
⇒ 25x² + 225 – 150x + 25y² – 9x² – 16y² – 1 – 24xy + 8y + 6x = 0
⇒ 16x² + 9y² – 24xy – 144x + 8y + 224 = 0
This is the required equation of parabola.


Question 12.
The parametric representation (2 + t², 2t + 1) represents
(a) a parabola
(b) a hyperbola
(c) an ellipse
(d) a circle

Answer

Answer: (a) a parabola
Hint:
Let x = 2 + t²
⇒ x – 2 = t² ……….. 1
and y = 2t + 1
⇒ y – 1 = 2t
⇒ (y – 1)/2 = t
From equation 1, we get
x – 2 = {(y – 1)/2}²
⇒ x – 2 = (y – 1)²/4
⇒ (y – 1)² = 4(x – 2)
This represents the equation of a parabola.


Question 13.
The equation of a hyperbola with foci on the x-axis is
(a) x²/a² + y²/b² = 1
(b) x²/a² – y²/b² = 1
(c) x² + y² = (a² + b²)
(d) x² – y² = (a² + b²)

Answer

Answer: (b) x²/a² – y²/b² = 1
Hint:
The equation of a hyperbola with foci on the x-axis is defined as
x²/a² – y²/b² = 1


Question 14.
The equation of parabola with vertex (-2, 1) and focus (-2, 4) is
(a) 10y = x² + 4x + 16
(b) 12y = x² + 4x + 16
(c) 12y = x² + 4x
(d) 12y = x² + 4x + 8

Answer

Answer: (b) 12y = x² + 4x + 16
Hint:
Given, parabola having vertex is (-2, 1) and focus is (-2, 4)
As the vertex and focus share the same abscissa i.e. -2,
parabola axis of symmetry as x = -2
⇒ x + 2 = 0
Hence, the equation of a parabola is of the type
(y – k) = a(x – h)² where (h, k) is vertex
Now, focus = (h, k + 1/4a)
Since, vertex is (-2, 1) and parabola passes through vertex
So, focus = (-2, 1 + 1/4a)
Now, 1 + 1/4a = 4
⇒ 1/4a = 4 -1
⇒ 1/4a = 3
⇒ 4a = 1/3
⇒ a = /1(3 × 4)
⇒ a = 1/12
Now, equation of parabola is
(y – 1) = (1/12) × (x + 2)²
⇒ 12(y – 1) = (x + 2)²
⇒ 12y – 12 = x² + 4x + 4
⇒ 12y = x² + 4x + 4 + 12
⇒ 12y = x² + 4x + 16
This is the required equation of parabola.


Question 15.
If a parabolic reflector is 20 cm in diameter and 5 cm deep then the focus of parabolic reflector is
(a) (0 0)
(b) (0, 5)
(c) (5, 0)
(d) (5, 5)

Answer

Answer: (c) (5, 0)
Hint:
MCQ Questions for Class 11 Maths Chapter 11 Conic Sections with Answers 2
given diameter of the parabola is 20 m.
The equation of parabola is y² = 4ax.
Since this parabola passes through the point A(5,10) then
10² = 4a×5
⇒ 20a = 100
⇒ a = 100/20
⇒ a = 5
So focus of parabola is (a, 0) = (5, 0)


Question 16.
The radius of the circle 4x² + 4y² – 8x + 12y – 25 = 0 is?
(a) √57/4
(b) √77/4
(c) √77/2
(d) √87/4

Answer

Answer: (c) √77/2
Hint:
Given, equation fo the of the circle is 4x² + 4y² – 8x + 12y – 25 = 0
⇒ x² + y² – 8x/4 + 12y/4 – 25/4 = 0
⇒ x² + y² – 2x + 3y – 25/4 = 0
Now, radius = √{(-2)² + (3)² – (-25/4)}
= √{4 + 9 + 25/4}
= √{13 + 25/4}
= √{(13×4 + 25)/4}
= √{(52 + 25)/4}
= √{77/4}
= √77/2


Question 17.
If (a, b) is the mid point of a chord passing through the vertex of the parabola y² = 4x, then
(a) a = 2b
(b) 2a = b
(c) a² = 2b
(d) 2a = b²

Answer

Answer: (d) 2a = b²
Hint:
Let P(x, y) be the coordinate of the other end of the chord OP where O(0, 0)
Now, (x + 0)/2 = a
⇒ x = 2a
and (y + 0)/2 = b
⇒ y = 2b
Now, y² = 4x
⇒ (2b)² = 4 × 2a
⇒ 4b² = 8a
⇒ b² = 2a


Question 18.
A rod of length 12 CM moves with its and always touching the co-ordinate Axes. Then the equation of the locus of a point P on the road which is 3 cm from the end in contact with the x-axis is
(a) x²/81 + y²/9 = 1
(b) x²/9 + y²/81 = 1
(c) x²/169 + y²/9 = 1
(d) x²/9 + y²/169 = 1

Answer

Answer: (a) x²/81 + y²/9 = 1
Hint:
Given a rod of length 12 cm moves with its ends always touching the coordinate axes.
Again given a point P on the rod, which is 3 cm from the end in contact with the x-axis.
It is shown in the figure.
MCQ Questions for Class 11 Maths Chapter 11 Conic Sections with Answers 3
Here AP = 3 cm, AB = 12
Now BP = AB – AP
⇒ BP = 12 – 3
⇒ BP = 9 cm
Again from figure,
∠PAO = ∠BPO = θ (since PQ || OA and are corresponding angles)
Now in ΔBPO,
cosθ = QP/BP
⇒ cosθ = x/9 …………. 1
Again in ΔPAr,
sinθ = PR/PA
⇒ sinθ = y/3 …….. 2
Now square equation 1 and 2 and then add them, we get
cos² θ + sin² θ = x²/81 + y²/9
⇒ x²/81 + y²/9 = 1 (since cos² θ + sin² θ = 1 )
So, the equation of the locus of a point P is x²/81 + y²/9 = 1


Question 19.
The line lx + my + n = 0 will touches the parabola y² = 4ax if
(a) ln = am²
(b) ln = am
(c) ln = a² m²
(d) ln = a² m

Answer

Answer: (a) ln = am²
Hint:
Given, lx + my + n = 0
⇒ my = -lx – n
⇒ y = (-l/m)x + (-n/m)
This will touches the parabola y² = 4ax if
(-n/m) = a/(-l/m)
⇒ (-n/m) = (-am/l)
⇒ n/m = am/l
⇒ ln = am²


Question 20.
The center of the circle 4x² + 4y² – 8x + 12y – 25 = 0 is?
(a) (2,-3)
(b) (-2,3)
(c) (-4,6)
(d) (4,-6)

Answer

Answer: (a) (2,-3)
Hint:
Given, equation fo the of the circle is 4x² + 4y² – 8x + 12y – 25 = 0
⇒ x² + y² – 8x/4 + 12y/4 – 25/4 = 0
⇒ x² + y² – 2x + 3y – 25/4 = 0
Now, center = {-(-2), -3} = (2, -3)


We hope the given NCERT MCQ Questions for Class 11 Maths Chapter 11 Conic Sections with Answers Pdf free download will help you. If you have any queries regarding CBSE Class 11 Maths Conic Sections MCQs Multiple Choice Questions with Answers, drop a comment below and we will get back to you soon.

Class 11 Maths MCQ: