RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2

Other Exercises

Question 1.
Construct a triangle of sides 4 cm, 5 cm and 6 cm and then a triangle similar to it whose sides are (2/3) of the corresponding sides of it.
Solution:
Steps of construction :
(i)
Draw a line segment BC = 5 cm.
(ii) With centre B and radius 4 cm and with centre C and radius 6 cm, draw arcs intersecting each other at A.
(iii) Join AB and AC. Then ABC is the triangle.
(iv) Draw a ray BX making an acute angle with BC and cut off 3 equal parts making BB1 = B1B2= B2B3.
(v) Join B3C.
(vi) Draw B’C’ parallel to B3C and C’A’ parallel to CA then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 1

Question 2.
Construct a triangle similar to a given ΔABC such that each of its sides is (5/7)th of the corresponding sides of ΔABC. It is given that AB = 5 cm, BC = 7 cm and ∠ABC = 50°.
Solution:
Steps of construction :
(i) Draw a line segment BC = 7 cm.
(ii) Draw a ray BX making an angle of 50° and cut off BA = 5 cm.
(iii) Join AC. Then ABC is the triangle.
(iv) Draw a ray BY making an acute angle with BC and cut off 7 equal parts making BB, =B1B2=B2B3=B3B4=B4Bs=B5B6=B6B7
(v) Join B7 and C
(vi) Draw B5C’ parallel to B7C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 2

Question 3.
Construct a triangle similar to a given ∠ABC such that each of its sides is \(\frac { 2 }{ 3 }\)rd of the corresponding sides of ΔABC. It is given that BC = 6 cm, ∠B = 50° and ∠C = 60°.
Solution:
Steps of construction :
(i) Draw a line segment BC = 6 cm.
(ii) Draw a ray BX making an angle of 50° and CY making 60° with BC which intersect each other at A. Then ABC is the triangle.
(iii) From B, draw another ray BZ making an acute angle below BC and intersect 3 equal parts making BB1 =B1B2 = B2B2
(iv) Join B3C.
(v) From B2, draw B2C’ parallel to B3C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 3

Question 4.
Draw a ΔABC in which BC = 6 cm, AB = 4 cm and AC = 5 cm. Draw a triangle similar to ΔABC with its sides equal to \(\frac { 3 }{ 4 }\)th of the corresponding sides of ΔABC.
Solution:
Steps of construction :
(i)
Draw a line segment BC = 6 cm.
(ii) With centre B and radius 4 cm and with centre C and radius 5 cm, draw arcs’intersecting eachother at A.
(iii) Join AB and AC. Then ABC is the triangle,
(iv) Draw a ray BX making an acute angle with BC and cut off 4 equal parts making BB1=  B1B= B2B3 = B3B4.
(v) Join B4 and C.
(vi) From B3C draw C3C’ parallel to B4C and from C’, draw C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 4

Question 5.
Construct a triangle with sides 5 cm, 6 cm and 7 cm and then another triangle whose sides are \(\frac { 7 }{ 5 }\) of the corresponding sides of the first triangle.
Solution:
Steps of construction :
(i) Draw a line segment BC = 5 cm.
(ii) With centre B and radius 6 cm and with centre C and radius 7 cm, draw arcs intersecting eachother at A.
(iii) Join AB and AC. Then ABC is the triangle.
(iv) Draw a ray BX making an acute angle with BC and cut off 7 equal parts making BB1 = B1B2 = B2B3 = B3B4 = B4B5 = B5B6 = B6B7.
(v) Join B5 and C.
(vi) From B7, draw B7C’ parallel to B5C and C’A’ parallel CA. Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 5

Question 6.
Draw a right triangle ABC in which AC = AB = 4.5 cm and ∠A = 90°. Draw a triangle similar to ΔABC with its sides equal to (\(\frac { 5 }{ 4 }\))th ot the corresponding sides of ΔABC.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 4.5 cm.
(ii) At A, draw a ray AX perpendicular to AB and cut off AC = AB = 4.5 cm.
(iii) Join BC. Then ABC is the triangle.
(iv) Draw a ray AY making an acute angle with AB and cut off 5 equal parts making AA1 = A1A2 = A2A3 =A3A4 = A4A5
(v) Join A4 and B.
(vi) From 45, draw 45B’ parallel to  A4B and  B’C’ parallel to BC.
Then ΔAB’C’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 6

Question 7.
Draw a right triangle in which the sides (other than hypotenuse) are of lengths 5 cm and 4 cm. Then construct another triangle whose sides are \(\frac { 5 }{ 3 }\) times the corresponding sides of the given triangle.  (C.B.S.E. 2008)
Solution:
Steps of construction :
(i)
Draw a line segment BC = 5 cm.
(ii) At B, draw perpendicular BX and cut off BA = 4 cm.
(iii )join Ac , then ABC is the triangle
(iv) Draw a ray BY making an acute angle with BC, and cut off 5 equal parts making BB1 = B1B2 = B2B3 = B3B4 = B4B5
(v) Join B3 and C.
(vi) From B5, draw B5C’ parallel to B3C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 7

Question 8.
Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are \(\frac { 3 }{ 2 }\) times the corresponding sides of the isosceles triangle.
Solution:
Steps of construction :
(i) Draw a line segment BC = 8 cm and draw its perpendicular bisector DX and cut off DA = 4 cm.
(ii) Join AB and AC. Then ABC is the triangle.
(iii) Draw a ray DY making an acute angle with OA and cut off 3 equal parts making DD1 = D1D2 =D2D3 = D3D4
(iv) Join D2
(v) Draw D3A’ parallel to D2A and A’B’ parallel to AB meeting BC at C’ and B’ respectively.
Then ΔB’A’C’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 8

Question 9.
Draw a ΔABC with side BC = 6 cm, AB = 5 cm and ∠ABC = 60°. Then construct a trianglewhose sides are \((\frac { 3 }{ 4 } )\)th of the corresponding sides of the ΔABC.
Solution:
Steps of construction :
(i)
Draw a line segment BC = 6 cm.
(ii) At B, draw a ray BX making an angle of 60° with BC and cut off BA = 5 cm.
(iii) Join AC. Then ABC is the triangle.
(iv) Draw a ray BY making an acute angle with BC and cut off 4 equal parts making BB1= B1B2  B2B3=B3B4.
(v) Join B4 and C.
(vi) From B3, draw B3C’ parallel to B4C and C’A’ parallel to CA.
Then ΔA’BC’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 9

Question 10.
Construct a triangle similar to ΔABC in which AB = 4.6 cm, BC = 5.1 cm,∠A = 60° with scale factor 4 : 5.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 4.6 cm.
(ii) At A, draw a ray AX making an angle of 60°.
(iii) With centre B and radius 5.1 cm draw an arc intersecting AX at C.
(iv) Join BC. Then ABC is the triangle.
(v) From A, draw a ray AX making an acute angle with AB and cut off 5 equal parts making AA1 = A1A2 = A2A3 = A3A4=A4A5.
(vi) Join A4 and B.
(vii) From A5, drawA5B’ parallel to A4B and B’C’ parallel to BC.
Then ΔC’AB’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 10

Question 11.
Construct a triangle similar to a given ΔXYZ with its sides equal to \((\frac { 3 }{ 2 })\) th of the corresponding sides of ΔXYZ. Write the steps of construction.                      [CBSE 1995C]
Solution:
Steps of construction :
(i)
Draw a triangle XYZ with some suitable data.
(ii) Draw a ray YL making an acute angle with XZ and cut off 5 equal parts making YY1= Y1Y2 = Y2Y3 = Y3Y4.
(iii) Join Y4 and Z.
(iv) From Y3, draw Y3Z’ parallel to Y4Z and Z’X’ parallel to ZX.
Then ΔX’YZ’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 11

Question 12.
Draw a right triangle in which sides (other than the hypotenuse) are of lengths 8 cm and 6 cm. Then construct another triangle whose sides are \(\frac { 3 }{ 4 }\) times the corresponding sides of the first triangle.
Solution:
(i) Draw right ΔABC right angle at B and BC = 8 cm and BA = 6 cm.
(ii) Draw a line BY making an a cut angle with BC and cut off 4 equal parts.
(iii) Join 4C and draw 3C’ || 4C and C’A’ parallel to CA.
The BC’A’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 12

Question 13.
Construct a triangle with sides 5 cm, 5.5 cm and 6.5 cm. Now construct another triangle, whose sides are 3/5 times the corresponding sides of the given triangle. [CBSE 2014]
Solution:
Steps of construction:
(i) Draw a line segment BC = 5.5 cm.
(ii) With centre B and radius 5 cm and with centre C and radius 6.5 cm, draw arcs which intersect each other at A
(iii) Join BA and CA.
ΔABC is the given triangle.
(iv) At B, draw a ray BX making an acute angle and cut off 5 equal parts from BX.
(v) Join C5 and draw 3D || 5C which meets BC at D.
From D, draw DE || CA which meets AB at E.
∴ ΔEBD is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 13

Question 14.
Construct a triangle PQR with side QR = 7 cm, PQ = 6 cm and ∠PQR = 60°. Then construct another triangle whose sides are 3/5 of the corresponding sides of ΔPQR. [CBSE 2014]
Solution:
Steps of construction:
(i)
Draw a line segment QR = 7 cm.
(ii) At Q draw a ray QX making an angle of 60° and cut of PQ = 6 cm. Join PR.
(iii) Draw a ray QY making an acute angle and cut off 5 equal parts.
(iv) Join 5, R and through 3, draw 3, S parallel to 5, R which meet QR at S.
(v) Through S, draw ST || RP meeting PQ at T.
∴ ΔQST is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 14

Question 15.
Draw a ΔABC in which base BC = 6 cm, AB = 5 cm and ∠ABC = 60°. Then construct another triangle whose sides are \(\frac { 3 }{ 4 }\) of the corresponding sides of ΔABC.    [CBSE 2017]
Solution:
Steps of construction:

  1. Draw a triangle ABC with side BC = 6 cm, AB = 5 cm and ∠ABC = 60°.
  2.  Draw a ray BX, which makes an acute angle ∠CBX below the line BC.
  3. Locate four points B1, B2, B3and Bon BX such that BB1 = B1B2=B2B3 = B3B4.
  4. Join B4C and draw a line through B3 parallel to B4C intersecting BC to C’.
  5. Draw a line through C’ parallel to the line CA to intersect BA at A’.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 15

Question 16.
Draw a right triangle in which the sides (other than the hypotenuse) arc of lengths 4 cm and 3 cm. Now, construct another triangle whose sides are \(\frac { 5 }{ 3 }\) times the corresponding sides of the given triangle. [CBSE 2017]
Solution:
Steps of construction:

  1. Draw a right triangle ABC in which the sides (other than hypotenuse) are of lengths 4 cm and 3 cm. ∠B = 90°.
  2. Draw a line BX, which makes an acute angle ∠CBX below the line BC.
  3. Locate 5 points B1, B2, B3, B4 and B5 on BX such that BB1 = B1B2=B2B3=B3B4=B4B5.
  4. Join B3 to C and draw a line through B5 parallel to B3C, intersecting the extended line segment BC at C’.
  5. Draw a line through C’ parallel to CA intersecting the extended line segment BA at A’.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 16
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 17

Question 17.
Construct a ΔABC in which AB = 5 cm, ∠B = 60°, altitude CD = 3 cm. Construct a ΔAQR similar to ΔABC such that side of ΔAQR is 1.5 times that of the corresponding sides of ΔACB.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 5 cm.
(ii) At A, draw a perpendicular and cut off AE = 3 cm.
(iii) From E, draw EF || AB.
(iv) From B, draw a ray making an angle of 60 meeting EF at C.
(v) Join CA. Then ABC is the triangle.
(vi) From A, draw a ray AX making an acute angle with AB and cut off 3 equal parts making A A1= A1A2 = A2A3.
(vii) Join A2 and B.
(viii) From A , draw A^B’ parallel to A2B and B’C’ parallel toBC.
Then ΔC’AB’ is the required triangle.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 18

Hope given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS

RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the questions :
Question 1.
In the figure, PA and PB are tangents to the circle drawn from an external point P. CD is a third tangent touching the circle at Q. If PB = 10 cm and CQ = 2 cm, what is the length PC ?
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 1
Solution:
In the figure, PA and PB are the tangents to the circle drawn from P
CD is the third tangent to the circle drawn at Q
PB = 10 cm, CQ = 2 cm
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 2
PA and PB are tangents to the circle
PA = PB = 10 cm
Similarly CQ and CA are tangents to the circle
CQ = CA = 2 cm
PC = PA – CA = 10 – 2 = 8 cm

Question 2.
What is the distance between two parallel tangents of a circle of radius 4 cm ?
Solution:
TT’ and SS’ are two tangents of a circle with centre O and radius 4 cm and TT’ || SS’
OP and OQ are joined
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 3
Now OP is the radius and TPT’ is the tangent
OP ⊥ TPT’
Similar OQ ⊥ SS’
But TT’ || SS’
POQ is the diameter
Which is 4 x 2 = 8 cm
Distance between the two parallel tangents is 8 cm

Question 3.
The length of tangent from a point A at a distance of 5 cm from the centre of the circle is 4 cm. What is the radius of the circle ?
Solution:
PA is a tangent to the circle from P at a distance of 5 cm from the centre O
PA = 4 cm
OA is joined and let OA = r
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 4
Now in right ∆OAP,
OP² = OA² + PA²
=> (5)² = r² + (4)²
=> 25 = r + 16
=> r² = 25 – 16 = 9 = (3)²
r = 3
Radius of the circle = 3 cm

Question 4.
Two tangents TP and TQ are drawn from an external point T to a circle with centre O as shown in the following figure. If they are inclined to each other at an angle of 100°, then what is the value of ∠POQ ?
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 5
Solution:
TP and TQ are the tangents from T to the circle with centre O and ∠PTQ = 100°
OT, OP and OQ are joined
OP and OQ are radius
OP ⊥ PT and OQ ⊥ QT
Now in quadrilateral OPTQ,
∠POQ + ∠OPT + ∠PTQ + ∠OQT = 360° (Sum of angles of a quadrilateral)
=> ∠POQ + 90° + 100° + 90° = 360°
=> ∠POQ + 280° = 360°
=> ∠POQ = 360° – 280° = 80°
Hence ∠POQ = 80°

Question 5.
What is the distance between two parallel tangents to a circle of radius 5 cm?
Solution:
In a circle, the radius is 5 cm and centre is O
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 6
TT’ and SS’ are two tangents at P and Q to the circle
Such that TT’ || SS’
Join OP and OQ
OP is radius and TPT’ is the tangent
OP ⊥ TT’
Similarly OQ ⊥ SS’
POQ is the diameter of the circle
Now length of PQ = OP + OQ = 5 + 5 = 10 cm
Hence distance between the two parallel tangents = 10 cm

Question 6.
In Q. No. 1, if PB = 10 cm, what is the perimeter of ∆PCD ?
Solution:
In the figure, PB = 10 cm, CQ = 2 cm
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 7
PA and PB are tangents to the give from P
PA = PB = 10 cm
Similarly, CA and CQ are the tangents
CA = CQ = 2 cm
and DB and DQ are the tangents
DB = DQ
Now, perimeter of ∆PCD
PC + PD + CQ + DQ
= PC + CQ + PD + DQ
= PC + CA + PD + DB {CQ = CA and DQ = DB}
= PA + PB = 10 + 10 = 20 cm

Question 7.
In the figure, CP and CQ are tangents to a circle with centre O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then find the length of BR. (C.B.S.E. 2009)
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 8
Solution:
Given : In the figure, CP and CQ are tangents to a circle with centre O
ARB is a third tangent to the circle at R
CP = 11 cm, BC = 7 cm
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 9
To find : The length of BR
BQ and BR are tangents to the circle drawn from B
BQ = BR ….(i)
Similarly CQ = CP
=> BC + BQ = CP = 11 (CP = 11 cm and BC = 7 cm)
=> 7 + BQ = 11
=> BQ = 11 – 7
BQ = 4 cm
But BQ = BR
BR = 4 cm

Question 8.
In the figure, ∆ABC is circumscribing a circle. Find the length of BC. (C.B.S.E. 2009)
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 10
Solution:
∆ABC is circumscribing a circle which touches it at P, Q and R
AC = 11 cm, AR = 4 cm, BR = 3 cm
Now we have to find BC
AR and AQ are tangents to the circle from A
AQ = AR = 4 cm
Then CQ = AC – AQ = 11 – 4 = 7 cm
Similarly,
CP and CQ are tangents from C
CP = CQ = 7 cm
and BP and BR are tangents from B
BP = BR = 3 cm
Now BC = BP + CP = 3 + 7 = 10 cm

Question 9.
In the figure, CP and CQ are tangents from an external point C to a circle with centre O. AB is another tangent which touches the circle at R. If CP = 11 cm and BR = 4 cm, find the length of BC. [CBSE 2010]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 11
Solution:
CP and CQ are the tangents to the circle from C.
AB is another tangent to the same circle which touches at R and meets the first two tangents at A and B. O is the centre of the circle.
OC is joined
CP = 11 cm, BR = 4 cm
CP and CQ are tangents to the circle
CP = CQ = 11 cm
Similarly from B, CR and BQ are the tangents
BQ = BR = 4 cm
Now BC = CQ – BQ = 11 – 4 = 7 cm

Question 10.
Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.
Solution:
Two concentric circles with centre O, have radii 5 cm and 3 cm
AB is a chord which touches the smaller circle at P
OP is joined which is radius of smaller circle
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 12
P is mid-point of AB
OP = 3 cm and OA = 5 cm
Now in right ∆OAP
OA² = OP² + AP²
(5)² = (3)² + AP²
=> 25 = 9 + AP²
=> AP² = 25 – 9 = 16 = (4)²
AP = 4 cm
AB = 2 AP = 2 x 4 cm = 8 cm

Question 11.
In the given figure, PA and PB are tangents to the circle with centre O such that ∠APB = 50°. Write the measure of ∠OAB. [CBSE 2015]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 13
Solution:
In the given figure,
PA and PB are tangents to the circle from P
PA = PB
∠APB = 50°, OA is joined
To find ∠OAB
In ∆PAB
PA = PB
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 14

Question 12.
In the figure, PQ is a chord of a circle and PT is the tangent at P such that ∠QPT = 60°. Then, find ∠PRQ. [NCERT Exemplar]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 15
Solution:
∠OPQ = ∠OQP = 30°, i.e., ∠POQ = 120°
Also, ∠PRQ = \(\frac { 1 }{ 2 }\) reflex ∠POQ

Question 13.
In the figure, PQL and PRM are tangents to the circle with centre O at the points Q and R respectively and S is a point on the circle such that ∠SQL = 50° and ∠SRM = 60°. Then, find ∠QSR. [NCERT Exemplar]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 16
Solution:
Here ∠OSQ = ∠OQS = 90° – 50° = 40°
and ∠RSO = ∠SRO = 90° – 60° = 30°.
Therefore, ∠QSR = 40° + 30° = 70°

Question 14.
In the figure, BOA is a diameter of a circle and the tangent at a point P meets BA produced at T. If ∠PBO = 30°, then find ∠PTA. [NCERT Exemplar]
RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS 17
Solution:
As ∠BPA = 90°,
∠PAB = ∠OPA = 60°
Also OP ⊥ PT.
Therefore, ∠APT = 30°
and ∠PTA = 60° – 30° = 30°

Hope given RD Sharma Class 10 Solutions Chapter 8 Circles VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the questions :

Question 1.
Write the maximum and minimum values of sin θ.
Solution:
Maximum value of sin θ = 1
and minimum value of sin θ = 0

Question 2.
Write the maximum and minimum values of cos 0.
Solution:
Maximum value cos θ=1 and minimum value of cos θ = θ

Question 3.
What is the maximum value of \(\frac { 1 }{ sec\theta }\) ?
Solution:
Maximum value of \(\frac { 1 }{ sec\theta }\) or cos θ = 1

Question 4.
What is the maximum value of \(\frac { 1 }{ cosec\theta }\)
Solution:
Maximum value of \(\frac { 1 }{ cosec\theta }\) or sin θ = 1

Question 5.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 1
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 2

Question 6.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 3
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 4

Question 7.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 5
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 6

Question 8.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 7
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 8
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 9

Question 9.
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 10
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 11

Question 10.
If tan A = \(\frac { 3 }{ 4 }\) and A + B = 90°, then what is the value of cot B ?
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 12

Question 11.
If A + B = 90°, cos B = \(\frac { 3 }{ 5 }\), what is the value of sin A.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 13

Question 12.
Write the acute angle θ satisfying √3 sin θ = cos θ.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 14

Question 13.
Write the Value of cos 1° cos 2° cos 3° ……. cos 179° cos 180°.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 15

Question 14.
Write the Value of tan 10′ tan 15° tan 75° tan 80°.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 16
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 17

Question 15.
If A + B = 90° and tan A = \(\frac { 3 }{ 4 }\) what is cot B?
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 18

Question 16.
If tan A = \(\frac { 5 }{ 12 }\), find the value of (sin A + cos A) sec A. (C.B.S.E. 2008)
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 19
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS 20

Hope given RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1

RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1

Other Exercises

Question 1.
Determine a point which divides a line segment of length 12 cm internally in the ratio 2 : 3. Also justify your construction.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 12 cm.
(ii) Draw a ray AX at A making an acute angle with AB.
(iii) From B, draw another ray BY parallel to AX.
(iv) Cut off 2 equal parts from AX and 3 equal parts from BY.
(v) Join 2 and 3 which intersects AB at P.
P is the required point which divides AB in the ratio of 2 : 3 internally.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 1

Question 2.
Divide a line segment of length 9 cm internally in the ratio 4 : 3. Also, give justification of the construction.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 9 cm.
(ii) Draw a ray AX making an acute angle with AB.
(iii) From B, draw another ray BY parallel to AX.
(iv) Cut off 4 equal parts from AX and 3 parts from BY.
(v) Join 4 and 3 which intersects AB at P.
P is the required point which divides AB in the ratio of 4 : 3 internally.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 2

Question 3.
Divide a line segment of length 14 cm internally in the ratio 2 : 5. Also justify your construction.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 14 cm.
(ii) Draw a ray AX making an acute angle with AB.
(iii) From B, draw another ray BY parallel to AX.
(iv) From AX, cut off 2 equal parts and from B, cut off 5 equal parts.
(v) Join 2 and 5 which intersects AB at P.
P is the required point which divides AB in the ratio of 2 : 5 internally.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 3

Question 4.
Draw a line segment of length 8 cm and divide it internally in the ratio 4 : 5.
Solution:
Steps of construction :
(i)
Draw a line segment AB = 8 cm.
(ii) Draw a ray AX making an acute angle with ∠BAX = 60° withAB.
RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 4
(iii) Draw a ray BY parallel to AX by making an acute angle ∠ABY = ∠BAX.
(iv) Mark four points A1, A2, A3, A4 on AX and five points B1, B2, B3, B4, Bs on BY in such a way that AA1 = A1A2 = A2A3 = A3A4 .
(v) Join A4B5.
(vi) Let this line intersect AB at a point P.
Thus, P is the point dividing the line segment AB internally in the ratio of 4 : 5.

 

Hope given RD Sharma Class 10 Solutions Chapter 9 Constructions Ex 9.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS

Other Exercises

Mark the correct alternative in each of the folloiwng :
Question 1.
If sec θ + tan θ = x, then sec θ =
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 2
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 3

Question 2.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 4
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 5

Question 3.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 5.1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 7

Question 4.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 8
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 9

Question 5.
sec4 A – sec2 A is equal to

(a) tan2 A – tan4 A
(b) tan4 A – tan2 A
(c) tan4 A + tan2 A          
(d) tan2 A + tan4 A
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 10
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 11

Question 6.
cos4 A – sin4 A is equal to
(a) 2 cos2 A + 1        
(b) 2 cos2 A – 1
(c) 2 sin2 A – 1           
 (d) 2 sin2 A + 1
Solution:
cos4 A – sin4 A = (cos2 A + sin2 A) (cos2 A – sin2 A)
= 1 (cos2 A – sin2 A) = cos2 A – (1 – cos2 A)
= cos2 A – 1 + cos2 A
= 2 cos2 A – 1            (b)

Question 7.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 12
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 13

Question 8.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 14
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 15
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 16

Question 9.
The value of (1 + cot θ – coscc θ) (1 + tan θ + sec θ) is
(a) 1                          
(b) 2
(c) 4                          
(d) 0
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 17

Question 10.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 18
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 19
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 20

Question 11.
(cosec θ – sin θ) (sec θ – cos θ) (tan θ + cot θ) is equal 
(a) 0                          
(b) 1
(c) -1
(d) None of these
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 21

Question 12.
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
(a) a2b2                             
(b) ab
(c) a4b4                      
(d) a2 + b2
Solution:
x = a cos θ, y = b sin θ                       …(i)
bx = ab cos θ, ay = ab sin θ          ….(ii)
Adding (i) and (ii) we get,
b2x2+ a2y2 = a2b2 cos θ + a2b2 sin θ
= a2b2 (cos θ + sin θ)
= a2b2 x 1
= a2b2                         (a)

Question 13.
If x = a sec θ and y-b tan θ, then b2x2 – a2y2
(a) ab
(b) a2 – b2
(c) a2 + b2
(d) a2b2
Solution:
x = a sec θ and y = b tan θ
b2x2 – a2y2 = b2 (a sec θ)2 – a2 (b tan θ)2
= a2b2 sec2 θ – a2b2 tan θ
= a2b2 (sec θ – tan θ)
= a2b2 x 1
= a2b2                       (d)

Question 14.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 22
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 23

Question 15.
2 (sin6 θ + cos6 θ) – 3 (sin4 θ + cos4 θ) is equal to
(a) 0                
(b) 1
(c) -1               
(d) None of these
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 24.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 25

Question 16.
If a cos θ + b sin θ = 4 and a sin θ – b cos θ = 3, then a2 + b2 =
(a) 7                 
(b) 12
(c) 25                         
(d) None of these
Solution:
a cos θ + b sin θ = 4
a sin θ – b cos θ = 3
Squaring and adding
a2 cos2  θ + b2  sin2 θ  + 2ab sin θ cos θ=16
a2 sinθ + b2  cos2 θ  – 2ab sin θ  cos θ = 9
a2 (cos2 θ + sin2 θ) + b2 (sin2 θ + cos2 θ) = 25 (∵ sin2 θ + cos2 θ=1)
⇒ a2 x 1 + b2 x 1 = 25
⇒  a2 + b2 = 25                                           (c)

Question 17.
If a cot θ + b cosec θ = p and b cot θ + a cosec θ = q, then p2 – q2 =
(a)   a2 – b2                  
(b) b2 – a2
(c)  a2 + b2                  

(d)  b – a
Solution:
a cot θ + b cosec θ = p
b cot θ + a cosec θ = q
Squaring and subtracting,
p2 – q2  = (a cot θ + b cosec θ)2 – (b cot θ + a cosec θ)2
= a2 cot2 θ + b2 cosec2 θ + 2ab cot θ cosec θ – (b2 cot2 θ + a2 cosec2 θ + 2ab cot θ cosec θ)
= a2 cot2 θ +  b2  cosec2 θ + lab cot θ cosec θ – b2 cot2  θ – a2 cosec2 θ – lab cot θ cosec θ
= a2 (cot2 θ – cosec2 θ) + b2 (cosec2 θ – cot2 θ)
= -a2 (cosec2 θ – cot2 θ) + b2 (cosec2 θ – cot2 θ)
= -a2 x 1 + b2 x 1 = b2 – a2                                    (b)

Question 18.
The value of sin2 29° + sin2 61° is
(a) 1
(b) 0
(c) 2sin2 29“                 
(d)  2cos2 61°
Solution:
sin2 29° + sin2 61° = sin2 29° + sin2 (99° – 29°)
= sin2 29 + cos2 29°              (a)
(sin2 θ + cos2 θ=1)

Question 19.
If x = r sin θ cos φ, y = r sin θ sin φ and z – r cos θ, then
(a) x2 +y2 + z2 = r2      
(b)   x2 +y2 – z2 = r2
(c) x2– y2+ z2 = r2      

(d)   z2 + y2 – x2 = r2
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 26

Question 20.
If sin θ + sin θ=1, then cos θ + cos θ
(a) -1                         

(b) 1
(c) 0                           
(d) None of these
Solution:
sin θ + sin2 θ=1
⇒ sin θ = 1- sin2 θ
⇒ sin θ = cos2 θ
cos2 θ + cos4 θ = sin θ + sin2 θ     {∵ cos2 θ = sin θ}
⇒  cos2 θ + cos4 θ=1                                 (b)
{∵ sin θ + sin2 θ = 1 (given)}

Question 21.
If a cos θ + b sin θ = m and a sin θ – b cos θ = it, then a2 + b2 =
(a) m2 – it2        
(b) m2n2
(c) n2 – m2        

(d) m2 + n2
Solution:
a cos θ + b sin θ = m
a sin θ – b cos θ = n
Squaring and adding
a2 cos2 θ + b2 sin2 θ   + lab sin  θ cos θ = m2
a2 sin2 θ + b2 cos2 θ   – 2ab sin  θ cos θ = n2
a2 (cos2 θ + sin2 θ) + b2 (sin2 θ + cos2 θ) = m2 + n2     {sin2 θ + cos2 θ=1}
⇒   a2 + 1 + b2 x 1 = m2 – n2
⇒  a2 + b2 = m2 + n2
Hence a2 + b2 = m2 + n2          (d)

Question 22.
If cos A + cos2 A = 1, then sin2 A + sin4 A = 
(a) -1                         
(b) 0                            
(c) 1                           
(d) None of these
Solution:
cos A + cos2 A = 1
⇒ cos A = 1 – cos2 A
⇒  cos A = sin2 A
Now, sin2 A + sin4 A = cos A + cos2 A = 1 (∵ cos A + cos2 A = 1) (given)
∴ sin2 A + sin4 A = 1                              (c)

Question 23.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 27
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 28

Question 24.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 29
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 30
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 31

Question 25.
9sec2 A – 9tan2 A is equal to
(a) 1
(b) 9
(c) 8                           
(d) 0
Solution:
9sec2 A – 9tan2 A = 9 (sec2 A – tan2 A)
= 9 x 1       (∵ sec2 A – tan2 A = 1)
= 9                        (b)

Question 26.
(1 + tan θ + sec θ) (1 + cot θ – cosec θ) =
(a) 0
(b) 1
(c) 1                           
(d) -1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 32

Question 27.
(sec A + tan A) (1 – sin A) =
(a) sec A
(b) sin A
(c) cosec A                        
(d) cos A
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 33

Question 28.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 34
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 35

Question 29.
If sin θ cos θ = 0, then the value of sin4 θ + cos4 θ is
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 36
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 37
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 38

Question 30.
The value of sin (45° + θ) – cos (45° – θ) is equal to
(a) 2 cos θ                  
(b) 0
(c) 2 sin θ
(d) 1
Solution:
sin (45° + θ) – cos (45° – θ)
= sin (45° + θ) – sin (90° – 45° + θ)
= sin (45° + θ) – sift (45° + θ)
= 0                                                     (b)

Question 31.
If ΔABC is right angled at C, then the value of cos (A + B) is
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 39
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 40

Question 32.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS 41
Solution:
cos (9θ) = sin θ
⇒ sin (90° – 9θ) = sin θ
⇒ 90° – 90 = θ
⇒ 9θ = 90°
⇒  θ= 10
tan 6θ = tan 6
= tan 60° = \(\sqrt { 3 } \)        (b)

Question 33.
If cos (α + β) =0 , then sin (α – β) can be reduced to 
(a) cos β
(b) cos 2β
(c) sin α
(d) sin 2α
Solution:
cos (α + β) = 0
⇒ α + β = 90°                       [∵ cos 90° = 0]
⇒  θ = 90° – β                                          …(i)
sin (α – β) = sin (90° – ββ) [using (i)]
= sin (90° – 2β)
= cos 2β [∵ sin (90° – θ) = cos θ]         (b)

Hope given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3

Other Exercises

Question 1.
Evaluate the following :
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 1
Solution:

RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 2

Question 2.
Evaluate the following :
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 3
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 4
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 5
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 6

Question 3.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
(i) sin 59° + cos 56°
(ii) tan 65° + cot 49“
(iii) sec 76° + cosec 52°
(iv) cos 78° + sec 78°
(v) cosec 54° + sin 72°
(vi) cot 85″ + cos 75°
(vii) sin 67° + cos 75°
Solution:
(i) sin 59° + cos 56°
= sin (90° – 31°) + cos (90° – 34°)
= cos 31° +sin 34°
(ii) tan 65° + cot 49°
= tan (90° – 25°) + cot (90° – 41°)
= cot 25° + tan 41°
(iii) sec 76° + cosec 52°
= sec (90° – 14°) + cosec (90 0 – 38°)
= cosec 14° + sec 38°
(iv) cos 78° + sec 78°
= cos (90° – 12°) + sec (90°- 12°)
= sin 12° + cosec 12°
(v) cosec 54° + sin 72°
= cosec (90° – 36°) + sin (90°-18°)
= sec 36° + cos 18°
(vi) cot 85° + cos 75°
= cot (90° – 5°) + cos (90° – 15°)
= tan 5° + sin 15°
(vii) sin 67° + cos 75°
= sin (90° – 23°) + cos (90° – 15°)
= cos 23° + sin 15°

Question 4.
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Solution:
cos 75° + cot 75° = cos (90° – 15°) + cot (90°-15°)
= sin 15° + tan 15°

Question 5.
If sin 3A = cos (A – 26°), where 3A is an acute angle, And the value of A.
Solution:
sin 3A = cos (A – 26°)
⇒ cos (90° – 3A) = cos (A – 26°)
Comparing,
90° – 3A = A – 26°
⇒ 90° + 26° = A + 3A ⇒ 4A = 116°
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 7

Question 6.
If A, B, C are the interior angles of a triangle ABC, prove
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 8
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 9

Question 7.
Prove that :
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 10
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 11
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 12
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 13

Question 8.
Prove the following :
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 14
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 15
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 16
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 17
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 18

Question 9.
Evaluate :
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 19
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 20
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 21
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 22
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 23
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 24
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 25
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 26
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 27
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 28

Question 10.
If sin θ= cos (θ – 45°), where θ and (θ – 45°) are acute angles, find the degree measure of θ.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 29

Question 11.
If A, B, C are the interior angles of a AABC, show that :
(i) \(sin\frac { B+C }{ 2 } cos\frac { A }{ 2 }\)
(ii) \(cos\frac { B+C }{ 2 } sin\frac { A }{ 2 }\)
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 30

Question 12.
If 2θ + 45° and 30° – θ are acute angles, find the degree measures of θ satisfying sin (20 + 45°) = cos (30° – θ).
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 31

Question 13.
If θ is a positive acute angle such that sec θ = cosec 60°, And the value of 2 cos2 θ-1.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 32

Question 14.
If cos 2 θ – sin 4 θ, where 2 θ and 4 θ are acute angles, find the value of θ.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 33

Question 15.
If sin 3 θ = cos (θ – 6°), where 3 θ and θ – 6° are acute angles, find the value of θ.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 34

Question 16.
If sec 4A = cosec (A – 20°), where 4A is an acute angle, find the value of A.
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 35
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 36

Question 17.
If sec 2A = cosec (A – 42°), where 2A is an acute angle, find the value of A. (C.B.S.E. 2008)
Solution:
RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 37

Hope given RD Sharma Class 10 Solutions Chapter 10 Trigonometric Ratios Ex 10.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 8 Circles Ex 8.1

RD Sharma Class 10 Solutions Chapter 8 Circles Ex 8.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 8 Circles Ex 8.1

Other Exercises

Question 1.
Fill in the blanks :
(i) The common point of a tangent and the circle is called ……….
(ii) A circle may have ………. parallel tangents.
(iii) A tangent to a circle intersects it in ……….. point(s).
(iv) A line intersecting a circle in two points is called a …………
(v) The angle between tangent at a point on a circle and the radius through the point is ………..
Solution:
(i) The common point of a tangent and the circle is called the point of contact.
(ii) A circle may have two parallel tangents.
(iii) A tangents to a circle intersects it in one point.
(iv) A line intersecting a circle in two points is called a secant.
(v) The angle between tangent at a point, on a circle and the radius through the point is 90°.

Question 2.
How many tangents can a circle have ?
Solution:
A circle can have infinitely many tangents.

Question 3.
O is the centre of a circle of radius 8 cm. The tangent at a point A on the circle cuts a line through O at B such that AB = 15 cm. Find OB.
Solution:
Radius OA = 8 cm, ST is the tangent to the circle at A and AB = 15 cm
RD Sharma Class 10 Solutions Chapter 8 Circles Ex 8.1 1
OA ⊥ tangent TS
In right ∆OAB,
OB² = OA² + AB² (Pythagoras Theorem)
= (8)² + (15)² = 64 + 225 = 289 = (17)²
OB = 17 cm

Question 4.
If the tangent at a point P to a circle with centre O cuts a line through O at Q such that PQ = 24 cm and OQ = 25 cm. Find the radius of the circle.
Solution:
OP is the radius and TS is the tangent to the circle at P
RD Sharma Class 10 Solutions Chapter 8 Circles Ex 8.1 2
OQ is a line
OP ⊥ tangent TS
In right ∆OPQ,
OQ² = OP² + PQ² (Pythagoras Theorem)
=> (25)² = OP² + (24)²
=> 625 = OP² + 576
=> OP² = 625 – 576 = 49
=> OP² = (7)²
OP = 7 cm
Hence radius of the circle is 7 cm

 

Hope given RD Sharma Class 10 Solutions Chapter 8 Circles Ex 8.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2

Other Exercises

Question 1.
If cos θ = \(\frac { 4 }{ 5 }\) , find all other trigonometric ratios of angle θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 1
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 2
Question 2.
If sin θ = \(\frac { 1 }{ \sqrt { 2 } }\) , find all other trigono­metric ratios of angle θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 3
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 4

Question 3.
If tan θ = \(\frac { 1 }{ \sqrt { 2 } }\), find the value of \(\frac { { cosec }^{ 2 }-{ sec }^{ 2 } }{ { cosec }^{ 2 }+cot^{ 2 } }\) 
Solution:
<RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 5
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 6

Question 4.
If tan θ = \(\frac { 3 }{ 4 }\), find the value of \(\frac { 1-cosheta }{ 1+cosheta }\) 
 (C.B.S.E. 1995)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 7
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 8

Question 5.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 9
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 10
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 11

Question 6.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 12
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 13
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 14

Question 7.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 15
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 16

Question 8.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 17
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 18
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 19

Question 9.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 20
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 21
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 22

Question 10.
If \(\sqrt { 3 } \) tan θ = 3sin θ , find the value of sin2 θ  – cos2 θ .          (C.B.S.E. 2001)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 23

Question 11.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 24
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 25
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 26

Question 12.
If sin θ + cos θ = \(\sqrt { 2 } \)cos (90° – θ), find cot θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 27

Question 13.
If 2sin2 θ – cos2 θ = 2, then find the value of θ. [NCERT Exemplar]
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 28

Question 14.
If \(\sqrt { 3 } \) tan θ-1=0, find the value of sin2 – cos2 θ. [NCERT Exemplar]
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 29

Hope given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS

Other Exercises

Answer each of the following questions either in one word or one sentence or as per requirement of the questions :
Question 1.
Define an identity.
Solution:
An identity is an equation which is true for all values of the variable (s) involved.

Question 2.
What is the value of (1 – cos2 θ) cosec2 θ?
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 1

Question 3.
What is the value of (1 + cot2 θ) sin2 θ ?
Solution:
(1 + cot2 θ) sin2 θ = cosec2 sin2 θ                           {1 + cot2 θ = cosec2 θ}
= (cosec θ sin θ)2 = (l)2 = 1                                      (∵ sin θ cosec θ=1)

Question 4.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 2
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 3

Question 5.
If sec θ + tan θ = x, write the value of sec θ – tan θ in terms of x.
Solution:
sec θ+ tan θ = x
We know that
sec2 θ – tan2 θ=1                                                                    .
⇒ (sec θ + tan θ) (sec θ – tan θ) = 1                               {a2 – b2 = (a + b) (a – b)}
⇒  x (sec θ – tan θ) = 1
⇒  sec θ – tan θ = \(\frac { 1 }{ x }\)

Question 6.
If cosec θ – cot θ = α, write the value of cosec θ + cot α.
Solution:
cosec θ – cot θ = α
We know that,
cosec θ – cot θ=1
⇒  (cosec θ – cot θ) (cosec θ + cot θ) = 1
⇒  a (cosec θ + cot θ) = 1                                                {a2 – b2 = (a + b) (a – 6)}
⇒  cosec θ + cot θ = 1/α

Question 7.
Write the value of cosec2 (90° – θ) – tan2θ
Solution:

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 4

Question 8.
Write the value of sin A cos (90° – A) + cos A sin (90° – A)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 5

Question 9.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 6
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 7

Question 10.
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2 ?
Solution:
x = a sin θ, y = b cos θ
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 8

Question 11.
If sin θ = \(\frac { 4 }{ 5 }\), What is the value of cot θ + cosec θ ?
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 9

Question 12.
What is the value of 9 cot θ-9 cosec θ?
Solution:
9 cot θ – 9 cosec θ
= -(9cosec θ – 9cot θ)
= -9 (cosec θ – cot2 θ) = -9 x 1
= -9                                                       {∵  cosec θ – cot2 θ=1}

Question 13.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 10
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 11

Question 14.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 12
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 13

Question 15.
What is the value of (1 + tan2 θ) (1 – sin θ) (1 + sin θ) ?
Solution:

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 14

Question 16.
If cos A = \(\frac { 7 }{ 25 }\), find the value of tan A +cot A. (C.B.S.E. 2008)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 15

Question 17.
If sin θ = \(\frac { 1 }{ 3 }\), then find the value of 2 cot2 θ + 2(C.B.S.E. 2009)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 16

Question 18.
If cos θ = \(\frac { 3 }{ 4 }\), then find the value of 9 tan2 θ + 9.
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 17

Question 19.
If sec θ (1 + sin θ) (1 – sin θ) = k, then find the value of k. (C.B.S.E. 2009)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 18

Question 20.
If cosec θ (1 + cos θ) (1 – cos θ) = λ, then find the value of λ.
Solution:
cosec θ (1 + cos θ) (1 – cos θ) = λ
⇒ cosec2 θ (1 – cos2 θ) = λ                      {(a + b) (a – b) = a1 – b2)}
⇒  cosec2 θ x sin θ = λ             (1 – cos2 θ = sin2 θ)
⇒ 1 = λ                                      (sin θ cosec θ=1)
∴ λ = 1

Question 21.
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Solution:
sin2 θ cos2 θ (1+ tan2 θ) (1 + cot2 θ) = λ
sin2 θ cos2 θ (sec2 θ) (cosec2 θ) = λ
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 19

Question 22.

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 20
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 21

Question 23.
If cosec θ = 2x and cot θ = \(\frac { 2 }{ x }\), find the value of 2 ( x2 – \(\frac { 1 }{ x2 }\)           [CBSE 2010]
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 22

Question 24.
Write ‘True’ or ‘False’ and justify your answer in each of the following:
(i) The value of sin θ is x + \(\frac { 1 }{ x }\), where ‘x’ is a positive real number.

(ii) cos θ = \(\frac { { a }^{ 2 }+{ b }^{ 2 } }{ 2ab }\) , where a and b are two lab distinct numbers such that ab > 0.
(iii) The value of cos2 23 – sin2 67 is positive.
(iv) The value of the expression sin 80° – cos 80° is negative.
(v) The value of sin θ + cos θ is always greater than 1.
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 23
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 24
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS 25

Hope given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS

RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS

Other Exercises

Mark the correct alternative in each of the following.
Question 1.
Sides of two similar triangles are in the ratio 4 : 9. Areas of these triangles are in the ratio
(a) 2 : 3
(b) 4 : 9
(c) 81 : 16
(d) 16 : 81
Solution:
(d) Triangles are similar and the ratio of their sides is 4 : 9
The ratio of the areas of two similar triangles are proportion to the square oT their corresponding sides
Ratio in their areas = (4)² : (9)² = 16 : 81

Question 2.
The areas of two similar triangles are in respectively 9 cm² and 16 cm². The ratio of their corresponding sides is
(a) 3 : 4
(b) 4 : 3
(c) 2 : 3
(d) 4 : 5
Solution:
(a) Ratio in the areas of two similar triangles = 9 cm² : 16 cm² = 9 : 16
The areas of similar triangles are proportional to the squares of their corresponding sides
Ratio in their corresponding sides = √\(\frac { 9 }{ 16 }\) = \(\frac { 3 }{ 4 }\) = 3 : 4

Question 3.
The areas of two similar triangles ∆ABC and ∆DEF are 144 cm² and 81 cm² respectively. If the longest side of larger ∆ABC be 36 cm, then. The longest side of the smaller triangle ∆DEF is :
(a) 20 cm
(b) 26 cm
(c) 27 cm
(d) 30 cm
Solution:
(c) Area of the larger triangle ABC = 144 cm²
and area of smaller ∆DEF = 81 cm²
Longest side of larger triangle = 36 cm
Let the longest side of smaller triangle = x cm
The ratio of the areas of two similar triangles is proportional to the squares of their corresponding sides
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 1

Question 4.
∆ABC and ∆BDE are two equilateral triangles such that D is the mid-point of BC. The ratio of the areas of triangles ABC and BDE is :
(a) 2 : 1
(b) 1 : 2
(c) 4 : 1
(d) 1 : 4
Solution:
(c) ∆ABC and ∆BDE are equilateral triangles and D is the mid-point of PC
∆ABC and ∆BDE are both equilateral triangles
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 2

Question 5.
If ∆ABC and ∆DEF are similar such that 2AB = DE and BC = 8 cm, then EF =
(a) 16 cm
(b) 12 cm
(c) 8 cm
(d) 4 cm
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 3

Question 6.
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 4
(a) 2 : 5
(b) 4 : 25
(c) 4 : 15
(d) 8 : 125
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 5

Question 7.
XY is drawn parallel to the base BC of a ∆ABC cutting AB at X and AC at Y. If AB = 4 BX and YC = 2 cm, then AY =
(a) 2 cm
(b) 4 cm
(c) 6 cm
(d) 8 cm
Solution:
(c) In ∆ABC, XY || BC
AB = 4BX, YC = 2 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 6

Question 8.
Two poles of height 6 m and 11 m stand vertically upright on a plane ground. If the distance between their foot is 12 m, the distance between their tops is
(a) 12 m
(b) 14 m
(c) 13 m
(d) 11 m
Solution:
(c) Let length of pole AB = 6 m
and of pole CD = 11 m
and distance between their foot = 12 m
i.e., BD = 12 m
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 7

Question 9.
In ∆ABC, D and E are points on side AB and AC respectively such that DE || BC and AD : DB = 3 : 1. If EA = 3.3 cm, then AC =
(a) 1.1 cm
(b) 4 cm
(c) 4.4 cm
(d) 5.5 cm
Solution:
(c) In ∆ABC, DE || BC
AD : DB = 3 : 1, EA = 3.3 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 8

Question 10.
In triangles ABC and DEF, ∠A = ∠E = 40°, AB : ED = AC : EF and ∠F = 65°, then ∠B =
(a) 35°
(b) 65°
(c) 75°
(d) 85°
Solution:
(c) In ∆ABC and ∆DEF,
∠A = ∠E = 40°
AB : ED = AC : EF, ∠F = 65°
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 9
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 10

Question 11.
If ABC and DEF are similar triangles such that ∠A = 47° and ∠E = 83°, then ∠C =
(a) 50°
(b) 60°
(c) 70°
(d) 80°
Solution:
(a) ∆ABC ~ ∆DEF
∠A = 47°, ∠E = 83°
∆ABC and ∆DEF are similar
∠A = ∠D, ∠B = ∠E and ∠C = ∠F
∠A = 47°
∠B = ∠E = 83°
But ∠A + ∠B + ∠C = 180° (Sum of angles of a triangle)
47° + 83° + ∠C = 180°
=> 130° + ∠C = 180°
=> ∠C = 180° – 130°
=> ∠C = 50°

Question 12.
If D, E, F are the mid-points of sides BC, CA and AB respectively of ∆ABC, then the ratio of the areas of triangles DEF and ABC is
(a) 1 : 4
(b) 1 : 2
(c) 2 : 3
(d) 4 : 5
Solution:
(a) D, E and F are the mid points of the sides. BC, CA and AB respectively of ∆ABC
DE, EF and FD are joined
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 11

Question 13.
In an equilateral triangle ABC, if AD ⊥ BC, then
(a) 2AB² = 3AD²
(b) 4AB² = 3AD²
(c) 3AB² = 4AD²
(d) 3AB² = 2AD²
Solution:
(c) In equilateral ∆ABC,
AD ⊥ BC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 12
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 13

Question 14.
If ∆ABC is an equilateral triangle such that AD ⊥ BC, then AD² =
(a) \(\frac { 3 }{ 2 }\) DC²
(b) 2 DC²
(c) 3 CD²
(d) 4 DC²
Solution:
(c) In equilateral ∆ABC, AD ⊥ BC
AD bisects BC at D
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 14

Question 15.
In a ∆ABC, AD is the bisector of ∠BAC. If AB = 6 cm, AC = 5 cm and BD = 3 cm, then DC =
(a) 11.3 cm
(b) 2.5 cm
(c) 3.5 cm
(d) None of these
Solution:
(b) In ∆ABC, AD is the bisector of ∠BAC
AB = 6 cm, AC = 5 cm, BD = 3 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 15

Question 16.
In a ∆ABC, AD is the bisector of ∠BAC. If AB = 8 cm, BD = 6 cm and DC = 3 cm. Find AC
(a) 4 cm
(b) 6 cm
(c) 3 cm
(d) 8 cm
Solution:
(a) In ∆ABC, AD is the bisector of ∠BAC
AB = 8 cm, BD = 6 cm and DC = 3 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 16
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 17

Question 17.
ABCD is a trapezium such that BC || AD and AB = 4 cm. If the diagonals AC and BD intersect at O such that \(\frac { AO }{ OC }\) = \(\frac { DO }{ OB }\) = \(\frac { 1 }{ 2 }\) , then BC =
(a) 7 cm
(b) 8 cm
(c) 9 cm
(d) 6 cm
Solution:
(b) In trapezium ABCD, BC || AD
AD = 4 cm, diagonals AC and BD intersect
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 18
=> x = 8
BC = 8 cm

Question 18.
If ABC is a right triangle right-angled at B and M, N are the mid-points of AB and BC respectively, then 4 (AN² + CM²) =
(a) 4 AC²
(b) 5 AC²
(c) \(\frac { 5 }{ 4 }\) AC²
(d) 6 AC²
Solution:
(b) In right ∆ABC, ∠B = 90°
M and N are the mid points of AB and BC respectively
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 19
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 20
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 21

Question 19.
If in ∆ABC and ∆DEF, \(\frac { AB }{ DE }\) = \(\frac { BC }{ FD }\), then ∆ABC ~ ∆DEF when
(a) ∠A = ∠F
(b) ∠A = ∠D
(c) ∠B = ∠D
(d) ∠B = ∠E
Solution:
(c)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 22

Question 20.
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 23
Solution:
(a)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 24
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 25

Question 21.
∆ABC ~ ∆DEF, ar (∆ABC) = 9 cm², ar (∆DEF) = 16 cm². If BC = 2.1 cm, then the measure of EF is
(a) 2.8 cm
(b) 4.2 cm
(c) 2.5 cm
(d) 4.1 cm
Solution:
(a) ∆ABC ~ ∆DEF
ar (∆ABC) = 9 cm², ar (∆DEF) =16 cm²,
BC = 2.1 cm
∆ABC ~ ∆DEF
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 26

Question 22.
The length of the hypotenuse of an isosceles right triangle whose one side is 4√2 cm is
(a) 12 cm
(b) 8 cm
(c) 8√2 cm
(d) 12√2 cm
Solution:
(b) In isosceles right ∆ABC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 27
∠B = 90°, AB = BC = 4√2
AC = √2
equal side = √2 x 4√2 = 8 cm

Question 23.
A man goes 24 m due west and then 7 m due north. How far is he from the starting point ?
(a) 31 m
(b) 17 m
(c) 25 m
(d) 26 m
Solution:
(c) In the figure, O is starting point OA = 24 m and AB = 7 m
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 28
By Pythagoras Theorem
OB² = OA² + AB²
= (24)² + (7)² = 576 + 49 = 625 = (25)²
OB = 25 m

Question 24.
∆ABC ~ ∆DEF. If BC = 3 cm, EF = 4 cm and ar (∆ABC) = 54 cm², then ar (∆DEF)
(a) 108 cm²
(b) 96 cm²
(c) 48 cm²
(d) 100 cm²
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 29
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 30

Question 25.
∆ABC ~ ∆PQR such that ar (∆ABC) = 4 ar (∆PQR). If BC = 12 cm, then QR =
(a) 9 cm
(b) 10 cm
(c) 6 cm
(d) 8 cm
Solution:
(c) ∆ABC ~ ∆PQR
ar (∆ABC) = 4ar (∆PQR), BC = 12 cm
∆ABC ~ ∆PQR
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 31

Question 26.
The areas of two similar triangles are 121 cm² and 64 cm² respectively. If the median of the first triangle is 12.1 cm, then the corresponding median of the other triangles is
(a) 11 cm
(b) 8.8 cm
(c) 11.1 cm
(d) 8.1 cm
Solution:
(b) Areas of two similar triangles are 121 cm² and 64 cm²
Median of first triangle = 12.1 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 32
In ∆ABC, area ∆DEF
AD and PS are their corresponding median
∆ABC ~ ∆DEF
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 33

Question 27.
In an equilateral triangle ABC if AD ⊥ BC, then AD² =
(a) CD²
(b) 2 CD²
(c) 3 CD²
(d) 4 CD²
Solution:
(c) In equilateral ∆ABC, AD ⊥ BC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 34

Question 28.
In an equilateral triangle ABC if AD ⊥ BC, then
(a) 5 AB² = 4 AD²
(b) 3 AB² = 4 AD²
(c) 4 AB² = 3 AD²
(d) 2 AB² = 3 AD²
Solution:
(b) In equilateral ∆ABC, AD ⊥ BC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 35
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 36

Question 29.
In an isosceles triangle ABC if AC = BC and AB² = 2 AC², then ∠C =
(a) 30°
(b) 45°
(c) 90°
(d) 60°
Solution:
(c) In isosceles ∆ABC, AC = BC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 37
and AB2 = 2 AC² = AC² + AC²
= AC² + BC² ( AC = BC)
By converse of Pythagoras Theorem,
∠C = 90°

Question 30.
∆ABC is an isosceles triangle in which ∠C = 90°. If AC = 6 cm, then AB =
(a) 6√2 cm
(b) 6 cm
(c) 2√6 cm
(d) 4√2 cm
Solution:
(a) ∆ABC is an isosceles with ∠C= 90°
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 38
AC = BC
AC = 6 cm
AB² = AC² + BC² (Pythagoras Theorem)
(6)² + (6)² = 36 + 36 = 72 (AC = BC)
AB = √72 = √(36 x 2) = 6√2 cm

Question 31.
If in two triangles ABC and DEF, ∠A = ∠E, ∠B = ∠F, then which of the following is not true ?
(a) \(\frac { BC }{ DF }\) = \(\frac { AC }{ DE }\)
(b) \(\frac { AB }{ DE }\) = \(\frac { BC }{ DF }\)
(c) \(\frac { AB }{ EF }\) = \(\frac { AC }{ DE }\)
(d) \(\frac { BC }{ DF }\) = \(\frac { AB }{ EF }\)
Solution:
(b) In two triangles ABC and DEF
∠A = ∠E, ∠B = ∠F
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 39

Question 32.
In the figure, the measures of ∠D and ∠F are respectively
(a) 50°, 40°
(b) 20°, 30°
(c) 40°, 50°
(d) 30°, 20°
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 40
Solution:
(b) In ∆ABC
∠A = 180° – (∠B + ∠C)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 41

Question 33.
In the figure, the value of x for which DE || AB is
(a) 4
(b) 1
(c) 3
(d) 2
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 42
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 43

Question 34.
In the figure, if ∠ADE = ∠ABC, then CE =
(a) 2
(b) 5
(c) \(\frac { 9 }{ 2 }\)
(c) 3
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 44
Solution:
(c) In the figure ∠ADE = ∠ABC
AB = 2, DB = 3, AE = 3
Let EC = x
∠ADE = ∠ABC
But these are corresponding angles DE || BC
∆ADE ~ ∆ABC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 45

Question 35.
In the figure, RS || DB || PQ. If CP = PD = 11 cm and DR = RA = 3 cm. Then the values of x and y are respectively
(a) 12, 10
(b) 14, 6
(c) 10, 7
(d) 16, 8
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 46
Solution:
(d) In the figure RS || DB || PQ
CP = PD = 11 cm DR = RA = 3 cm
In ∆ABD
RS || BD and AR = RD
RS = \(\frac { 1 }{ 2 }\) BD
y = \(\frac { 1 }{ 2 }\) x or x = 2y
Only 16, 8 is possible

Question 36.
In the figure, if PB || CF and DP || EF, then \(\frac { AD }{ DE }\) =
(a) \(\frac { 3 }{ 4 }\)
(b) \(\frac { 1 }{ 3 }\)
(c) \(\frac { 1 }{ 4 }\)
(d) \(\frac { 2 }{ 3 }\)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 47
Solution:
(b) In the figure, PB || CF, DP || EF
AB = 2 cm, AC = 8 cm
BC = AC – AB = 8 – 2 = 6 cm
In ∆ACF, BP || CF
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 48
\(\frac { AD }{ DE }\) = \(\frac { 1 }{ 3 }\)

Question 37.
A chord of a circle of radius 10 cm subtends a right angle at the centre. The length of the chord (in cm) is
(a) 5√2
(b) 10√2
(c) \(\frac { 5 }{ \surd 2 }\)
(d) 10√3 [ICSE 2014]
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 49
AB² = OA² + OB² (Pythagoras Theorem)
AB² = 10² + 10²
AB² = 2 (10)²
AB = 10√2

Question 38.
A vertical stick 20 m long casts a shadow 10 m long on the ground. At the same time, a tower casts a shadow 50 m long on the ground. The height of the tower is
(a) 100 m
(b) 120 m
(c) 25 m
(d) 200 m
Solution:
(a) Height of a stick = 20 m
and length of its shadow = 10 m
At the same time
Let height of tower = x m
and its shadow = 50 m
20 : x = 10 : 50
x x 10 = 20 x 50
=> x = \(\frac { 20 x 50 }{ 10 }\) = 100
Height of tower = 100 m

Question 39.
Two isosceles triangles have equal angles and their areas are in the ratio 16 : 25. The ratio of their corresponding heights is :
(a) 4 : 5
(b) 5 : 4
(c) 3 : 2
(d) 5 : 7
Solution:
(a) The corresponding angles of two isosceles triangles are equal These are similar Ratio in their areas = 16 : 25
The ratio of areas of similar triangles are proportion to the squares of their corresponding altitudes (heights)
Ratio in their altitudes = \(\surd \frac { 16 }{ 25 } =\frac { 4 }{ 5 }\)
= i.e., 4 : 5

Question 40.
∆ABC is such that AB = 3 cm, BC = 2 cm and CA = 2.5 cm. If ∆DEF ~ ∆ABC and EF = 4 cm, then perimeter of ∆DEF is
(a) 7.5 cm
(b) 15 cm
(c) 22.5 cm
(d) 30 cm
Solution:
(b) ∆DEF ~ ∆ABC
AB = 3 cm, BC = 2 cm, CA = 2.5 cm, EF = 4 cm
∆s are similar
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 50

Question 41.
In ∆ABC, a line XY parallel to BC cuts AB at X and AC at Y. If BY bisects ∠XYC, then :
(a) BC = CY
(b) BC = BY
(c) BC ≠ CY
(d) BC ≠ BY
Solution:
(a) In ∆ABC, XY || BC
BY is the bisector of ∠XYC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 51
∠XYB = ∠CXB ….(i)
XY || BC
∠XYB = ∠XBC (Alternate angles) ……….(ii)
From (i) and (ii)
∠CYB = ∠YBC
BC = CY

Question 42.
In a ∆ABC, ∠A = 90°, AB = 5 cm and AC = 12 cm. If AD ⊥ BC, then AD =
(a) \(\frac { 13 }{ 2 }\) cm
(b) \(\frac { 60 }{ 13 }\) cm
(c) \(\frac { 13 }{ 60 }\) cm
(d) \(\frac { 2\surd 15 }{ 13 }\) cm
Solution:
(b) In ∆ABC,
∠A = 90°, AB = 5 cm, AC = 12 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 52
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 53

Question 43.
In a ∆ABC, perpendicular AD from A on BC meets BC at D. If BD = 8 cm, DC = 2 cm and AD = 4 cm, then
(a) ∆ABC is isosceles
(b) ∆ABC is equilateral
(c) AC = 2 AB
(d) ∆ABC is right-angled at A
Solution:
(d) In ∆ABC, AD ⊥ BC
BD = 8 cm, DC = 2 cm, AD = 4 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 54
In right ∆ACD,
AC² = AD² + CD² (Pythagoras Theorem)
= (4)² + (2)² = 16 + 4 = 20
and in right ∆ABD,
AB² = AD² + DB²
= (4)² + (8)2 = 16 + 64 = 80
and BC² = (BD + DC)² = (8 + 2 )² = (10)² = 100
AB² + AC² = 80 + 20 = 100 = BC²
∆ABC is a right triangle whose ∠A = 90°

Question 44.
In a ∆ABC, point D is on side AB and point G is on side AC, such that BCED is a trapezium. If DE : BC = 3:5, then Area (∆ADE) : Area (BCED) =
(a) 3 : 4
(b) 9 : 16
(c) 3 : 5
(d) 9 : 25
Solution:
(b)
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 55
In ∆ABC, D and E are points on the side AB and AC respectively, such that BCED is a trapezium DE : BC = 3 : 5
In ∆ABC, DE || BC
∆ADE ~ ∆ABC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 56
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 57

Question 45.
If ABC is an isosceles triangle and D is a point on BC such that AD ⊥ BC, then
(a) AB² – AD² = BD.DC
(b) AB² – AD² = BD² – DC²
(c) AB² + AD² = BD.DC
(d) AB² + AD² = BD² – DC²
Solution:
(a) If ∆ABC, AB = AC
D is a point on BC such that
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 58
AD ⊥ BC
AD bisects BC at D
In right ∆ABD,
AB² = AD² + BD²
AB² – AD² = BD² = BD x BD = BD x DC (BD = DC)

Question 46.
∆ABC is a right triangle right-angled at A and AD ⊥ BC. Then , \(\frac { BD }{ DC }\) =
(a) \(\left( \frac { AB }{ AC } \right) ^{ 2 }\)
(b) \(\frac { AB }{ AC }\)
(c) \(\left( \frac { AB }{ AD } \right) ^{ 2 }\)
(d) \(\frac { AB }{ AD }\)
Solution:
(a) In right angled ∆ABC, ∠A = 90°
AD ⊥ BC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 59

Question 47.
If E is a point on side CA of an equilateral triangle ABC such that BE ⊥ CA, then AB² + BC² + CA² =
(a) 2 BE²
(b) 3 BE²
(c) 4 BE²
(d) 6 BE²
Solution:
(c) ∆ABC is an equilateral triangle
BE ⊥ AC
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 60
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 61
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 62

Question 48.
In a right triangle ABC right-angled at B, if P and Q are points on the sides AB and AC respectively, then
(a) AQ² + CP² = 2 (AC² + PQ²)
(b) 2 (AQ² + CP²) = AC² + PQ²
(c) AQ² + CP² = AC² + PQ²
(d) AQ + CP = \(\frac { 1 }{ 2 }\) (AC + PQ)
Solution:
(c) In right ∆ABC, ∠B = 90°
P and Q are points on AB and BC respectively
AQ, CP and PQ are joined
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 63
In right ∆ABC,
AC² = AB² + BC² ….(i)
(Pythagoras Theorem)
Similarly in right ∆PBQ,
PQ² = PB² + BQ² ………(ii)
In right ∆ABQ
AQ² = AB² + BQ² ….(iii)
and in right ∆CPB,
CP² = PB² + BC² ….(iv)
Adding (iii) and (iv)
AQ² + CP² = AB² + BQ² + PB² + BC²
= AB² + BC² + BQ² + PB²
= AC² + PQ2 {From (i) and (ii)}

Question 49.
If ∆ABC ~ ∆DEF such that DE = 3 cm, EF = 2 cm, DF = 2.5 cm, BC = 4 cm, then perimeter of ∆ABC is
(a) 18 cm
(b) 20 cm
(c) 12 cm
(d) 15 cm
Solution:
(d) ∆ABC ~ ∆DEF
DE = 3 cm, EF = 2 cm, DF = 2.5 cm, BC = 4 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 64
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 65

Question 50.
If ∆ABC ~ ∆DEF such that AB = 9.1 cm and DE = 6.5 cm. If the perimeter of ∆DEF is 25 cm, then the perimeter of ∆ABC is
(a) 36 cm
(b) 30 cm
(c) 34 cm
(d) 35 cm
Solution:
(d) ∆ABC ~ ∆DEF
AB = 9.1 cm and DE = 6.5 cm
Perimeter of ∆DEF = 25 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 66

Question 51.
In an isosceles triangle ABC, if AB = AC = 25 cm and BC = 14 cm, then the measure of altitude from A on BC is
(a) 20 cm
(b) 22 cm
(c) 18 cm
(d) 24 cm
Solution:
(d) ∆ABC is an isosceles triangle in which AB = AC = 25 cm, BC = 14 cm
RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS 67
From A, draw AD ⊥ BC
D is mid-point of BC
BD = \(\frac { 1 }{ 2 }\) BC = \(\frac { 1 }{ 2 }\) x 14 = 7 cm
Now in right ∆ABD
AD² = AB² – BD²
= (25)² – (7)² = 625 – 49 = 576 = (24)²
AD = 24 cm

Hope given RD Sharma Class 10 Solutions Chapter 7 Triangles MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1

RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1

These Solutions are part of RD Sharma Class 10 Solutions. Here we have given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1. You must go through NCERT Solutions for Class 10 Maths to get better score in CBSE Board exams along with RS Aggarwal Class 10 Solutions.

Prove the following trigonometric identities :
Question 1.
(1 – cos2 A) cosec2 A = 1
Solution:
(1 – cos2 A) cosec2 A = 1
L.H.S. = (1 – cos2 A) cosec2 A = sin2 A cosec2 A  (∵ 1 – cos2 A = sin2 A)
= (sin A cosec A)2 = (l)2 = 1 = R.H.S.  {sin A cosec A = 1 }

Question 2.
(1 + cot2 A) sin2 A = 1
Solution:
(1 + cot2 A) sin2 A = 1
L.H.S. = (1 + cot2 A) (sin2 A)
= cosec2 A sin2 A {1 + cot2 A = cosec2 A}
= [cosec A sin A]2
= (1)2= 1 = R.H.S. (∵ sin A cosec A = 1

Question 3.
tan2 θ cos θ = 1- cos θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 1
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 1.1

Question 4.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 2
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 3

Question 5.
(sec2 θ – 1) (cosec2 θ – 1) = 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 4

Question 6.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 5
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 6

Question 7.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 7
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 8

Question 8.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 9
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 10

Question 9.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 11
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 12

Question 10.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 13
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 14

Question 11.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 15
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 16
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 17

Question 12.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 18
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 19

Question 13.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 20
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 21
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 22

Question 14.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 23
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 24

Question 15.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 25
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 26

Question 16.
tan θ – sin θ = tan θ sin2 θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 27

Question 17.
(sec θ + cos θ ) (sec θ – cos θ ) = tan θ + sin2 θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 28
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 29

Question 18.
(cosec θ + sin θ) (cosec θ – sin θ) = cot2 θ + cos2 θ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 30

Question 19.
sec A (1 – sin A) (sec A + tan A) = 1 (C.B.S.E. 1993)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 31

Question 20.
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 32

Question 21.
(1 + tan θ) (1 – sin θ) (1 + sin θ) = 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 33

Question 22.
sin2 A cot2 A + cos2 A tan2 A = 1 (C.B.S.E. 1992C)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 34
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 35

Question 23.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 36
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 37
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 38

Question 24.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 39
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 40

Question 25.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 41
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 42

Question 26.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 43
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 44
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 45

Question 27.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 46
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 47

Question 28.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 48
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 49
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 50

Question 29.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 51
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 52

Question 30.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 53
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 54
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 55
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 56

Question 31.
sec6 θ= tan θ + 3 tan θ sec θ + 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 57
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 58
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 59

Question 32.
cosec θ = cot θ+ 3cot2θ cosec θ + 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 60
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 61
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 62

Question 33.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 63
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 64

Question 34.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 65
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 66

Question 35.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 67
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 68

Question 36.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 69
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 70
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 71

Question 37.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 72
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 73
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 74

Question 38.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 75
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 76
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 77
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 78
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 79
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 80

Question 39.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 81
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 82

Question 40.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 83
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 84
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 85

Question 41.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 86
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 87

Question 42.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 88
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 89
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 90

Question 43.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 91
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 92

Question 44.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 93
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 94

Question 45.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 95
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 96
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 97

Question 46.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 98
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 99

Question 47.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 100
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 101
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 102
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 103
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 104
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 105
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 106
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 107

Question 48.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 108
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 109
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 110

Question 49.
tan2 A + cot2 A = sec2 A cosec2 A – 2
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 111
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 112

Question 50.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 113
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 114

Question 51.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 115
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 116

Question 52.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 117
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 118
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 119

Question 53.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 120
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 121
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 122

Question 54.
sin2 A cos2 B – cos2 A sin2 B = sin2 A – sin2 B.
Solution:
L.H.S. = sin2 A cos2 B – cos2 A sin2 B
= sin2 A (1 – sin2 B) – (1 – sin2 A) sin2 B
= sin2 A – sin2 A sin2 B – sin2 B + sin2 A sin2 B
= sin2 A – sin2 B
Hence, L.H.S. = R.H.S.

Question 55.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 123
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 124
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 125
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 126

Question 56.
cot2 A cosec2 B – cot2 B cosec2 A = cot2 A – cot2 B
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 127
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 128

Question 57.
tan2 A sec2 B – sec2 A tan2 B = tan2 A – tan2 B
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 129
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 130

Prove the following identities: (58-75)
Question 58.
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x1 – y2 = a2 – b1. [C.B.S.E. 2001, 20O2C]
Solution:
x – a sec θ + b tan θ
y = a tan θ + b sec θ
Squaring and subtracting, we get
x2-y2 = {a sec θ + b tan θ)2 – (a tan θ + b sec θ)2
= (a2 sec2 θ + b2 tan θ + 2ab sec θ x tan θ) – (a2 tan θ + b2 sec θ + 2ab tan θ sec θ)
= a2 sec2 θ + b tan θ + lab tan θ sec θ – a2 tan θ – b2 sec θ – 2ab sec θ tan θ
= a2 (sec2 θ – tan θ) + b2 (tan θ – sec θ)
= a2 (sec2 θ – tan θ) – b2 (sec θ – tan θ)
=  ax 1-b2 x 1 =a2-b2 = R.H.S.

Question 59.
If 3 sin θ + 5 cos θ = 5, prove that 5 sin θ – 3 cos θ = ±3
Solutioon:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 131

Question 60.
If cosec θ + cot θ = mand cosec θ – cot θ = n,prove that mn= 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 132

Question 61.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 133
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 134
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 135
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 136

Question 62.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 137
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 138
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 139
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 140

Question 63.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 141
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 142
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 143

Question 64.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 144
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 145
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 146
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 147
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 148

Question 65.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 149
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 150
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 151
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 152
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 153
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 154

Question 66.
(sec A + tan A – 1) (sec A – tan A + 1) = 2 tan A
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 155

Question 67.
(1 + cot A – cosec A) (1 + tan A + sec A) = 2
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 156
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 157

Question 68.
(cosec θ – sec θ) (cot θ – tan θ) = (cosec θ + sec θ) (sec θ cosec θ-2)
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 158
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 159

Question 69.
(sec A – cosec A) (1 + tan A + cot A) = tan A sec A – cot A cosec A
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 160
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 161

Question 70.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 162
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 163

Question 71.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 164
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 165
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 166
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 167

Question 72.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 168
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 169

Question 73.
sec4 A (1 – sin4 A) – 2tan2 A = 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 170
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 171

Question 74.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 172
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 173
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 174

Question 75.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 175
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 176
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 177

Question 76.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 178
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 179
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 180

Question 77.
If cosec θ – sin θ = a3, sec θ – cos θ = b3, prove that a2b2 (a2 + b2) = 1
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 181
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 182
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 183

Question 78.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 184
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 185
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 186

Question 79.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 187
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 188

Question 80.
If a cos θ + b sin θ = m and a sin θ – b cos θ = n, prove that a2 + b2 = m2 + n2 
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 189
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 190

Question 81.
If cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
Solution:
cos A + cos2 A = 1
⇒ cos A = 1 – cos2 A
⇒cos A = sin2 A
Now, sin2 A + sin4 A = sin2 A + (sin2 A)2
= cos A + cos2 A = 1 = R.H.S.

Question 82.
If cos θ + cos θ = 1, prove that
sin12 θ + 3 sin10  θ + 3 sin θ + sin θ + 2 sin θ + 2 sin θ-2 = 1

Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 191


Question 83.
Given that :
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 – cos α) (l – cos β) (1 – cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 192
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 193

Question 84.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 194
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 195

Question 85.
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 196
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 197

Question 86.
If sin θ + 2cos θ = 1 prove that 2sin θ – cos θ = 2. [NCERT Exemplar]
Solution:
RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 198

Hope given RD Sharma Class 10 Solutions Chapter 11 Trigonometric Identities Ex 11.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.