## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Ex 20E

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 21 Trigonometrical Identities Ex 21E

Other Exercises

Question 1.
A cone of height 15 cm and diameter 7 cm is mounted on a hemisphere of same diameter. Determine the volume of the solid thus formed.
Solution:
Height of cone = 15 cm
and radius of base = $$\frac { 7 }{ 2 }$$cm.

Question 2.
A buoy is made in the form of hemisphere surmounted by a right, cone whose circular base coincides with the plane surface of hemisphere. The radius of the base of the cone is 3.5 metres and its volume is two-thirds of the hemisphere. Calculate the height of the cone and the surface area of the buoy, correct to two places of decimal.
Solution:

Question 3.
From a rectangular solid of metal 42 cm by 30 cm by 20 cm, a conical cavity of diam­eter 14 cm and depth 24 cm is drilled out. Find:
(i) the surface area of remaining solid,
(ii) the volume of remaining solid,
(iii) the weight of the material drilled out if it weighs 7 gm per cm3.
Solution:
Length of rectangular solid (l) = 30 cm
and height (h) = 42 cm
Diameter of the cone = 14 cm

(i)  Surface area of remaining solid Surface area of rectangular solid + Surface area of curved surface of cone – Surface area of the base of the cone
= 2 (lb + bh + hl) + πrl – πr2

Question 4.
A cubical block of side 7 cm is surmounted by a hemisphere of the largest size. Find the surface area of the resulting solid.
Solution:
Side of a cubical block = 7 cm
Radius of the hemisphere = $$\frac { 7 }{ 2 }$$cm
Now total surface area of the block

Question 5.
A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the rim. When lead shots each of which is a sphere of radius 0.5 cm are dropped into the vessel, one- fourth of the water flows out. Find the number of lead shots dropped in the vessel.
Solution:
Radius of conical vessel (R) = 5 cm
and height (h) = 8 cm

Question 6.
A hemi-spherical bowl has neligible thickness and the length of its circumference is 198 cm. Find the capacity of the bowl.
Solution:
Upper circumference of the hemi-spherical bowl = 198 cm

Question 7.
Find the maximum volume of a cone that can be carved out of a solid hemisphere of radius r cm.
Solution:
Radius of solid hemisphere = r
Radius of the cone carved out of the hemisphere = r
and height (h) = r

Question 8.
The radii of the bases of two solid right circular cones of same height are r1 and r2 The cones are melted and recast into a solid sphere of radius R. Find the height of each cone in terms of r1, r2 • and R.
Solution:

Question 9.
A solid metallic hemisphere of diameter 28 cm is melted and recast into a number of identical solid cones, each of diameter  14 cm and height 8 cm. Find the number * of cones so formed.
Solution:
Diameter of solid hemisphere = 28 cm

Question 10.
A cone and a hemisphere have the same base and the same height. Find the ratio between their volumes.
Solution:
Let radius of the base of cone = r
and height = h
Then radius of hemisphere = r

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere Ex 20E are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18B

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18B.

Other Exercises

Question 1.
(i) In the given figure 3 x CP = PD = 9 cm and AP = 4.5 cm. Find BP.

(ii) In the given figure, 5 x PA = 3 x AB = 30 cm and PC = 4 cm. Find CD.

(iii) In the given figure, tangent PT = 12.5 cm and PA = 10 cm; find AB.

Solution:

Question 2.
In the figure given below, diameter AB and chord CD of a circle meet at P. PT is a tangent to the circle at T. CD = 7.8 cm, PD = 5 cm, PB = 4 cm. Find:
(i) AB.
(ii) the length of tangent PT. (2014)

Solution:
PT is tangent and PDC is secant out to the circle
∴ PT² = PC x PD
PT² = (5 + 7.8) x 5 = 12.8 x 5
PT² = 64 ⇒ PT = 8 cm
In ΔOTP
PT² + OT² = OP²
8²+x² = (x + 4)²
⇒ 64 +x² = x² + 16 + 8x
64- 16 = 8x
⇒ 48 = 8x
x = $$\frac { 48 }{ 8 }$$ = 6 cm
AB = 2 x 6 = 12 cm

Question 3.
In the following figure, PQ is the tangent to the circle at A, DB is the diameter and O is the centre of the circle. If ∠ ADB = 30° and ∠ CBD = 60°, calculate
(i) ∠ QAB
(iii) ∠ CDB.

Solution:
(i) PAQ is a tangent and AB is the chord, ∠ QAB = ∠ ADB (Angles in the alternate segment)
= 30°
(ii) OA = OD (Radii of the same circle)
∴ ∠ OAD = ∠ ODA = 30°
But OA ⊥ PQ
∴ ∠ PAD = ∠ OAP – ∠OAD = 90° – 30° = 60°
(iii) BD is diameter
∴ ∠ BCD = 90° (Angle in semi circle)
Now in ∆ BCD,
∠ CDB + ∠ CBD + ∠ BCD = 180°
⇒ ∠ CDB + 60° + 90° = 180°
⇒ ∠ CDB = 180°- (60° + 90°) = 180° – 150° = 30°

Question 4.
If PQ is a tangent to the circle at R; calculate:
(i) ∠ PRS
(ii) ∠ ROT.

Given O is the centre of the circle and angle TRQ = 30°.
Solution:

PQ is tangent and OR is the radius
∴ OR ⊥ PQ
∴ ∠ORT = 90° =
∠TRQ = 90° – 30° = 60°
But in ∆ OTR, OT = OR (Radii of the circle)
∴ ∠ OTR = 60° or ∠STR = 60°
But ∠PRS = ∠STR (Angles in the alternate segment) = 60°
In ∆ ORT, ∠ OTR = 60°, ∠ TOR = 60°
∴ ∠ROT= 180°-(60°+ 60°)= 180°-120° = 60°

Question 5.
AB is the diameter and AC is a chord of a circle with centre O such that angle BAC = 30°. The tangent to the circle at C intersect AB produced in D. Show that BC = BD.
Solution:

Given: In a circle, O is the centre,
AB is the diameter, a chord AC such that ∠ BAC = 30°
and a tangent from C, meets AB in D on producing. BC is joined.
To Prove: BC = BD
Construction: Join OC
Proof : ∠ BCD = ∠ BAC =30°(Angle in alternate segment)
Arc BC subtends ∠ DOC at the centre of the circle and ∠ BAC at the remaining part of the circle.
∴ ∠ BOC = 2 ∠ BAC = 2 x 30° = 60°
Now in ∆ OCD,
∠ BOC or ∠ DOC = 60° (Proved)
∠ OCD = 90° (∵ OC ⊥ CD)
∴ ∠ DOC + ∠ ODC = 90°
⇒ 60° + ∠ ODC = 90°
∴ ∠ ODC = 90°- 60° = 30°
Now in ∆BCD,
∵∠ ODC or ∠ BDC = ∠ BCD (Each = 30°)
∴ BC = BD Q.E.D.

Question 6.
Tangent at P to the circumcircle of triangle PQR is drawn. If this tangent is parallel to side QR, show that ∆PQR is isosceles.
Solution:

In a circumcircle of ∆PQR, a tangent TPS is drawn through P which is parallel to QR
To prove : ∆PQR is an isosceles triangle.
Proof:
∵ TS $$\parallel$$ QR
∠TPQ = ∠PQR (Alternate angles) ….(i)
∵ TS is tangent and PQ is the chord of the circle
∴ ∠TPQ = ∠RP (Angles in the alternate segment) ….(ii)
From (i) and (ii),
∠PQR = ∠QRP
∴ PQ = PR (Opposite sides of equal angles)
∴ ∆PQR is an isosceles triangle
Hence proved

Question 7.
Two circles with centres O and O’ are drawn to intersect each other at points A and B. Centre O of one circle lies on the circumference of the other circle and CD is drawn tangent to the circle with centre O’ at A. Prove that OA bisects angle BAC.

Solution:

Given: Two circles with centre O and O’ intersect each other at A and B, O lies on the circumference, of the other circle. CD is a tangent at A to the second circle. AB, OA are joined.
To Prove: OA bisects ∠ BAC.
Construction: Join OB, O’A, O’B and OO’
Proof: CD is the tangent and AO is the chord
∠ OAC = ∠ OBA …(i)
(Angles in alt. segment)
In ∆ OAB, OA = OB (Radii of the same circle)
∴ ∠ OAB = ∠ OBA ….(ii)
From (i) and (ii),
∠ OAC = ∠ OAB
∴ OA is the bisector of ∠ BAC Q.E.D.

Question 8.
Two circles touch each other internally at a point P. A chord AB of the bigger circle intersects the other circle in C and D. Prove that: ∠ CPA = ∠DPB.

Solution:
Given:Two circles touch each other internally at P. A chord AB of the bigger circle intersects the smaller circle at C and D. AP, BP, CP and DP are joined.
To Prove: ∠ CPA = ∠ DPB
Construction: Draw a tangent TS at P to the circles given.
Proof:
∵ TPS is the tangent, PD is the chord.
∴ ∠ PAB = ∠ BPS …(i) ( Angles in alt. segment)
Similarly we can prove that
∠ PCD = ∠ DPS …(ii)
Subtracting (i) from (ii), we gel
∠ PCD – ∠ PAB = ∠ DPS – ∠ BPS
But in ∆ PAC,
Ext. ∠ PCD = ∠ PAB + ∠ CPA
∴ ∠ PAB + ∠ CPA – ∠ PAB = ∠ DPS – ∠ BPS
∠ CPA = ∠ DPB           Q.E.D.

Question 9.
In a cyclic quadrilateral ABCD, the diagonal AC bisects the angle BCD. Prove that the diagonal BD is parallel to the tangent to the circle at point A.
Solution:

Given: ABCD is a cyclic quadrilateral and diagonal AC bisects ∠ BCD. AT A. a tangent TAS is drawn. BD is joined.
To Prove: TS || BD.
Proof: ∠ ADB = ∠ ACB …….(i) (Angles in the same segment)
Similarly ∠ ABD = ∠ ACD ……..(ii)
But ∠ ACB = ∠ ACD (AC is the bisector of ∠ BCD)
∴ ∠ ADB = ∠ ABD |From (i) and (ii)]
TAS is a tangent and AB is chord
∴ ∠ BAS = ∠ ADB (Angles in all segment)
But ∠ ADB = ∠ ABD (Proved)
∴ ∠ BAS = ∠ ABD
But these are alternate angles.
∴ TS || BD.      Q.E.D.

Question 10.
In the figure, ABCD is a cyclic quadrilateral with BC = CD. TC is tangent to the circle at point C and DC is produced to point G. If ∠ BCG = 108° and O is the centre of the circle,
Find:
(i) angle BCT
(ii) angle DOC

Solution:

Join OC, OD and AC.
(i) ∠ BCG + ∠ BCD = 180° (Linear pair)
⇒ 108° + ∠ BCD = 180°
(∵∠ BCG = 108° given)
∴∠ BCD = 180° – 108° = 72°
BC = CD (given)
∴ ∠ DCP = ∠ BCT
But ∠ BCT + ∠ BCD + ∠ DCP = 180°
∴∠ BCT + ∠ BCT + 72° = 180°
(∵∠ DCP = ∠ BCT)
2 ∠ BCT = 180° – 72° = 108°
∴∠ BCT = $$\frac { { 108 }^{ \circ } }{ 2 }$$ = 54°
(ii) PCT is the tangent and CA is chord
∴ ∠ CAD = ∠ BCT = 54°
But arc DC subtends ∠ DOC at the centre and
∠ CAD at the remaining part of the circle
∴ ∠ DOC = 2 ∠ CAD = 2 x 54° = 108°.

Question 11.
Two circles intersect each other at points A and B. A straight line PAQ cuts the circles at P and Q. If the tangents at P and Q intersect at point T; show that the points P, B, Q and T arc concyclic.
Solution:
Given: Two circles intersect each other at point A and B. PAQ is a line which intersects circles at P, A and Q. At P and Q, tangents are drawn to the circles which meet at T.
To Prove: P, B, Q, T are concyclic.

Construction: Join AB, BP and BQ.
Proof: TP is the tangent and PA. a chord
∴ ∠ TPA = ∠ ABP
(angles in alt. segment)
Similarly we can prove that
∠ TQA = ∠ ABQ …,(ii)
Adding (i) and (ii), we get
∠ TPA + ∠ TQA = ∠ ABP + ∠ ABQ
But in ∆ PTQ,
∠ TPA + ∠ TQA + ∠ PTQ = 180°
⇒ ∠ TPA + ∠ TQA = 180° – ∠ PTQ
⇒ ∠ PBQ = 180°- ∠ PTQ
⇒ ∠ PBQ + ∠PTQ = 180°
But there are the opposite angles of the quadrilateral
∴ Quad. PBQT is a cyclic
Hence P, B. Q and T are concyclic     Q.E.D.

Question 12.
In the figure; PA is a tangent to the circle. PBC is secant and AD bisects angle BAC.
Show that triangle PAD is an isosceles triangle. Also shaw that:

Solution:
Given: In a circle PA is the tangent, PBC is the secant and AD is the bisector of ∠BAC which meets the secant at D.
To Prove:
(i) ∆ PAD is an isosceles triangle.
(ii) ∠CAD = $$\frac { 1 }{ 2 }$$ [(∠PBA – ∠PAB)]
Proof:
(i) PA is the tangent and AB is chord.
∠PAB = ∠C ….(i)
(Angles in the alt. segment)
AD is the bisector is ∠BAC
∴ ∠1 = ∠2 ….(ii)
Ext. ∠ADP = ∠C + ∠1
= ∠PAB + ∠2 = ∠PAD
∴ ∆ PAD is an isosceles triangle.
(ii) In A ABC,
Ext. ∠PBA = ∠C + ∠BAC
∴∠BAC = ∠PBA – ∠C
⇒ ∠1 + ∠2 = ∠PBA – ∠PAB [from (i)]
⇒ 2 ∠1 = ∠PBA – ∠PAB
⇒ ∠1 = – [∠PBA – ∠PAB]
⇒ ∠CAD = – [∠PBA – ∠PAB] Q.E.D.

Question 13.
Two circles intersect each other at points A and B. Their common tangent touches the circles v at points P and Q as shown in the figure . Show that the angles PAQ and PBQ arc supplementary. [2000]

Solution:
Given: Two circles intersect each other at A and
B. A common tangent touches the circles at P and
Q. PA. PB, QA and QB are joined.
To Prove: ∠ PAQ + ∠ PBQ = 180°
or ∠ PAQ and ∠ PBQ are supplementary.
Construction: Join AB.
Proof: PQ is the tangent and AB is the chord
∴ ∠ QPA = ∠ PBA (alternate segment) ,…(i)
Similarly we can prove that
∠ PQA = ∠ QBA ,…(ii)
Adding (i) and (ii), we get
∠ QPA + ∠ PQA = ∠ PBA + ∠ QBA
But ∠ QPA + ∠ PQA = 180° – ∠ PAQ ,…(iii) (In ∆ PAQ)
and ∠ PBA + ∠ QBA = ∠ PBQ ,…(iv)
from (iii) and (iv)
∠ PBQ = 180° – ∠ PAQ
⇒ ∠ PBQ + ∠ PAQ = 180°
= ∠ PAQ + ∠ PBQ = 180°
Hence ∠ PAQ and ∠ PBQ arc supplementary Q.E.D.

Question 14.
In the figure, chords AE and BC intersect each other at point D.
(i) If ∠ CDE = 90°.
AB = 5 cm, BD = 4 cm and CD 9 cm;
Find DE.
(ii) If AD = BD, show that AE = BC.

Solution:

Question 15.
Circles with centres P and Q intersect at points A and B as shown in the figure. CBD is a line segment and EBM is tangent to the circle, with centre Q, at point B. If the circles arc congruent; show that CE = BD.

Solution:

Given: Two circles with centre P and Q intersect each other at A and B. CBD is a line segment and EBM is tangent to the circle with centre Q, at B. Radii of the cirlces are equal.
To Prove: CE = BD
Proof: EBM is the tangent and BD is the chord
∴ ∠ DBM = ∠ BAD (Anglesi in alt. segment)
But ∠ DBM = ∠ CBE (Vertically opposite angles)
∴ ∠ BAD = ∠ CBE
∵ In the same circle or congruent circles, if angles are equal, then chords opposite to them are also equal.
∴ CE = BD Q.E.D.

Question 16.
In the following figure O is the centre of ti.e circle and AB is a tangent to it at point B. ∠BDC = 65°, Find ∠BAO

Solution:
Given: ∠BDC = 65° and AB is tangent to circle with centre O.
⇒ OB ⊥ AB
In ∆BDC
∠DBC + ∠BDC + ∠B CD = 180°
90° + 65° + ∠BCD =180°
⇒ ∠BCD = 25°
∵ OE = OC = radius
⇒ ∠OEC = ∠OCE
⇒ ∠OEC = 25°
Also, ∠BOE = ∠OEC + ∠OCE
[Exterior angle = sum of opposite interior angles in a ∆]
⇒ ∠BOE = 25°+ 25°
⇒∠BOE = 50°
⇒ ∠BOA = 50°
In ∆AOB
∠AOB + ∠BAO + ∠OBA = 180°
50° + ∠BAO + 90° = 180°
⇒ ∠BAO = 40°

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18B  are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Ex 20D

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 21 Trigonometrical Identities Ex 21D

Other Exercises

Question 1.
A solid sphere of radius 15 cm is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate the number of cones recast.
Solution:

Question 2.
A hollow sphere of internal and external diameters 4 cm and 8 cm respectively is melted into a cone of base diameter 8 cm. Find the height of the cone. [2002]
Solution:
External diameter = 8cm
∴ Radius (R) = $$\frac { 8 }{ 2 }$$ = 4 cm
Internal diameter = 4 cm
∴ Radius (r) = $$\frac { 4 }{ 2 }$$ = 2cm.
Volume of metal used in hollow sphere

Question 3.
The radii of the internal and external surfaces of a metallic spherical shell are 3 cm and 5 cm respectively. It is melted and recast into a solid right circular cone of height 32 cm. Find the diameter of the base of the cone.
Solution:
Inner radius of spherical shell (r) = 3 cm
and outer radius (R) = 5 cm

Question 4.
Total volume of three identical cones is the same as that of a bigger cone whose height is 9 cm and diameter 40 cm. Find the radius of the base of each smaller cone, if height of each is 108 cm.
Solution:
Height of bigger cone (H) = 9 cm
Diameter 40 cm

Question 5.
A solid rectangular block of metal 49 cm by 44 cm by 18 cm is melted and formed into a solid sphere. Calculate the radius of the sphere.
Solution:
Dimensions of rectangular block of metal = 49cm x 44 cm x 18 cm.
∴ Volume = 49 x 44 x 18 cm3 = 38808 cm3
Let radius of solid sphere = r

Question 6.
A hemisphere bowl of internal radius 9 cm is full of liquid. This liquid is to be filled into conical shaped small containers each of diameter 3 cm and height 4 cm. How many containers are necessary to empty the bowl?
Solution:
Internal radius of hemispherical bowl (r) = 9 cm

Question 7.
A hemispherical bowl of diameter 7.2 cm is filled completely with chocolate sauce. This sauce is poured into an inverted cone of radius 4.8 cm. Find the height of the cone if it is completely filled. [2010]
Solution:
Diameter of hemispherical bowl = 7.2 cm

Question 8.
A solid cone of radius 5 cm and height 8 cm is melted and made into small spheres of radius 0.5 cm. Find the number of spheres formed. [2011]
Solution:
Radius of solid cone = (r) = 5 cm
and height (h) = 8 cm

Question 9.
The total area of a solid metallic sphere is 1256 cm2. It is melted and recast into solid right circular cones of radius 2.5 cm and height 8 cm. Calculate:,
(i)  the radius of the solid sphere,
(ii) the number of cones recast.   Take π = 3.14              [2000]
Solution:
Total area of solid sphere = 125

Question 10.
A solid metallic cone, with radius 6 cm and height 10 cm, is made of some heavy metal A. In order to reduce its weight, a conical hole is made in the cone as shown and it is completely filled with a lighter metal B. The conical hole has a diameter of 6 cm and depth 4 cm. Calculate the ratio of the volume of metal A to the volume of the metal B in the solid.

Solution:
Radius of solid metallic cone A(R) = 6 cm
and height (H) = 10 cm

Question 11.
A hollow sphere of internal and external radii 6 cm and 8 cm respectively is melted and recast into small cones of base radius 2 cm and height 8 cm. Find the number of cones.           [2012]
Solution:
Inner radius of a hollow sphere (r) = 6 cm
and outer radius (R) = 8 cm

Question 12.
The surface area of a solid metallic sphere is 2464 cm2. It is melted and recast into solid right circular cones of radius 3.5 cm and height 7 cm. Calculate:
(i) the radius of the sphere.
(ii) the number of cones recast. (Take π = 22/7)
Solution:
(i) Surface area=4πr2=2464 cm2 (given)

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere Ex 20D are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapterwise Revision Exercises

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapterwise Revision Exercises.

Sales-Tax (VAT) Chapterwise Revision Exercises

Question 1.
A man purchased a pair of shoes for ₹809.60 which includes 8% rebate on the marked price and then 10% sales tax on the remaining price. Find the marked price of the pair of shoes.
Solution:

Question 2.
The catalogue price of an article is ₹36,000. The shopkeeper gives two successive discounts of 10% each. He further gives an off-season discount of 5 % on the balance. If sales-tax at the rate 10% is charged on the remaining amount, find :
(i) the sales tax charged
(ii) the selling price of the article including sales-tax.
Solution:

Question 3.
A sells an article to B for ₹80,000 and charges sales-tax at 8%. B sells the same article to C for ₹1,12,000 and charges sales- tax at the rate of 12%. Find the VAT paid by B in this transaction.
Solution:

Question 4.
The marked price of an article is ₹1,600. Mohan buys this article at 20% discount and sells it at its marked price. If the sales-tax at each stage is 6%; find :
(i) the price at which the article can be bought,
(ii) the VAT (value added tax) paid by Mohan.
Solution:

Question 5.
A sells an old laptop to B for ₹12,600; B sells it to C for ₹14,000 and C sells the same laptop to D for ₹16,000.
If the rate of VAT at each stage is 10%, find the VAT paid by :
(i) B
(ii) C
Solution:

Banking Chapterwise Revision Exercises

Question 6.
Ashok deposits ₹3200 per month in a cumulative account for 3 years at the rate of 9% per annum. Find the maturity value of this account
Solution:

Question 7.
Mrs. Kama has a recurring deposit account in Punjab National Bank for 3 years at 8% p.a. If she gets ₹9,990 as interest at the time of maturity, find:
(i) the monthly instalment.
(ii) the maturity value of the account.
Solution:

Question 8.
A man has a 5 year recurring deposit account in a bank and deposits ₹240 per month. If he receives ₹17,694 at the time of maturity, find the rate of interest.
Solution:

Question 9.
Sheela has a recurring deposit account in a bank of ₹2,000 per month at the rate of 10% per anum. If she gets ₹83,100 at the time of maturity, find the total time (in years) for which the account was held.
Solution:

Question 10.
A man deposits ₹900 per month in a recurring account for 2 years. If he gets 1,800 as interest at the time of maturity, find the rate of interest .
Solution:

Shares And Dividend Chapterwise Revision Exercises

Question 11.
What is the market value of 4 $$\frac { 1 }{ 2 }$$ % (₹100) share, when an investment of ₹1,800 produces an income of ₹72 ?
Solution:

Question 12.
By investing ₹10,000 in the shares of a company, a man gets an income of ₹800; the dividend being 10%. If the face-value of each share is ₹100, find :
(i) the market value of each share.
(ii) the rate per cent which the person earns on his investment.
Solution:

Question 13.
A man holds 800 shares of ₹100 each of a company paying 7.5% dividend semiannually.
(i) Calculate his annual dividend.
(ii) If he had bought these shares at 40% premium, what percentage return does he get on his investment ?
Solution:

Question 14.
A man invests ₹10,560 in a company, paying 9% dividend, at the time when its ₹100 shares can be bought at a premium of ₹32. Find:
(i) the number of shares bought by him;
(ii) his annual income from these shares and
(iii) the rate of return on his investment .
Solution:

Question 15.
Find the market value of 12% ₹25 shares of a company which pays a dividend of ₹1,875 on an investment of ₹20,000.
Solution:

Linear Inequations Chapterwise Revision Exercises

Question 16.
The given diagram represents two sets A and B on real number lines.

(i) Write down A and B in set builder notation.
(ii) Represent A ∪ B, A ∩ B, A’ ∩ B, A – B and B – A on separate number lines.
Solution:

Question 17.
Find the value of x, which satisfy the inequation:

Graph the solution set on the real number line .
Solution:

Question 18.
State for each of the following statements whether it is true or false :
(a) If (x – a) (x – b) < 0, then x < a, and x < b.
(b) If a < 0 and b < 0, then (a + b)2 > 0.
(c) If a and b are any two integers such that a > b, then a2 > b2.
(d) If p = q + 2, then p > q.
(e) If a and b are two negative integers such that a < b , then $$\frac { 1 }{ a }$$ < $$\frac { 1 }{ b }$$
Solution:

Question 19.
Given 20 – 5x < 5(x + 8), find the smallest value of x when :
(i) x $$\epsilon$$ I
(ii) x $$\epsilon$$ W
(iii) x $$\epsilon$$ N
Solution:

Question 20.
If x $$\epsilon$$ Z, solve : 2 + 4x < 2x – 5 < 3x. Also, represent its solution on the real number line.
Solution:

Question 21.

Solution:

Question 22.

Solution:

Question 23.
Find the value of k for which the roots of the following equation are real and equal k2x2 – 2 (2k -1) x + 4 = 0
Solution:

Question 24.

Solution:

Question 25.
If -5 is a root of the quadratic equation 2x2 +px -15 = 0 and the quadratic equation p(x2 + x) + k = 0 has equal roots, find the value of k.
Solution:

Problems On Quadratic Equations Chapterwise Revision Exercises

Question 26.
x articles are bought at ₹(x – 8) each and (x – 2) some other articles are bought at ₹(x – 3) each. If the total cost of all these articles is ₹76, how many articles of first kind were bought ?
Solution:

Question 27.
In a two digit number, the unit’s digit exceeds its ten’s digit by 2. The product of the given number and the sum of its digits is equal to 144. Find the number.
Solution:

Question 28.
The time taken by a person to cover 150 km was 2.5 hours more than the time taken in return journey. If he returned at a speed of 10 km/hour more than the speed of going, what was the speed per hour in each direction ?
Solution:

Question 29.
A takes 9 days more than B to do a certain piece of work. Together they can do the work in 6 days. How many days will A alone take to do the work ?
Solution:

Question 30.
A man bought a certain number of chairs for ₹10,000. He kept one for his own use and sold the rest at the rate ₹50 more than he gave for one chair. Besides getting his own chair for nothing, he made a profit of ₹450. How many chairs did he buy ?
Solution:

Question 31.
In the given figure; the area of unshaded portion is 75% of the area of the shaded portion. Find the value of x.

Solution:

Ratio And Proportion Chapterwise Revision Exercises

Question 32.

Solution:

Question 33.
If a:b = 2:3,b:c = 4:5 and c: d = 6:7, find :a:b :c :d.
Solution:

Question 34.

Solution:

Question 35.
Find the compound ratio of:
(i) (a-b) : (a+b) and (b2+ab): (a2-ab)
(ii) (x+y): (x-y); (x2+y2): (x+y)2 and (x2-y2)2: (x4-y4)
(iii) (x2– 25): (x2+ 3x – 10); (x2-4): (x2+ 3x+2) and (x + 1): (x2 + 2x)
Solution:

Question 36.
The ratio of the prices of two fans was 16: 23. Two years later, when the price of the first fan had risen by 10% and that of the second by Rs. 477, the ratio of their prices became 11: 20. Find the original prices of two fans.
Solution:
The ratio of prices of two fans = 16 : 23
Let the price of first fan = 6x
then price of second fan = 23x

Remainder And Factor Theorems Chapterwise Revision Exercises

Question 37.
Given that x + 2 and x – 3 are the factors of x3 + ax + b, calculate the values of a and b. Also find the remaining factor.
Solution:

Question 38.
Use the remainder theorem to factorise the expression 2x3 + 9x2 + 7x – 6 = 0 Hense, solve the equation 2x3 + 9x2 + 7 x – 6 = 0
Solution:

Question 39.
When 2x3 + 5x2 – 2x + 8 is divided by (x – a) the remainder is 2a3 + 5a2. Find the value of a.
Solution:

Question 40.
What number should be added to x3 – 9x2 – 2x + 3 so that the remainder may be 5 when divided by (x – 2) ?
Solution:

Question 41.
Let R1 and R2 are remainders when the polynomials x3 + 2x2 – 5ax – 7 and x3 + ax2 – 12x + 6 are divided by (x +1) and (x – 2) respectively. If 2R1 + R2 = 6; find the value of a.
Solution:

Matrices Chapterwise Revision Exercises

Question 42.

Solution:

Question 43.

Solution:

Question 44.

Solution:

Question 45.

Solution:

Arithmetic Progression (A.P.) Chapterwise Revision Exercises

Question 46.
Find the 15th term of the A.P. with second term 11 and common difference 9.
Solution:

Question 47.
How many three digit numbers are divisible by 7 ?
Solution:

Question 48.
Find the sum of terms of the A.P.: 4,9,14,…….,89.
Solution:

Question 49.
Daya gets pocket money from his father every day. Out of the pocket money, he saves ₹2.75 on first day, ₹3.00 on second day, ₹3.25 on third day and so on. Find:
(i) the amount saved by Daya on 14th day.
(ii) the amount saved by Daya on 30th day.
(iii) the total amount saved by him in 30 days.
Solution:

Question 50.
If the sum of first m terms of an A.P. is n and sum of first n terms of the same A.P. is m. Show that sum of first (m + n) terms of it is (m + n).
Solution:

Geometric Progression (GP) Chapterwise Revision Exercises

Question 51.
3rd term of a GP. is 27 and its 6th term is 729; find the product of its first and 7th terms.
Solution:

Question 52.
Find 5 geometric means between 1 and 27.
Solution:

Question 53.
Find the sum of the sequence 96 – 48 + 24…. upto 10 terms.
Solution:

Question 54.
Find the sum of first n terms of:
(i) 4 + 44 + 444 + …….
(ii) 0.7 + 0.77 + 0.777 + …..
Solution:

Question 55.
Find the value of 0.4.
Solution:

Reflection Chapterwise Revision Exercises

Question 56.
Find the values of m and n in each case if:
(i) (4, -3) on reflection in x-axis gives (-m, n)
(ii) (m, 5) on reflection in y-axis gives (-5, n-2)
(iii) (-6, n+2) on reflection in origin gives (m+3, -4)
Solution:

Question 57.
Points A and B have the co-ordinates (-2,4) and (-4,1) respectively. Find :
(i) The co-ordinates of A’, the image of A in the line x = 0.
(ii) The co-ordinates of B’, the image of Bin y-axis.
(iii) The co-ordinates of A”, the image of A in the line BB’,
Hence, write the angle between, the lines A’A” and B B’. Assign a special name to the figure B’ A’ B A”
Solution:

Question 58.
Triangle OA1B1 is the reflection of triangle OAB in origin, where A, (4, -5) is the image of A and B, (-7, 0) is the image of B.
(i) Write down the co-ordinates of A and B and draw a diagram to represent this information.
(ii) Give the special name to the quadrilateral ABA1 B1. Give reason.
(iii) Find the co-ordinates of A2, the image of A under reflection in x-axis followed by reflection in y-axis.
(iv) Find the co-ordinates of B2, the image of B under reflection in y-axis followed by reflection in origin.
(v) Does the quadrilateral obtained has any line symmetry ? Give reason.
(vi) Does it have any point symmetry ?
Solution:

Section And Mid-Point Formulae Chapterwise Revision Exercises

Question 59.
In what ratio does the point M (P, -1) divide the line segment joining the points A (1,-3) and B (6,2) ? Hence, find the value of p.
Solution:

Question 60.
A (-4,4), B (x, -1) and C (6,y) are the vertices of ∆ABC. If the centroid of this triangle ABC is at the origin, find the values of x and y.
Solution:

Question 61.
A (2,5), B (-1,2) and C (5,8) are the vertices of a triangle ABC. Pand Q are points on AB and AC respectively such that AP: PB=AQ: QC = 1:2.
(a) Find the co-ordinates of points P and Q
(b) Show that BC = 3 x PQ.
Solution:

Question 62.
Show that the points (a, b), (a+3, b+4), (a -1, b + 7) and (a – 4, b + 3) are the vertices of a parallelogram.
Solution:

Equation Of straight Line Chapterwise Revision Exercises

Question 63.
Given points A(l, 5), B (-3,7) and C (15,9).
(i) Find the equation of a line passing through the mid-point of AC and the point B.
(ii) Find the equation of the line through C and parallel to AB.
(iii) The lines obtained in parts (i) and (ii) above, intersect each other at a point P. Find the co-ordinates of the point P.
(iv) Assign, giving reason, a special names of the figure PABC.
Solution:

Question 64.
The line x- 4y=6 is the perpendicular bisector of the line segment AB. If B = (1,3); find the co-ordinates of point A.
Solution:

Question 65.
Find the equation of a line passing through the points (7, -3) and (2, -2). If this line meets x- axis at point P and y-axis at point Q; find the co-ordinates of points P and Q.
Solution:

Question 66.
A (-3,1), B (4,4) and C (1, -2) are the vertices of a triangle ABC. Find:
(i) the equation of median BD,
(ii) the equation of altitude AE.
Solution:

Question 67.
Find the equation of perpendicular bisector of the line segment joining the points (4, -3) and (3,1).
Solution:

Question 68.
(a) If (p +1) x + y = 3 and 3y – (p -1) x = 4 are perpendicular to each other find the value of p.
(b) If y + (2p +1) x + 3 = 0 and 8y – (2p -1) x = 5 are mutually prependicular, find the value of p.
Solution:

Question 69.
The co-ordinates of the vertex A of a square ABCD are (1, 2) and the equation of the diagonal BD is x + 2y = 10. Find the equation of the other diagonal and the coordinates of the centre of the square.
Solution:

Similarity Chapterwise Revision Exercises

Question 70.
M is mid-point of a line segment AB; AXB and MYB are equilateral triangles on opposite sides of AB; XY cuts AB at Z. Prove that AZ = 2ZB.
Solution:

Question 71.
In the given figure, if AC = 3cm and CB = 6 cm, find the length of CR.

Solution:

Question 72.
The given figure shows a trapezium in which AB is parallel to DC and diagonals AC and BD intersect at point O. If BO : OD = 4:7; find:
(i) ∆AOD : ∆AOB
(ii) ∆AOB : ∆ACB
(iii) ∆DOC : ∆AOB
(iv) ∆ABD : ∆BOC
Solution:

Question 73.
A model of a ship is made to a scale of 1 : 160. Find :
(i) the length of the ship, if the length of its model is 1.2 m.
(ii) the area of the deck of the ship, if the area of the deck of its model is 1.2 m2.
(iii) the volume of the ship, if the volume of its model is 1.2m3.
Solution:

Question 74.
In trapezium ABCD, AB || DC and DC = 2 AB. EF, drawn parallel to AB cuts AD in F and BC in E such that 4 BE = 3 EC. Diagonal DB intersects FE at point G Prove that: 7 EF = 10 AB.

Solution:

Loci Chapterwise Revision Exercises

Question 75.
In triangle ABC, D is mid-point of AB and CD is perpendicular to AB. Bisector of ∠ABC meets CD at E and AC at F. Prove that:
(i) E is equidistant from A and B.
(ii) F is equidistant from AB and BC.
Solution:

Question 76.
Use graph paper for this questions. Take 2 cm = 1 unit on both axes.
(i) Plot the points A (1,1), B (5,3) and C (2,7)
(ii) Construct the locus of points equidistant from A and B.
(iii) Construct the locus of points equidistant from AB and AC.
(iv) Locate the point P such that PA = PB and P is equidistant from AB and AC.
(v) Measure and record the length PA in cm.
Solution:

Circles Chapterwise Revision Exercises

Question 77.
In the given figure, ∠ADC = 130° and BC = BE. Find ∠CBE if AB ⊥ CE.

Solution:

Question 78.
In the given figure, ∠OAB=30° and ∠OCB= 57°, find ∠BOC and ∠AOC.

Solution:

Question 79.
In the given figure, O is the centre of the circle. If chord AB = chord AC, OP⊥ AB and OQ⊥ AC; show that: PB=QC.
Solution:

Question 80.
In the given figure, AB and XY are diameters of a circle with centre O. If ∠APX=30°, find:
(i) ∠AOX
(ii) ∠APY
(iii) ∠BPY
(iv) ∠OAX

Solution:

Question 81.
(a) In the adjoining figure; AB = AD, BD = CD and ∠DBC = 2 ∠ABD.
Prove that: ABCD is a cyclic quadrilateral.

(b) AB is a diameter of a circle with centre O, Chord CD is equal to radius OC. AC and BD produced intersect at P. Prove that ∠APB = 60°.

Solution:

Tangents And Intersecting Chords Chapterwise Revision Exercises

Question 82.
In the given figure, AC=AB and ∠ABC=72°.
OA and OB are two tangents. Determine:
(i) ∠AOB
(ii) angle subtended by the chord AB at the centre.

Solution:

Question 83.
In the given figure, PQ, PR and ST are tangents to the same circle. If ∠P = 40° and ∠QRT = 75°, find a, b and c.

Solution:

Question 84.
In the given figure, ∠ABC = 90° and BC is diameter of the given circle. Show that:
(ii) AC x CD = BC2

Solution:

Question 85.
In the given figure; AB, BC and CA are tangents to the given circle. If AB = 12 cm, BC = 8 cm and AC=10 cm, find the lengths of AD,BE = CF.

Solution:

Question 86.
(a) AB and CD are two chords of a circle intersecting at a point P inside the circle. If:
(i) AB = 24 cm, AP = 4 cm and PD = 8 cm, determine CP.
(ii) AP = 3 cm, PB = 2.5 cm and CD = 6.5 cm determine CP.
(b) AB and CD are two chords of a circle intersecting at a point P outside the circle. If:
(i) PA = 8 cm, PC – 5 cm and PD = 4 cm, determine AB.
(ii) PC = 30 cm, CD = 14 cm and PA = 24 cm, determine AB.
Solution:

Construction Chapterwise Revision Exercises

Question 87.
Construct a triangle ABC in which AC = 5 cm, BC = 7 cm and AB = 6 cm.
(i) Mark D, the mid point of AB.
(ii) Construct a circle which touches BC at C and passes through D.
Solution:

Question 88.
Using ruler and compasses only, draw a circle of radius 4 cm. Produce AB, a diameter of this circle up to point X so that BX = 4cm. Construct a circle to touch AB at X and to touch the circle, drawn earlier externally.
Solution:

Mensuration Chapterwise Revision Exercises

Question 89.
A cylindrical bucket 28 cm in diameter and 72 cm high is full of water. The water is emptied into a rectangular tank 66 cm long and 28 cm wide. Find the height of the water level in the tank.
Solution:

Question 90.
A tent is of the shape of right circular cylinder upto height of 3 metres and then becomes a right circular cone with a maximum height of 13.5 metres above the ground. Calculate the cost of painting the inner surface of the tent at Rs. 4 per sq. metre, if the radius of the base is 14 metres.
Solution:

Question P.Q.
In the given figure, diameter of the biggest semi-circle is 108cm, and diameter of the smallest circle is 36 cm. Calculate the area of the shaded portion.

Solution:

Question 91.
A copper wire of diameter 6 mm is evenly wrapped on the cylinder of length 18 cm and diameter 49 cm to cover the whole surface. Find:
(i) the length
(ii) the volume of the wire
Solution:

Question 92.
A pool has a uniform circular cross-section of radius 5 m and uniform depth 1.4m. It is filled by a pipe which delivers water at the rate of 20 litres per sec. Calculate, in minutes, the time taken to All the pool. If the pool is emptied in 42 min. by another cylindrical pipe through which water flows at 2 m per sec, calculate the radius of the pipe in cm.
Solution:

Question 93.
A test tube consists of a hemisphere and a cylinder of the same radius. The volume of water required to fill the whole tube is 2849/3cm3 and 2618/3cm3 of water are required to fill the tube to a level which is 2 cm below the top of the tube. Find the radius of the tube and the length of its cylinderical part.
Solution:

Question 94.
A sphere is placed in an inverted hollow conical vessel of base radius 5 cm and vertical height 12 cm. If the highest point of the sphere is at the level of the base of the cone, find the radius of the sphere. Show that the volume of the sphere and the conical vessel are as 40 : 81.
Solution:

Question 95.
The difference between the outer and the inner curved surface areas of a hollow cylinder, 14cm. long is 88sq. cm. Find the outer and the inner radii of the cylinder given that the volume of metal used is 176 cu. cm.
Solution:

Trigonometry Chapterwise Revision Exercises

Question 96.

Solution:

Question 97.
If tan A = 1 and tan B = √3 ; evaluate :
(i) cos A cos B – sin A sin B
(ii) sin A cos B + cos A sin B
Solution:

Question 98.
As observed from the top of a 100 m high light house, the angles, of depression of two ships approaching it are 30° and 45°. If one ship is directly behind the other, find the distance between the two ships.
Solution:

Question 99.

Solution:

Question 100.
From the top of a light house, it is observed that a ship is sailing directly towards it and the angle of depression of the ship changes from 30° to 45° in 10 minutes. Assuming that the ship is sailing with uniform speed; calculate in how much more time (in minutes) will the ship reach to the light house.
Solution:
Let LM be the height of light house = h
Angle of depression changes from 30° to 45° in 10 minutes.

Statistics Chapterwise Revision Exercises

Question 101.
Calculate the mean mark in the distribution given below :

Also state (i) median class (ii) the modal class.
Solution:

Question 102.
Draw an ogive for the following distribution :

Use the ogive drawn to determine :
(i) the median income,
(ii) the number of employees whose income exceeds Rs. 190.
Solution:

Question 103.
The result of an examination are tabulated below :

Draw the ogive for above data and from it determine :
(i) the number of candidates who got marks less than 45.
(ii) the number of candidates who got marks more than 75.
Solution:

Probability Chapterwise Revision Exercises

Question 104.
A bag contains a red ball, a blue ball and a yellow ball, all the balls being of the same size. If a ball is drawn from the bag, without looking into it, find the probability that the ball drawn is
(i) yellow
(ii) red
(iii) blue
Solution:

Question 105.
A bag contains 6 red balls, 8 blue balls and 10 yellow balls, all the balls being of the same size. If a ball is drawn from the bag, without looking into it, find the probability that the ball drawn is
(i) yellow
(ii) red
(iii) blue
(iv) not yellow
(v) not blue
Solution:

Question 106.
Two dice are thrown at the same time. Write down all the possible outcomes. Find the probability of getting the sum of two numbers appearing on the top of the dice as :
(i) 13
(ii) less than 13
(iii) 10
(iv) less then 10
Solution:

Question 107.
Five cards : the ten, jack, queen, king and ace. of diamonds are well-shuffled with their face downwards. One card is then picked up at random.
(i) What is the probability that the card is the queen ?
(ii) If the queen is drawn and put aside, what is the probability that the second card picked up is (a) an ace ? (b) a queen ?
Solution:

Question 108.
(i) A lot of 20 bulbs contains 4 defective bulbs, one bulb is drawn at random, from the lot. What is the probability that this bulb is defective ?
(ii) Suppose the bulb drawn in (i) is not defective and is not replaced. Now one bulb is drawn at random from the rest. What is the probability that this bulb is not defective?
Solution:

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapterwise Revision Exercises  are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Ex 20C

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 21 Trigonometrical Identities Ex 21C

Other Exercises

Question 1.
The surface area of a sphere is 2464 cm2, find its volume.
Solution:
Surface area of sphere = 2464 cm2

Question 2.
The volume of a sphere is 38808 cm3; find its diameter and the surface area.
Solution:
Volume of sphere = 38808 cm3
Let radius of shpere = r

Question 3.
A spherical ball of lead has been melted and made into identical smaller balls with radius equal to half the radius of the original one. How many such balls can be made ?
Solution:
Let the radius of spherical ball = r

Question 4.
How many balls each of radius 1 cm can be made by melting a bigger ball whose diameter is 8 cm.
Solution:

Question 5.
Eight Metallic sphere; each of radius 2 mm, are melted and cast into a single sphere. Calculate the radius of the new sphere.
Solution:
Radius of metallic sphere = 2mm = $$\frac { 1 }{ 5 }$$ cm

Question 6.
The volume of one sphere is 27 times that of another sphere. Calculate the ratio of their:
(ii) surface areas.
Solution:
Volume of first sphere = 27 x volume of second sphere.
Let radius of first sphere = r1
and radius of second sphere = r2

Question 7.
If the number of square centimetres on the surface of a sphere is equal to the number of cubic centimetres in its volume, what is the diameter of the sphere ?
Solution:

Question 8.
A solid metal sphere is cut through its centre into 2 equal parts. If the diameter of the sphere is 3$$\frac { 1 }{ 2 }$$ cm, find the total surface area of each part correct to two decimal places.
Solution:
A solid sphere is cut into two equal hemispheres.

Question 9.
The internal and external diameters of a hol­low spectively. Find:
(i) internal curved suface area,
(ii) external curved surface area,
(iii) total surface area,
(iv) volume of material of the vessel.
Solution:
Internal diameter of hollow hemispher = 21cm
and external diameter = 28 cm

Question 10.
A solid sphere and a solid hemi-sphere have the same total surface area. Find the ratio between their volumes.
Solution:
Let radius of a sphere = R
∴  Surface area = 4πR2
and radius of hemi-sphere = r
∴ Surface area = 3πr2
∵ Their surface area are equal
4πR2 = 3πr2 ⇒ 4R2 = 3r2

Question 11.
Metallic spheres of radii 6 cm, 8 cm and 10 cm respectively are melted and recasted into a single solid sphere. Taking π = 3.1, find the surface area of solid sphere formed.
Solution:
Radius of first sphere (r1) = 6 cm
Radius of second sphere (r2) = 8 cm
Radius of third sphere (r3) = 10 cm

Question 12.
The surface area of a solid sphere is increased by 21% without changing its shape. Find the percentage increase in its:

(ii) volume
Solution:
(i)  Let r be the radius of the solid sphere then surface area = 4πr2
Increase in area = 21%

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere Ex 20C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18C

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18C.

Other Exercises

Question 1.
Prove that, of any two chords of a circle, the greater chord is nearer to the centre.
Solution:
Given: In circle with centre O and radius r.
OM ⊥ AB and ON ⊥ CD and AB > CD
To Prove: OM < ON
Construction: Join OA, OC

Question 2.
OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O.
(i) If the radius of the circle is 10 cm, find the area of the rhombus.
(ii) If the area of the rhombus is 32√3 cm² find the radius of the circle.
Solution:

Question 3.
Two circles with centres A and B, and radii 5 cm and 3 cm, touch each other internally. If the perpendicular bisector of the segment AB meets the bigger circle in P and Q; find the length of PQ.
Solution:

Two circles with centres A and B touch each other at C internally.
PQ is the perpendicular bisector of AB meeting the bigger circles at P and Q. Join AP.
and radius BC = 3 cm.
AB = AC – BC = 5-3 = 2 cm.

Question 4.
Two chords AB and AC of a circle are equal. Prove that the centre of the circle, lies on the bisector of angle BAC.
Solution:
Given: A circle in which two chords AC and AB are equal in length. AL is the bisector of ∠ BAC.
To Prove: O lies on the bisector of ∠ BAC

AB = AC (Given)
∴ BD = DC (C.P.C.T.)
∴ AD is the perpendicular bisector of chord BC.
∵ The perpendicular bisector of a chord passes through the centre of the circle.
∴ AD is the bisector of ∠ BAC passes through the centre O of the circle. Q.E.D.

Question 5.
The diameter and a chord of circle have a common end-point. If the length of the diameter is 20 cm and the length of the chord is 12 cm, how far is the chord from the centre of the circle ?
Solution:
AB is the diameter and AC is the chord
∴ AB = 20 cm and AC = 12 cm
Draw OL ⊥ AC
∵ OL ⊥ AC and hence it bisects AC, O is the center of the circle.

Question 6.
ABCD is a cyclic quadrilateral in which BC is parallel to AD, angle ADC = 110° and angle BAC = 50°. Find angle DAC and angle DCA.
Solution:

∠ ADC = 110°, ∠ BAC = 50°
∠B + ∠D= 180° (Sum of opposite angles of a cyclic quad.)
⇒∠B + 110°= 180°
∴ ∠ B or ∠ ABC = 180° – 110° – 70″
Now. in ∆ ABC,
∠ BAC + ∠ ABC – ∠ ACB = 180°
⇒ 50° + 70° + ∠ ACB – 180°
⇒ 120° – ∠ ACB = 180°
∴ ∠ ACB = 180° – 120° = 60″
OL ⊥ AC and hence it bisects AC, O is the center of the circle.
OL ⊥ AC and hence it bisects AC, O is the center of the circle.
∴ ∠ DAC = ∠ ACB (Alternate angles)
= 60°
∠ DAC + ∠ ADC + ∠ DCA -= 180°
60°+ 110° + ∠ DCA = 180°
170° + ∠ DCA – 180°
∴ ∠ DCA = 180″ – 170° = 10°

Question 7.
In the given figure, C and D arc points on the semi-circle described on AB as diameter. Given angle BAD = 70° and angle DBC = 30°. calculate angle BDC.

Solution:
∴ ABCD is a cyclic quad.
∠ BAD ∠ BCD 180 (Sum of opposite angles)
⇒ 70° + ∠ BCD = 180°
⇒ ∠ BCD = 180°- 70° = 110°
Now in ∆ BCD,
∠ BCD + ∠ DBC + ∠ BDC = 180°
⇒ 30°+ 110° + ∠ BDC = 180°
⇒ 140°+ ∠ BDC = 180°
∴ ∠ BDC = 180°- 140° = 40°

Question 8.
In cyclic quadrilateral ABCD, ∠ A = 3 ∠ C and ∠ D = 5 ∠ B. Find the measure of each angle of the quadrilateral.
Solution:

Question 9.
Show that the circle drawn on any one of the equal sides of an isosceles triangle as diameter bisects the base.
Solution:

Given: ∆ABC in which AB=AC and AB as diameter, a circle is drawn which intersects BC at D.
To Prove: BD = DC
Proof: AB is the diameter
∴ ∠ ADB = 90° (Angle in a semi-circle)
Now in right angled ∆s ABD and ACD,
Hypotenuse AB = AC (given)
∴ ∆ ABD ≅ ∆ ACD (RHS postulate)
BD = DC (C.P.C.T.)
Hence the circle bisects base BC at D. Q.ED.

Question 10.
Bisectors of vertex angles A, B and C of a triangle ABC intersect its circumcircle at the points D, E and F respectively. Prove that.
angle EDF = 90° – $$\frac { 1 }{ 2 }$$∠A.
Solution:
Given: A ∆ ABC whose bisectors of angles A, B and C intersect the circumcircle at D, E and F respectively. ED, EF and DF are joined.
∠ EDF = 90° – $$\frac { 1 }{ 2 }$$∠A
Construction: Join BF, FA, AE and EC.
Proof: ∠ EBF = ∠ ECF = ∠ EDF ……..(i)
(Angles in the same segment)

Question 11.
In the flgure; AB is the chord of a circle with centre O and DOC is a line segment such that BC = DO. If ∠ C = 20°, find angle AOD.

Solution:

Join OB
In ∆ OBC, BC = OD = OB (radii of the circle)
∴ ∠ BOC = ∠ BCO = 20°
and Ext. ∠ ABO = ∠ BCO + ∠ BOC
= 20°+ 20° = 40° ….(i)
In ∆ OAB, OA = OB (radii of the circle)
∴ ∠ OAB = ∠ OBA = 40° [from (i)]
∠ AOB = 180°- ∠ OAB – ∠ OBA
= 180°-40°-40°= 100°
∵ DOC is a line
∴ ∠ AOD + ∠ AOB + ∠ BOC = 180°
⇒ ∠ AOD + 100° + 20° = 180°
⇒ ∠ AOD + 120° = 180°
∴ ∠ AOD = 180° – 120° = 60°

Question 12.
Prove that the perimeter of a right triangle is equal to the sum of the diameter of its incircle and twice the diameter of its circumcircle.
Solution:

Given: In ∆ ABC, ∠ B = 90° which is inscribed in a circle and O is the incentre of the incircle of ∆ABC.
D and d are the diameters of circumcircle and incircle of ∆ ABC.
To Prove: AB +BC + CA = 2D + d.
Construction: Join OL, OM and ON.
Proof: In circumcircle of ∆ ABC,
∠ B = 90° (given)
∴ AB is the diameter of circumcircle i.e. AB = D.
Let radius of incircle = r
∴ OL = OM = ON = r
Now from B, BL, BM are the tangents to the incircle
∴ BL = OM = r
Similarly we can prove that:
AM = AN and CL = CN = R (radius)
(Tagents from the point outside the circle)
Now AB + BC + CA = AM + BM + BL + CL + CA
= AN + r + r + CN + CA
= AN + CN + 2r + CA
= AC + AC + 2r = 2 AC + 2r = 2D + d Q.E.D.

Question 13.
P is the mid point of an arc APB of a circle. Prove that the tangent drawn at P will be parallel to the chord AB.
Solution:
Given: A circle with centre O, AB is an arc whose mid point is P and AB is chord. TPS is the tangent at P.
To Prove: TPS ||AB.
Construction: Join AP and BP.
Prove: TPS is tangent and PA is chord of the circle

∠ APT = ∠ PBA (angles in the alternate segment)
But ∠ PBA = ∠ PAB (∵ PA = BP)
∴ ∠ APT = ∠ PAB
But these are alternate angles
∴ TPS || AB Q.E.D

Question 14.
In the given figure, MN is the common chord of two intersecting circles and AB is their common tangent Prove that the line NM produced bisects AB at P.

Prove that the line NM produced bisects AB at P.
Solution:
Given: Two circles intersect each other at M and N. AB is their common tangent, chord MN intersect the tangent at P.
To Prove: P is mid point of AB.
Proof: From P, AP is the tangent and PMN is the secant of first circle.
∴ AP2 = PM x PN ….(i)
Again from P, PB is the tangent and PMN is the secant of the second circle.
PB2 = PM x PN ….(ii)
from (i) and (ii)
AP2 = PB2 ⇒ AP = PB
∴ P is the mid point of AB. Q.E.D.

Question 15.
In the given figure, ABCD is a cyclic- quadrilateral, PQ is tangent to the circle at point C and BD is its diameter. If ∠ DCQ = 40° and ∠ ABD = 60°, find :
(i) ∠ DBC
(ii) ∠ BCP

Solution:
(i) PQ is the tangent and CD is the chord
∴ ∠ DCQ = ∠ DBC (angles in the alternate segment)
∴ ∠ DBC = 40° (∵ ∠ DCQ = 40°)
(ii) ∠ DCQ + ∠ DCB + ∠ BCP = 180°
⇒ 40° + 900 + ∠ BCP = 180°(∵ ∠ DCB = 90°)
⇒ 130°+ ∠ BCP = 180°
∵ ∠ BCP =180° -130° = 50°
(iii) In Δ ABD, ∠ BAD = 90° (Angle in a semi circle) and ∠ ABD = 60°
∴ ∠ ADB = 180°- (60° + 90°)
⇒ 1800- 150° = 30°

Question 16.
The given figure shows a circle with centre O and BCD is tangent to it at C. Show that:
∠ ACD + ∠ BAC = 90°.

Solution:
Given: A circle with centie O and BCD is a tangent at C.

To Prove: ∠ ACD + ∠ BAC = 90°
Construction: Join OC.
Proof: BCD is the tangent and OC is the radius
∴ OC ⊥ BD
⇒ ∠ OCD = 90°
⇒ ∠ OCA + ∠ ACD = 90° ….(i)
But in ∆ OCA
OA = OC (radii of the same circle)
∴ ∠ OCA = ∠ OAC [from (i)]
∠OAC + ∠ACD = 90°
⇒ ∠ BAC + ∠ ACD = 90° Q.E.D.

Question 17.
ABC is a right triangle with angle B = 90°. A circle with BC as diameter meets hypotenuse AC at point D. Prove that
(i) AC x AD = AB2
(ii) BD2 = AD x DC.

Solution:
Given: A circle with BC as diameter meets the hypotenuse of right ∆ ABC with ∠ B = 90° meets at D. BD is joined.
To Prove:
(i) AC x AD = AB2
(ii) BD2 = AD x DC
Proof:
(i) In ∆ABC, ∠ B = 90° and BC is the diameter of the circle.

Question 18.
In the given figure. AC = AE.
Show that :
(i) CP = EP
(ii) BP = DP.

Solution:
Given: In the figure, AC = AE
To Prove: (i) CP = EP (ii) BP = DP
Proof: In ∆ ADC and ∆ ABE,
AC = AE (given)
∠ ACD = ∠ AEB (Angles in the same segment)
∠ A = ∠ A (Common)
∆ ADC ≅ ∆ ABE (ASA postulate)
But AC = AE (given)
∴ AC – AB = AE – AD
⇒ BC = DE
Now in ∆ BPC and ∆ DPE,
BC = DE (proved)
∠ C = ∠ E (Angles in the same segment)
∠ CBP = ∠ CDE (Angles in the same segment)
∴ ∆ BPC ≅ ∆ DPE (S.A.S. postulate)
∴ BP=DP (C.P.C.T.)
CP = PE (C.P.C.T.) Q.E.D.

Question 19.
ABCDE is a cyclic pentagon with centre of its circumcircle at point O such that AB = BC = CD and angle ABC = 120°.
Calculate :
(i) ∠ BEC
(ii) ∠ BED
Solution:
(i) In cyclic pentagon, O is the centre of circle.
Join OB, OC
AB = BC = CD (given)
and ∠ ABC = 120°.
∴ ∠ BCD = ∠ ABC = 120°
OB and OC are the bisectors of ∠ ABC and ∠ BCD respectively.
∴ ∠ OBC = ∠ BCO = 60°
In ∆ BOC,

Question 20.
In the given figure, O is the centre of the circle. Tangents at A and B meet at C. If ∠ACO=30°, find
(i) ∠BCO
(ii) ∠AOB
(iii) ∠APB

Solution:
Given: In the fig. O is the centre of the circle CA and CB are the tangents to the circle from C. ∠ACO = 30°
P is any point on the circle. PA and PB are joined.
To find:
(i) ∠BCO
(ii) ∠AOB
(iii) ∠APB
Proof:
(i) In ∆ OAC and ∆OBC,
OC=OC (common)
OA = OB (radius of the circle)
CA = CB (tangents to the circle)
∴ ∆OAC ≅ ∆OBC (SSS axion)
∴ ∠ACO = ∠BCO = 30°
(ii) ∴ ∠ACB = 30° + 30° = 60°
∴ ∠AOB + ∠ACB = 180°
⇒ ∠AOB+ 60° =180°
∴ ∠AOB = 180° – 60° = 120°
(iii) Arc AB, subtends ∠AOB at the centre and ∠APB is in the remaining part of the circle
∴ ∠APB = $$\frac { 1 }{ 2 }$$ ∠AOB = $$\frac { 1 }{ 2 }$$ x 120° = 60°

Question 21.
ABC is triangle with AB = 10 cm, BC = 8 cm and AC = 6 cm (not drawn to scale). Three circles are drawn touching each other with the vertices as their centres. Find the radii of the three circles. (2011)

Solution:
Given: ABC is a triangle with AB = 10 cm, BC = 8 cm, AC = 6 cm. Three circle are drawn with centre A, B and C touch each other at P, Q and R respectively

Question 22.
In a square ABCD, its diagonals AC and BD intersect each other at point O. The bisector of angle DAO meets BD at point M and the bisector of angle ABD meets AC at N and AM at L.
Show that :
(i) ∠ ONL + ∠ OML = 180°
(ii) ∠ BAM = ∠ BMA
(iii) ALOB is a cyclic quadrilateral
Solution:

Question 23.
The given figure shows a semi-circle with centre O and diameter PQ. If PA = AB and ∠ BCQ = 140°; find measures of angles PAB and AQB. Also, show that AO is parallel to BQ.

Solution:

Join PB
∠ BPQ + ∠ BCQ = 180°
⇒ ∠ BPQ + 140° = 180°
∴ ∠ BPQ = 180° – 140° = 40°
Now, in ∆ PBQ,
∠ PBQ + ∠ BPQ + ∠ BQP = 180°
⇒ 90° + 40° + ∠ BQP = 180°
(∠ PBQ = 90° angle in a semicircle)
⇒ 130° + ∠ BQP = 180°
∴ ∠ BQP = 180° – 130°= 50°
∠ PQB + ∠ PAB = 180°
⇒ 50° + ∠ PAB = 180°
∴ ∠ PAB = 180° – 50° = 130°
(ii) Now, in ∆ PAB,
∠ PAB + ∠ APB + ∠ ABP = 180°
⇒ 130° + ∠ APB + ∠ ABP = 180°
⇒ ∠ APB + ∠ ABP = 180° – 130° = 50°
But ∠ APB = ∠ ABP = 25°
∴ (PA = AB)
∠ BAQ = ∠ BPQ = 40°
(Angles in the same segment)
Now, in ∆ ABQ,
∠ AQB + ∠ QAB + ∠ ABQ = 180°
⇒ ∠ AQB + 40° + 115° = 180°
⇒ ∠ AQB + 155° = 180°
⇒ ∠ AQB = 180° – 155° = 25°
(iii) Arc AQ subtends ∠ AOQ at the centre and ∠APQ at the remaining part of the circle,
∠ AOQ = 2 ∠ APQ = 2 x 65° = 130°
Now, in ∆ AOQ,
∠ OAQ = ∠ OQA
(∵ OA = OQ radii of the same circle)
But ∠ OAQ + ∠ OQA + ∠ AOQ = 180°
⇒ ∠ OAQ + ∠ OAQ + 130° = 180°
2 ∠ OAQ = 180° – 130° = 50°
∴ ∠ OAQ = 25°
∵ ∠ OAQ = ∠ AQB (each = 25°)
But these are alternate angles.
∴ AO || BQ.
Q.E.D.

Question 24.
The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate
(i) angle QTR
(ii) angle QRP
(iii) angle QRS
(iv) angle STR

Solution:

Question 25.
In the given figure, PAT is tangent to the circle with centre O, at point A on its circumference and is parallel to chord BC. If CDQ is a line segemcnt, show that :
(i) ∠ BAP = ∠ ADQ
(ii) ∠ AOB = 2 ∠ ADQ

Solution:
Given: PAT is the tangent to the circle with centre O, at A. Chord BC || PAT is drawn.
CDQ is a line segment which intersects the circle at C and D and meets the tangent PAT at Q.
To Prove:
(i) ∠ BAP = ∠ ADQ (ii)∠ AOB = 2 ∠ ADQ
Proof:
(i) ∵ PAT || BC
∴ ∠ PAB = ∠ ABC (Alternate angles) ….(i)
∴ ∠ PAB = ∠ ADQ (from (i) and (ii))
(ii) Arc AB subtends ∠ AOB at the centre and ∠ADB at the remaining part of the circle.
∴ ∠ AOB = 2 ∠ ADB
= 2 ∠ PAB (In the alt. segment)
= 2 ∠ ADQ [proved in (i)]
(iii) ∵ ∠ BAP = ∠ ADB
(Angles in the alt. segment)
Bui ∠ BAP = ∠ ADQ (Proved in (i))

Question 26.
AB is a line segment and M is its mid-point. Three semi-circles are drawn with AM, MB and AB as diameters on the same side of the line AB. A circle with radius r unit is drawn so that it touches all the three semi-circles. Show that: AB = 6 x r
Solution:

Given: A line segment AB whose mid-point is M. Three circles are drawn on AB, AM and MB as diameler A circle with radius r is drawn which touches (he three circles externally at L, R and N respectively. M, P, Q are the centres of the three circles.
To Prove: AB= 6r
Construction: Join OP and OQ.
Proof: OM = ON = r

Question 27.
TA and TB are tangents to a circle with centre O from an external point T. OT intersects the circle at point P. Prove that AP bisects the angle TAB.
Solution:

Given: A circle with centre C. From a point T outside th circle, TA and TB are two tangent to the circle OT intersects the circle at P, AP and AB are joined.
To Prove: AP is the bisector of ∠ TAB
Construction: Join PB.

Question 28.
Two circles intersect in points P and Q. A secant passing through P intersects the circles in A and B respectively. Tangents to the circles at A and B intersect at T. Prove that A, Q, B and T lie on a circle.
Solution:

Given: Two circles intersect each other at P and Q. From P, a secant intersects the circles at A and B respectively. From A and B tangents are drawn which intersect each other at T.
To Prove: A. Q, B and T on a circle.
Construction: Join PQ.
Proof: AT is the tangent and AP is chord
∴ ∠ TAP = ∠ AQP (Angles in all. segment) …(i)
Similarly ∠ TBP = ∠ BQP ….(ii)
∠ TAP + ∠ TBP = ∠ AQP + ∠ BQP = ∠ AQB …..(iii)
Now, in ∆ TAB,
∠ ATB + ∠ TAP + ∠ TBP = 180°
⇒ ∠ ATB + ∠ AQB = 180° (from (iii)
∴ AQBT is a cyclic quadrilateral.
Hence A, Q, B and T lie on the same circle. Q.E.D.

Question 29.
Prove that any four vertices of a regular pentagon are concyclic (lie on the same circle).
Solution:
ABCDE is a regular pentagon.

To Prove: Any four vertices lie on the same circle.
Construction: Join AC.
Proof: Each angle of a regular pentagon

Question 30.
Chords AB and CD of a circle when extended meet at point X. Given AB = 4 cm, BX = 6 cm and XD = 5 cm, calculate the length of CD. [2000]
Solution:

Let CD = x
∴ chords AB and CD intersect each other at outside the circle.
∴ AX.XB = CX.XD
⇒(4+6)x6 = (x + 5)x5
⇒ 10 x 6 = 5x + 25
⇒ 60 = 5x + 25
⇒ 5x = 60 – 25 = 35
∴ x = $$\frac { 35 }{ 5 }$$ = 7
CD = 7 cm

Question 31.
in the given figure. find TP if AT = 16 cm AB = 12 cm.
Solution:
In the figure.
PT is the tangent and TBA is the secant of the circle.
∴ TP2 = TA x TB = 16 x (16 – 12) = 16 x 4 = 64 = (8)2
Hence, TP = 8 cm.

Question 32.
In the following figure, a circle is inscribed in the quadrilateral ABCD. If BC = 38 cm. QB = 27 cm, DC = 25 cm and that AD is perpendicular to DC, find the radius of the circle. (1990)

Solution:
A circle with centre is inscribed (see the fig.)
in a quadrilateral ABCD. BC = 38 cm, QB = 27cm,
DC = 25 cm and AD ⊥ BC.
Join OP and QS.
∵ OP and OS are the radii of the circle
∴ OP ⊥ AD and OS ⊥ CD
∴ OPDS is a square
∴ OP = OS – DP = DS.
Let length of radius of the circle = r
then DP = DS = r
∴ CS = 25 – r
∵ EQ = BR = 27 cm (tangents to the circle from B)
∴ CR = BC – BR = 38 – 27 = 11 cm
Similarly CR = CS
∴ 25 – r = 11 ⇒ r = 25 – 11 = 14
∴ Radius of the circle = 14 cm

Question 33.
In the given figure, XY is the diameter of the circle and PQ is a tangent to the circle at Y.

If ∠AXB = 50° and ∠ABX = 70°, find ∠BAY and ∠APY.
Solution:
In the above figure,
XY is a diameter of the circle PQ is tangent to the circle at Y.
∠AXB = 50° and ∠ABX = 70°
(i) In ∆AXB,
∠XAB + ∠ABX + ∠AXB = 180° (Angles of a triangle)
⇒ ∠XAB + 70° + 50° = 180°
⇒ ∠XAB + 120° =180°
⇒ ∠XAB = 180° – 120° = 60°
But, ∠XAY = 90° (Angle in a semicircle)
∴ ∠BAY = ∠XAY-∠XAB=90°- 60° = 30°
(ii) Similarly ∠XBY=90°(Angle in a semicircle) and ∠CXB = 70°
∴ ∠PBY = ∠XBY-∠XBA =90° – 70° = 20°
∵ ∠BYA = 180° – ∠AXB ( ∵ ∠BYA + ∠AYB = 180°) = 180°- 50° = 130°
∠PYA =∠ABY (Angles in the alternate segment) = ∠PBY = 20°
and ∠PYB = ∠PYA + ∠AYB
= 20° + 130° = 150°
∴ ∠APY = 180°-(∠PYA + ∠ABY)
= 180° -(150° +20°) =180° – 170° = 10°

Question 34.
In the given figi QAP is the tangent point A and PBD is a straight line. If ∠ACB = 36° and ∠APB = 42°, find:
(i) ∠ BAP
(ii) ∠ABD
(iv) ∠ BCD

Solution:
In the given figure, QAP is the tangent to the circle at A and PBD is a B straight line.

Question 35.
In the given figure, AB is a diameter. The tangent at C meets AB produced at Q. If ∠ CAB = 34°,
find :
(i) ∠CBA
(ii) ∠CQB
Solution:

In ∆ ABC,
we have ∠ ACB = 90°
[Angle in a semicircle is 90°]
(i) Also ∠ CBA + ∠ CAB + ∠ ACB = 180° [Angle sum property of a ∆ ]
⇒ ∠ CBA =180°- ∠ CAB – ∠ ACB = 180°-34°-90° = 180°-124° = 56°
(ii) CQ is a tangent at C and CB is a chord of the circle.
⇒ ∴ ∠ QCB = ∠ BAC = 34° [Angles in the alternate segments]
∠ CBQ =180°- ∠ ABC [Linear pair]
⇒ ∠ CBQ = 180°- 56° = 124° [From (i)]
In ∆ BCQ, we have
⇒ ∠ CQB = 180° – (∠ QCB + ∠ CBQ) [Angle sum property of a ∆ ]
= 180° -(34° + 124°) = 180°- 158° = 22°
Hence, ∠CQB = 22°

Question 36.
In the given figure, A O is the centre of the circle. The tangents at B and D intersect each other at point P.

If AB is parallel to CD and ∠ ABC = 55
find :
(i) ∠ BOD
(ii) ∠ BPD
Solution:

In the given figure,
O is the centre of the circle AB || CD,
∠ ABC = 55° tangents at B and D are drawn which meet at P.
∵ AB || CD
∴ ∠ ABC = ∠ BCD (Alternate angles)
∴ ∠ ABC = 55° (Given)
(i) Now arc BD subtands ∠ BOD at the centre and ∠ BCD at the remaining part of the circle.
∴ ∠BOD = 2∠BCD = 2 x 55° = 110°
∠OBP = ∠ODP = 90° (∵ BP and DP are tangents)
∴ ∠BOD + ∠BPD = 180°
⇒ 110° +∠BPD =180°
⇒ ∠BPD =180°-110°= 70°
Hence, ∠BOD = 110° and ∠BPD = 70°

Question 37.
In the figure given below PQ = QR, ∠RQP = 68°, PC and CQ are tangents to the circle with centre O. Calculate the values of:
(i) ∠QOP
(ii) ∠QCP
Solution:

Question 38.
In two concentric circles, prove that all chords of the outer circle, which touch the inner circle, are of equal length.

Solution:
Given: Two concentric circles with centre O AB and CD are two cords of outer circle which touch the inner circle at P and Q respectively
To prove: AB = CD
Construction : Join OA, OC, OP and OQ
Proof: ∵ OP and OQ are the radii of the inner circle and AB and CD are tangents
∴ OP ⊥ AB and OQ ⊥ CD
and P and Q are the midpoints of AB and CD Now in right AOAP and OCQ,
Side OP = OQ (radii of the inner circle)
Hyp. OA = OC (radii of the outer circle)
∴ ∆OAP = ∆OCQ (R.H.S. axiom)
∴ AP = CQ (c.p.c.t.)
But AP = $$\frac { 1 }{ 2 }$$ AB and CQ = $$\frac { 1 }{ 2 }$$ CD
∴ AB = CD Hence proved.

Question 39.
In the figure, given below, AC is a transverse common tangent to two circles with centres P and Q and of radii 6 cm and 3 cm respectively.

Given that AB = 5 cm , Calculate PQ.
Solution:
In the figure, two circles with centres P and Q and radii 6 cm and 3 cm respectively
ABC is the common transverse tangent to the two circles. AB = 8 cm
Join AP and CQ
∵ AC is the tangents to the two circles and PA and QC are the radii

Question 40.
In the figure, given below, O is the centre of the circumcircle of triangle XYZ. Tangents at X and Y intersect at point T. Given ∠XTY = 80° and ∠XOZ = 140°, calculate the value of ∠ZXY.

Solution:
In the figure, a circle with centre O, is the circumcircle of ∆XYZ.
∠XOZ =140° (given)
Tangents from X and Y to the circle meet at T such that ∠XTY = 80°
∵ ∠XTY = 80°
∴ ∠XOY= 180°-80°= 100°
But ∠XOY + ∠YOZ + ∠XOZ = 360° (Angles at a point)
⇒ 100°+∠YOZ+ 140o = 360o
⇒ 240o+∠YOZ =360°
⇒ ∠YOZ =360°- 240°
⇒∠YOZ =120°
Now arc YZ subtends ∠YOZ at the centre and ∠YXZ at the remaining part of the circle
∴ ∠YOZ = 2 ∠YXZ
⇒ ∠YXZ= $$\frac { 1 }{ 2 }$$ ∠YOZ ⇒ ∠YXZ = $$\frac { 1 }{ 2 }$$ x 120° = 60°

Question 41.
In the given figure, AE and BC intersect each other at point D. If ∠CDE = 90°, AB = 5 cm, BD = 4 cm and CD = 9 cm, findAE.

Solution:
In the given circle,
Chords AE and BC interesect each other at D at right angle i.e., ∠CDE = 90°, AB is joined AB = 5cm, BD = 4 cm, CD = 9 cm
Now we have to find AE.
Let DE=xm
Now in right ∆ABD,
AB= AD2 + BD2 (Pythagoras Theorem)
⇒ 25 = AD2 + 16
⇒ AD2 = 25-16 = 9 = (3)2
∵ Chords AE and BC intersect eachothcr at D inside the circle
∴ AD x DE = BD x DC
⇒ 3 x x = 4 x 9
⇒ x= $$\frac { 4×9 }{ 3 }$$ = 12cm;
∴ AE=AD + DE = 3 + 12 = 15 cm

Question 42.
In the given circle with centre O, ∠ABC = 100°, ∠ACD = 40° and CT is a tangent to the circle at C. Find ∠ADC and ∠DCT.

Solution:
∴ ∠ABC + ∠ADC = 180°
∠ADC = 180°- 100° = 80°
∠ACD + ∠CDA + ∠D AC =180°
40° + 80° +∠D AC = 180°
∠D AC = 180° – 80° – 40° = 60°
Now ∠DAC = 60°
⇒ ∠DCT = 60° [angle in alt. segment]

Question 43.
In the figure given below, O is the centre of the circle and SP is a tangent. If ∠SRT = 65°, find the values of x,y and z. (2015)

Solution:
In the given figure,
O is the centre of the circle.
SP is tangent ∠SRT =65°.
To find the values of x, y and z
(i) In ∆STR,
∠S = 90° (∵ OS is radius and ST is tangent)
∴ ∠T + ∠R = 90°
⇒ x + 65° = 90°
⇒ x = 90° – 65° = 25°
(ii) Arc CQ subtends ∠SOQ at the centre and
∠STQ at the remaining part of the circle.
∠y = ∠QOS = 2∠T = 2∠x = 2 x 25° = 50°
(iii) In ∆OSP,
∠S = 90°
∴ ∠SOQ or ∠SOP + ∠P = 90°
⇒ y+z=90o
⇒ 50° + z = 90°
⇒ z = 90°-50° = 40°
Hence x = 25°, y = 50° and z = 40°

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18C  are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Ex 20B

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 21 Trigonometrical Identities Ex 21B.

Other Exercises

Question 1.
Find the volume of a cone whose slant height is 17 cm and radius of base is 8 cm.
Solution:
Slant height (L) = 17 cm
But l2= r2 + h2
⇒  h2 = l2-r2 = 172 – 82
⇒ h2 = 289 – 64 = 225 = (15)2
∴   h=15 cm.

Question 2.
The curved suface area of a cone is 12320 cm2. If the radius of its base is 56 cm, find its height.
Solution:
Curved surface area = 12320 cm2
Radius of base (r) = 56 cm.
Let slant height = l.

Question 3.
The circumference of the base of a 12 m high conical tent is 66m. Find the volume of the air contained in it.
Solution:
Circumference of conical tent = 66 m
and height (h) = 12 m.

Question 4.
The radius and the height of a right circular cone are in the ratio 5 :12 and its volume is 2512 cubic Cm. Find the radius and slant height of the cone. (Take π = 3.14)
Solution:
The ratio between radius and height = 5 : 12
Volume =2512 cm3
Let radius (r) = 5x and
height (h) = 12x
and slant height = l

Question 5.
Two right circular cones x and y are made, x having three times the radius of y and y having half the volume of x. Calculate the ratio between the heights of x and y.
Solution:
Let radius of cone y = r
∴ radius of cone x = 3r
Let volume of cone y = V
Then volume of x = 2V
Let h1 be the height of x and h2 be the height of y.

Question 6.
The diameters of two cones are equal, if their slant heights are in the ratio of 5:4, find the ratio of their curved surface area.
Solution:
Let radius of each one = r
and ratio between their slant heights =5:4
Let slant height of the first cone = 5x
and slant height of second = 4 x
∴  Curved surface area of the first cone
= πr = πr x 5x = 5πrx.
and curved suface area of second cone
= πr x 4x = 4πrx
∴ Ratio between them = 5 πrx : 4 πrx
= 5:4

Question 7.
There are two cones. The curved surface area of one is twice that of the other. The slant height of the latter is twice that of the former. Find the ratio of their radii.
Solution:
Let the slant height of first cone = l
then slant height of the second cone = 2l
and let r1  be the radius of the first cone and r2 be the radius of the second cone.
Then curved surface area of the first cone = πr1l
and that of second cone = πr22l= 2πr2l.
According to the condition,

Question 8.
A heap of wheat is in the form of a cone of diameter 16.8 m and height 3.5m. Find its volume. How much cloth is required to just cover the heap?
Solution:

Question 9.
Find what length of canvas, 1.5m in width, is required to make a conical tent 48 m in diameter and 7m in height Given that 10% of the canvas is used in folds and stritchings. Also, find the cost of the canvas at the rate of ₹24 per metre.
Solution:

Question 10.
A solid cone of height 8 cm and base radius 6 cm is melted and recast into identical cones, each of height 2 cm and diameter 1 cm. Find the number of cones formed.
Solution:
Height of solid cone (h) = 8 cm.

Question 11.
The total surface area of a right circular cone of slant height 13 cm is 90π cm2. Calculate:
(ii) its volume in cm3. [Take π = 3.14]
Solution:
Total surface area of cone = 90π cm2
slaint height (l) = 13 cm
Let r be its radius, then
Total surface area = πrl + πr2 = πr (l + r)

Question 12.
The area of the base of a conical solid is 38.5 cm2 and its volume is 154 cm3. Find curved surface area of the solid.
Solution:
Area of base of a solid cone = 38.5 cm2
and volume  = 154 cm3

Question 13.
A vessel, in the form of an invested cone, is filled with water to the brim. Its height is 32 cm and diameter of the base is 25.2 cm. Six equal solid cones are dropped in it, so that they are fully submerged. As a result, one-fourth of water in the original cone overflows. What is the volume of each of the solid cones submerged ?
Solution:
Diameter of the base of cone = 25.2 cm

Question 14.
The volume of a conical tent is 1232 m3 and the area of the base floor is 154 m2. Calculate the:
(ii) height of the tent.
(iii) length of the canvas required to cover this conical tent if its width is 2 m. (2008)
Solution:
Volume of conical tent = 1232 m3
Area of base floor = 154 m2
(i)  Let r be the radius of the floor

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere Ex 20B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 19 Constructions (Circles) Ex 19

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 19 Constructions (Circles) Ex 19

Question 1.
Draw a circle of radius 3 cm. Mark a point P at a distance of 5cm from the centre of the circle drawn. Draw two tangents PA and PB to the given circle and measure the length of each tangent.
Solution:

Steps of Construction:
(i) Draw a circle with centre O and radius 3 cm.
(ii) From O, take a point P such that OP = 5 cm.
(iii) Draw the bisector of OP which intersects OP at M.
(iv) With centre M, and radius OM. draw’ a circle which intersects the given circle at A and B.
(v) Join AP and BP.
AP and BP are the required tangents.
On measuring them, AP = BP = 4 cm.

Question 2.
Draw a circle of diameter 9 cm. Mark a point at a distance of 7.5 cm from the centre of the circle. Draw tangents to the given circle from this exterior point. Measure the length of each tangent.
Solution:

Steps of Construction:
(i) Draw a line segment AB = 9 cm.
(ii) Draw a circle with centre O and AB as diameter.
(iii) Take a point P from the centre at a distance of 7.5 cm.
(iv) Draw an other circle OP as diameter which intersects the given circle at T and S.
(v) Join TP and SP.
TP and SP are are required tangents.
On measuring their lengths, TP = SP = 6 cm.

Question 3.
Draw a circle of radius 5 cm. Draw two tangents to this circle so that the angle between the tangents is 45°.
Solution:
Steps of Construction:
(i) Draw a circle with centre O and radius 5 cm.
(ii) Draw two arcs making an angle of 180° – 45° = 135°
so that ∠AOB = 135°.

(iii) At A and B, draw two rays making an angle of 90° at each point which meet each other at P, out side the circle.
Then AP and BP are the required tangents which make an angle of 45° at P.

Question 4.
Draw a circle of radius 4.5 cm. Draw two tangents to this circle so that the angle between the tangents is 60°.
Solution:

Steps of Construction:
(i) Draw a circle with centre O and radius 4.5 cm.
(ii) Draw two arcs making an angle of 180° – 60° = 120° i.e. ∠AOB = 120°.
(iii) At A and B draw rays making an angle of 90° at each point which meet each other at P outside the circle.
AP and BP are the required tangents which makes an angle of 60° at P.

Question 5.
Using ruler and compasses only, draw an equilateral triangle of side 4.5 cm and draw its circumscribed circle. Measure the radius of the circle.
Solution:
Steps of Construction:
(i) Draw a line segment BC = 4.5 cm.
(ii) With centres B and C, draw two arcs of radius 4.5 cm. which intersect each other at A.
(iii) Join AB and AC,
(iv) Draw the perpendicular bisectors of AB and BC intersecting each other at O.
(v) With centre O, and radius OA or OB or OC draw a circle which will passes through A, B and C.
This is the required circumcircle of ∆ ABC.
Measuring OA = 2.6 cm

Question 6.
Construct triangle ABC, having given = 7 cm, AB – AC = 1 cm and ∠ABC = 45°.
(ii) Inscribe a circle in the ∆ ABC constructed in (i) above,
Solution:

Steps of Construction:
(i) Draw a line segment BC = 7 cm.
(ii) At B, draw a ray BX making an angle of 45° and cut off BE = AB – AC = 1 cm.
(iii) Join EC and draw the perpendicular bisector of EC intersecting BX at A.
(iv) Join AC
∆ ABC is the required triangle.
(v) Draw angle bisectors of ∠ABC and ∠ACB intersecting each other at O.
(vi) From O, draw perpendicular OL to BC.
(vii) O as centre and OL as radius draw circle which touches the sides of the A ABC. This is the required in-circle of ∆ ABC.
On measuring radius OL = 1.8 cm (approx.).

Question 7.
Using ruler and compasses only, draw an equilateral triangle of side 5 cm. Draw its inscribed circle. Measure the radius of the circle.
Solution:

Steps of Construction:
(i) Draw a line segment BC = 5 cm.
(ii) With centre B and C, draw two arcs of 5 cm radius each which intersect each other at A.
(iii) Join AB and AC.
(iv) Draw angle bisectors of ∠B and ∠C intersecting each other at O.
(v) From O, draw OL ⊥ BC.
(vi) Now with centre O and radius OL, draw a circle which will touch the sides of the ∆ ABC. Measuring OL =1.4 cm. (approx.).

Question 8.
Using ruler and compasses only,
(i) Construct a triangle ABC with the following data:
Base AB = 6 cm, BC = 6.2 cm and ∠CAB = 60°.
(ii) In the same diagram, draw a circle which passes through the points A, B and C and mark its centre O.
(iii) Draw a perpendicular from O to AB which meets AB in D.
(iv) Prove that AD = BD.
Solution:
Steps of Construction:
(i) Draw a line segment AB = 6 cm.
(ii) At A, draw a ray making an angle of 60° with BC.
(iii) B as centre and 6.2 cm as radius draw an arc which intersect the AX rays at C.
(iv) Join CB.
∆ ABC is the required triangle.
(v) Draw the perpendicular bisectors of AB and AC intersecting each other at O.
(vi) With centre O, and radius as OA or OB or OC, draw a circle which will pass through A, B and C.
(vii) From O, draw OD ⊥ AB.
Proof: In right ∆ OAD and ∆ ODB
Hyp, OA = OB (radii of the saine circle)
Side OD = OD (Common)

Question 9.
Using ruler and compasses only construct a triangle ABC in which BC = 4 cm, ∠ACB = 45° and perpendicular from A on BC is 2.5 cm. Draw a circle circumscribing the triangle ABC and measure its radius.
Solution:

Steps of Construction:
(i) Draw a line segment BC = 4 cm.
(ii) At C, draw a perpendicular line CX and from it, cut off CE = 2.5 cm.
(iii) From E, draw another perpendicular line EY.
(iv) From C, draw a ray making an angle of 45° with CB, which intersects EY at A.
(v) JoinAB.
∆ ABC is the required triangle.
(vi) Draw perpendicular bisectors of sides AB and BC intersecting each other at O.
(vii) With centre O, and radius OB, draw a circle which passes through A, B and C.
Measuring the radius OB = OC = OA = 2 cm

Question 10.
Perpendicular bisectors of the sides AB and AC of a triangle ABC meet at O.
(i) What do you call the point O ?
(ii) What is the relation between the distances OA, OB and OC?
(iii) Does the perpendicular bisector of BC pass through O ?
Solution:

(i) Perpendicular bisectors of sides AB and AC intersect each other at O.
(ii) O is called the circum centre of circumcircle of ∆ ABC.
(iii) OA, OB and OC are the radii of the circumcircle.
(iv) Yes, the perpendicular bisector of BC will also pass through O.

Question 11.
The bisectors of angles A and B of a scalene triangle ABC meet at O.
(i) What is the point O called ?
(ii) OR ancLOQ are drawn perpendiculars to AB and CA respectively. What is the relation between OR and OQ ?
(iii) What is the relation between angle ACO and angle BCO ?
Solution:

(i) ∆ ABC is a scalene triangle.
(ii) Angle bisectors of ∠A and ∠B intersect each other at O. O is called the incentre of the incircle of ∆ ABC.
(iii) Through O, draw perpendiculars to AB and AC which meet AB and AC at R and Q respectively.
(iv) OR and OQ are the radii of the in circle and OR =OQ.
(v) OC is the bisector of ∠C
∴∠ACO = ∠BCO

Question 12.
(i) Using ruler and compasses only, construct a triangle ABC in which AB = 8 cm, BC = 6 cm and CA = 5 cm.
(ii) Find its incentre and mark it I.
(iii) With I as centre, draw a circle which will cut off 2 cm chords from each side of the triangle. What is the length of the radius of this circle.
Solution:

Steps of Construction:
(i) Draw a line segment BC = 6 cm.
(ii) With centre B and radius 8 cm draw ah arc.
(iii) With centre C and radius 5 cm, draw another arc which intersects the first arc at A.
(iv) Join AB and AC.
∆ ABC is the given triangle.
(v) Draw the angle bisectors of ∠B and ∠A intersecting each other at I.
Then I is the incentre of incircle of ∆ ABC.
(vi) Through I, draw ID ⊥ AB.
(vii) Now from D, cut off DP = DQ = $$\frac { 2 }{ 2 }$$ = 1 cm.
(viii) With centre I, and radius IP or IQ, draw a circle which will intersect each side of ∆ ABC cuting chords of 2 cm each.

Question 13.
Construct an equilateral triangle ABC with side 6cm. Draw a circle circumscribing the triangle ABC.
Solution:

Steps of construction:
(i) Draw a line segment BC = 6cm.
(ii) With centre B and C, draw arcs with radius 6 cm each which intersect each other at A.
(iii) Join AB and AC,
then ∆ABC is the equilateral triangle.
(iv) Draw the perpendicular bisectors of BC and AB which intersect each other at O.
(v) Join OB and OC and OA.
(vi) With centre O, and radius OA or OB or OC, draw a circle which will pass through A, B and C.
This is the required circle.

Question 14.
Construct a circle, inscribing an equilateral triangle with side 5.6 cm.
Solution:

Steps of construction:
(i) Draw a line segment BC = 5.6 cm
(ii) With centre B and C,
draw two arcs of radius 5.6cm each which intersect each other at A.
(iii) Join AB and AC, then ∆ABC is an equilateral triangle.
(iv) Draw the angle bisectors of ∠B and ∠C which intersect each other at I.
(v) From I, draw ID ⊥ BC.
(vi) With centre I and radius ID, draw circle which touches the sides of the ∆ABC. This is the required circle.

Question 15.
Draw a circle circumscribing a regular hexagon of side 5cm.
Solution:

Steps of construction:
(i) Draw a regular hexagon ABCDEF whose each side is 5cm.
(ii) Join its diagonals AD, BE and CF intersecting each other at O.
(iii) With centre O and radius OA, draw a circle which will pass through the vertices of the hexagon A, B, C, D, E and F. This is the required circle.

Question 16.
Draw an inscribing circle of a regular hexagon of side 5.8 cm.
Solution:
Steps of construction:
(i) Draw a line segment AB = 5.8cm.

(ii) At A and B, draw rays making an angle of 120° each and cut off AF = BC = 5.8 cm.
(iii) Again at F and C, draw rays making an angle of 120° each and cut off FE = CD = 5.8 cm.
(iv) JoinDE. Then ABCDEF is the regular hexagon.
(v) Draw the bisectors of ∠A and ∠B intersecting each other at O.
(vi) From O, draw OL J. AB.
(vii) With centre O and radius OL, draw a circle which touches the sides of the hexagon. This is the required incircle of the hexagon.

Question 17.
Construct a regular hexagon of side 4 cm. Construct a circle circumscribing the hexagon.
Solution:
Steps of construction:
(i) Draw a circle of radius 4 cm with centre O.
(ii) Since regular hexagon $$\frac { { 360 }^{ \circ } }{ 6 }$$ = 60°, draw radii
OA and OB, such that ∠AOB = 60°.
(iii) Cut off arcs BC, CD, DE, EF and each equal to arc AB on given circle.
(iv) Join AB, BC, CD, DE, EF, FA to get required regular hexagon ABCDEF in a given circle.

Question 18.
Draw a circle of radius 3.5 cm. Mark a point P outside the circle at a distance of 6 cm from the centre. Construct two tangents from P to the given circle. Measure and write down the length of one tangent (2011).
Solution:

Steps of construction:
(i) Draw a line segment OP = 6 cm
(ii) With centre O and radius 3.5 cm, draw a circle
(iii) Draw the mid point of OP.
(iv) With centre M and diameter OP, draw a circle which intersect the circle at T and S.
(v) Join PT and PS.
PT and PS are the required tangent on measuring the length of PT = PS = 4.8 cm

Question 19.
Construct a triangle ABC in which base BC=5.5 cm,AB = 6cmand ∠ABC = 120°.
(i) Construct a circle circumscribing the triangle ABC.
(ii) Draw- a cyclic quadrilateral ABCD so that D is equidistant from B and C.
Solution:

Steps of construction:
(i) Draw BC = 6 cm. x
(ii) At B, draw ∠XBC= 120°.
(iii) From BX, cut off AB = 6 cm.
(iv) Join AC to get ∆ ABC.
(v) Draw the perpendicular bisector of BC and AB. These bisectors meet at O. With O as centre and radius equal tb OA, draw a circle, which passes through A, B and C. This is the required circumcircle of ∆ABC.
(vi) Produce the perpendicular bisector of BC so that it meets the circle at D. Join CD and AD to _ get the required cyclic quadrilateral ABCD.

Question 20.
Using a ruler and compasses only :
(i) Construct a triangle ABC with the following data : AB = 3.5 cm, BC = 6 cm and ∠ABC = 120°
(ii) In the same diagram, draw a circle with BC as diameter. Find a point P on the circumference of the circle which is equidistant from AB and BC.
(iii) Measure ∠BCP
Solution:
Steps of construction:
(i) Draw AB = 3.5

(ii) At B, draw ∠ABX = 120°.
(iii) With B as center draw an arc of radii 6 cm at C.
(iv) Join A and C.
(v) Draw the perpendicular bisector of line BC and draw a circle with BC as diameter.
(vi) Draw angle bisector of ∠B.
Meets the circle at P
∴ P is the required point ∠BCP = 30°

Question 21.
Construct a ∆ABC with BC = 6.5 cm, AB = 5.5 cm, AC = 5 cm. Construct the incircle of the triangle. Measure and record the radius of the incircle. (2014)
Solution:
Steps of construction:
(i) Draw a line segment BC = 6.5 cm.
(ii) From B, draw an arc of radius of 5.5 cm and from C, another arc of 5 cm radius which intersect each other at A.
(iii) Join AB and AC.
∆ABC is required triangle.
(iv) Draw the angle bisectors of ∠B and ∠C which intersect each other at O.
(v) Through O, draw OL ⊥ BC.
(vi) With centre O and radius OL, draw a circle which touches the sides of ∆ABC.
(vii) On measuring, OL = r = 1.5 cm.

Question 22.
Construct a triangle ABC with AB = 5.5 cm, AC = 6 cm and ∠BAC = 105°. Hence:
(i) Construct the locus of points equidistant from BA and BC.
(ii) Construct the locus of points equidistant from B and C.
(iii) Mark the point which satisfies the above two loci as P. Measure and write the length of PC. (2015)
Solution:
Steps of construction:
(i) Draw a line segment AB = 5.5 cm.
(ii) At A, draw a ray AX making an angle of 105°.
(iii) Cut off AC from AX =6 cm.
(iv) JoinCB.
∆ABC is required triangle.
(v) Draw angle bisector CX of ∠C.
CX is the locus of points equidistant from BA and BC.
(vi) Draw the perpendicular bisector of BC which is the locus of points equidistant from the points B and C.
These two loci intersect each other at P.
Join PC and on measuring it, it is 4.8 cm (approx).

Question 23.
Construct a regular hexagon of side 5 cm. Hence construct all its lines of symmetry and name them. (2016)
Solution:
Steps of construction :
(i) Draw AF measuring 5 cm using a ruler.
(ii) With A as the centre and radius equal to AF, draw an arc above AF.
(iii) With F as the centre, and same radius cut the previous arc at O.
(iv) With O as the centre, and same radius draw a circle passing through A and F.
(v) With A as the centre and same radius, draw an arc to cut the circle above AF at B.
(vi) With B as the centre and same radius, draw an arc to cut the circle at C.
(vii) Repeat this process to get remaining vertices of the hexagon at D and E
(viii) Join consecutive arcs on the circle to form the hexagon.
(ix) Draw the perpendicular bisectors of AF, EF and DE.
(x) Extend the bisectors of AF, EF and DE to meet CD, BC and AB at X, L and O respectively.
(xi) Join AD, CF and EB.
(xii) These are the 6 lines of symmetry of the regular hexagon.

Question 24.
Draw a line AB = 5 cm. Mark a point C on AB such that AC = 3 cm. Using a ruler and a compass only, construct:
(i) A circle of radius 2.5 cm, passing through A and C.
(ii) Construct two tangents to the circle from the external point B. Measure and record the length of the tangents. (2016)
Solution:
Steps of construction :
(i) Draw AB = 5 cm using a ruler.
(ii) With A as the centre cut an arc of 3 cm on AB to obtain C.
(iii) With A as the centre and radius 2.5 cm, draw an arc above AB.
(iv) With same radius, and C as the centre draw an arc to cut the previous arc and mark the intersection as O.
(v) With O as the centre and radius 2.5 cm, draw a circle so that points A and C lie on the circle formed
(vi) Join OB.
(vii) Draw the perpendicular bisector of OB to obtain the mid-point of OB, M.
(viii) With M as the centre and radius equal to OM, draw a circle to cut the previous circle at points P and Q.
(ix) Join PB and QB. PB and QB are the required tangents to the given circle from exterior point B.
QB = PB = 3 cm
That is, length of the tangents i.e. 3.2 cm.

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 19 Constructions (Circles) Ex 19 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere (Surface Area and Volume) Ex 20A

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 21 Trigonometrical Identities Ex 21A

Other Exercises

Question 1.

The height of a circular cylinder is 20 cm and the radius of its base is 7 cm. Find :
(i) the volume
(ii) the total surface area.
Solution:
Height of cylinder (h) =  20cm
and radius of its base (r) = 7 cm
(î) Volurne=πr²h

Question 2.
The inner radius of a pipe is 2.1 cm. How much water can 12 m of this pipe hold ?
Solution:
Inner radius of a pipe (r) = 2.1 cm
and length of pipe (h) = 12 m = 1200 cm
∴ Volume of water in it = πr2h

Question 3.
A cylinder of circumference 8 cm and length 21 cm roils without sliding for 4 $$\frac { 1 }{ 2 }$$ seconds at the rate of 9 complete rounds per second. Find:
(i) the distance travelled by the cylinder in 4 $$\frac { 1 }{ 2 }$$ seconds, and
(ii) the area covered by the cylinder in 4 $$\frac { 1 }{ 2 }$$ seconds.
Solution:
Circumference of a cylinder = 8 cm

Length of cylinder (h) = 21 cm
It takes 9 complete rounds per second
∴ Curved surface area = 2πrh

Question 4.
How many cubic metres of earth must be dug out to make a well 28 m deep and 2.8 m in diameter ? Also, find the cost of plastering its inner surface at ₹4.50 per sq. metre.
Solution:

Question 5.
What length of solid cylinder 2 cm in diameter must be taken to recast into a hollow cylinder of external diameter 20 cm, 0.25 cm thick and 15 cm long ?
Solution:
Diameter of solid cylinder = 2 cm
∴ Radius (r) = $$\frac { 2 }{ 2 }$$ = 1 cm
Let length (h) = x cm
∴ Volume = πr²h = π x 1 x 1 x x
= πx cm3       …(i)
External diameter of hollow cylinder = 20cm
∴ External radius =  $$\frac { 20 }{ 2 }$$ = 10 cm
Thickness of cylinder = 0.25 cm
∴ Innerradius= 10-0.25 = 9.75 cm
Length = 15 cm
∴ Volume = π(R2 – r2) x h
= π(R + r)(R-r) x h
= π(10 + 9.75)(10-9.75) x 15 cm3
= πx 19.75 x 0.25 x 15 cm3    ………(ii)
Comparing (i) and (ii), we get
∴ π x 19.75 x 0.25 x 15 = π x
x = 19.75 x 0.25 x 15 cm
= 74.0625 = 74.06 cm

Question 6.
A cylinder has a diameter of 20 cm. The area of the curved surface is 100 cm2 (sq. cm). Find:
(i) the height of the cylinder correct to one decimal place.
(ii) the volume of the cylinder correct to one decimal place.
Solution:

Question 7.
A metal pipe has a bore (inner diameter) of 5 cm. The pipe is 5 mm thick all round. Find the weight, in kilogram, of 2 metres of the pipe if 1 cm3 of the metal weighs 7.7 g.
Solution:

Question 8.
A cylindrical container with diameter of base 42 cm contains sufficient water to submerge a rectangular solid of iron with dimensions 22 cm x 14 cm x 10.5 cm. Find the rise in the. level of the water when the solid is submerged.
Solution:
Diameter of base of a cylindrical container =42 cm
∴ Radius = $$\frac { 42 }{ 2 }$$ = 21 cm
Size of rectangular solid = 22cmx 14cmx 10.5 cm
∴ Volume of solid = 3234 cm3
∴ Height of water level raise in the container

Question 9.
A cylindrical container with infernal radius of its base 10 cm’, contains water up”to a height of 7 cm. Find the area of the wet surface of the cylinder.
Solution:
Internal radius of cylindrical container (r) = 10cm
Water upto height (h) = 7 cm
∴ Area of wet surface by the water of the container = 2πrh
= π x 19.75 x 0.25 x 15 cm3                       …(ii)
Comparing (i) and (ii), we get
∴ π x 19.75 x 0.25 x 15 = πx
x = 19.75×0.25x 15 cm
= 74.0625
= 74.06 cm

Question 10.
Find the total surface area of an open pipe of length 50 cm, external diameter 20 cm and internal diameter 6 cm.
Solution:
Length of open pipe (h) = 50 cm
External diameter=20 cm
and internal diameter = 6 cm
∴ External radius (R) = $$\frac { 20 }{ 2 }$$ = 10 cm
and internal radius (r) = $$\frac { 6 }{ 2 }$$ = 3 cm
∴ Total surface area of the open pipe

Question 11.
The height and the radius of the base of a cylinder are in the ratio 3:1. If its volume is 1029 πcm3; find its total surface area.
Solution:
Ratio in height and radius of cylinder = 3:1
Let height = 3x
∴ Volume = πr2h = π x 3x x x2 = 3πx3
∴ 3πt3= 1029π

∴ x = 7
∴ Height = 7 x 3=21 cm
Now total surface area = 2πr2 + 2 πrh
= 2 πr (r + h)
= 2 x $$\frac { 22 }{ 7 }$$ x 7(7 + 21)
=44 x 28 = 1232 cm2

Question 12.
The radius of a solid right circular cylinder increases by 20% and its height decreases by 20%. Find the percentage change in its volume.
Solution:
Let radius of the cylinder (r) = 100 cm
and height (h) = 100 cm
∴ Volume = πr2h =π( 100)2 x 100 cm3 = 1000000π cm3
Now radius (R) = 100 + 20 = 120 cm
and new height (h) = 100 – 20 = 80 cm
∴ Volume = π(120)2 x 80
= π x 14400 x 80cm3= 152000π cm3
Percentage change (increase) in the volume

Question 13.
The radius of a solid right circular cylinder decreases by 20% and its height increases by 10%. Find the percentage change in its:
(i) volume
(ii) curved surface area
Solution:
Let radius of the cylinder = 100 cm
and height = 100 cm
∴ Volume = πr2h
= πx 100 x 100 x 100 cm3
= 1000000πcm3
and Curved surface area = 2πrh
= 2 x π x 100 x 100 cm2
=20000π cm2
Decreased radius = 100 – 20 = 80 cm
and increased height = 100 + 10 = 110 cm
∴ Increased volume = π x 80 x 80 x 110 cm3 = 704000π cm3
and increased curved surface =2 x π x 80 x 110 cm2 = 17600πcm2
⇒  Decrease in volume = 1000000π – 704000π = 296000π cm3

Question 14.
Find the minimum length in cm and correct to nearest whole number of the thin metal sheet required to make a hollow and closed cylindrical box of diameter 20 cm and height 35 cm. Given that the width of the metal sheet is 1 m. Also, find the cost of the sheet at the rate of ₹56 per m.
Find the area of metal sheet required, if 10% of it is wasted in cutting, overlapping, etc.
Solution:
Diameter of the hollow closed cylinder =20 cm
∴ Radius (r) = $$\frac { 20 }{ 2 }$$
and height (h) = 35 cm

Question 15.
3080 cm3 of water is required to fill a cylindrical vessel completely and 2310 cm3 of water is required to fill it upto 5 cm below the top. Find:
(ii) height of the vessel.
(iii) wetted surface area of the vessel when it is half-filled with water.
Solution:
Volume of water to fill a cylindrical vessel = 3080 cm3
Volume of water to fill it upto 5 cm below = 2310 cm2
Volume of water for 5 cm height =3080- 2310 = 770cm3

Question 16.
Find the volume of the largest cylinder formed when a rectangular piece of paper 44 cm by 33 cm is rolled along it:
(i) shorter side.
(ii) longer side.
Solution:
Length of rectangular sheet = 44 cm

(i) Folding along shorter side i.e., 33cm
∴ Circumference of cylinder = 33cm

Question 17.
A metal cube of side 11 cm is completely submerged in water contained in a cylindrical vessel with diameter 28 cm. Find the rise in the level of water.
Solution:
Side of a cube = 11 cm
∴ Volume = (Side)3 = 11 x 11 x 11 cm3 = 1331 cm3
Diameter of cylinder = 28 cm

Question 18.
A circular tank of diameter 2 m is dug and the earth removed is spread uniformly all around the tank to form an embankment 2 m in width and 1.6 m in height. Find the depth of the circular tank.
Solution:
Diameter of circular tank = 2m
Width of embankment = 2 m
Height = 1.6 m

Question 19.
The sum of the inner and the outer curved surfaces of a hollow metallic cylinder is 1056 cm2 and the volume of material in it is 1056 cin3. Find its internal and external radii. Given that the height of the cylinder is 21 cm.
Solution:
Sum of outer and inner surface area of a hollow cylinder = 1056 cm2
Volume of metal used =1056 cm3
Height of cylinder (h) = 21 cm
Height = 21 cm
We are given
Outer surface + Inner surface = 1056 cm2
Volume = πR2h – πr2h =1056 cm3
Now, 2πRh + 2πrh =1056

Question 20.
The difference between the outer curved surface area and the inner curved surface area of a hollow cylinder is 352 cm2. If its height is 28 cm and the volume of material in it is 704 cm3; find its external curved surface area.
Solution:
Difference in outer and inner curved surface of a hollow cylinder = 352 cm2
Height (h) = 28 cm
Volume of material used = 704 cm3
∴ 2πRh-2πrh = 352
2πh(R-r) = 352

Question 21.
The sum of the height and the radius of a solid cylinder is 35 cm and its total surface area is 3080 cm2; find the volume of the cylinder.
Solution:

Question 22.
The total surface area of a solid cylinder is 616 cm2. If the ratio between its curved surface area and total surface area is 1:2; find the volume of the cylinder.
Solution:
Total surface area of a cylinder = 616 cm2

Question 23.
A cylindrical vessel of height 24 cm and diameter 40 cm is full of water. Find the exact number of small cylindrical bottles, each of height 10 cm and diameter 8 cm, which can be filled with this water.
Solution:
Height of cylinder (6) = 24 cm
Radius (r)= $$\frac { 40 }{ 2 }$$ = 20 cm
∴ Volume of water filled in it = πr2h
= π x 20 x 20 x 24 cm3
= 9600π cm3
Radius of small cylindrical bottle = $$\frac { 8 }{ 2 }$$ = 4 cm
and height (6) = 10 cm
∴  Volume of one small bottle = πr2h
π x 4 x 4 x 10 cm3 = 160π cm3
∴ Number of small bottles

Question 24.
Two solid cylinders, one with diameter 60 cm and height 30 cm and the other with radius 30 cm and height 60 cm, are melted and recasted into a third solid cylinder of height 10 cm. Find the diameter of the cylinder formed.
Solution:
Diameter of first cylinder = 60 cm
∴ Radius (R)= $$\frac { 60 }{ 2 }$$ =30 cm
and height (h) = 30 cm
Radius of second cylinder = 30 cm
and height = 60 cm
Volume of first cylinder = πR2h
= π30 x 30 x 30 cm3 = 27000π cm3
and volume of second cylinder = π x 30 x 30 x 60 cm3 = 54000πcm3
Total volume of both cylinders
= 27000π+ 54000π cm3
= 81000π cm3
Volume of third cylinder = 81000π cm3
Height of third cylinder = 10 cm

Question 25.
The total surface area of a hollow cylinder, which is open from both the sides, is 3575 cm2; area of its base ring is 357.5 cm2 and its height is 14 cm. Find the thickness of the cylinder.
Solution:
Total surface area of an opened hollow cylinder = 3575 cm2
Area of ring of its base = 357.5 cm2
Height = 14 cm
Let R and r be the outer and inner radius of the ring.
∴ π(R2 – r2) = 357.5

Question 26.
The given figure shows a solid formed of a solid cube of side 40 cm and a solid cylinder of radius 20 cm and height 50 cm attached to the cube as shown.
Find the volume and the total surface area of the whole solid [Take π=3.14]

Solution:
Side of the cube = 40 cm
Radius of cylinder = 20 cm
Height (h) = 50 cm
Volume of cube = (40)3 = 64000 cm3
and volume of cylinder = πr2h
= 3.14 x 20 x 20 x 50 cm3
=314×200 = 62800 cm3
∴ Total volume = 64000 + 62800 =126800cm3
Total surface area = (6a2 + 2πrh)
= 6 x 40 x 40 + 2 x 3.14 x 20 x 50 =9600+6280
= 15880 cm2

Question 27.
Two right circular solid cylinders have radii in the ratio 3: 5 and heights in the ratio 2:3. Find the ratio between their:
(i) curved surface areas.
(ii) volumes.
Solution:
The ratio is the radii of two right circular solid cylinder = 3:5
and ratio in their heights = 2:3
(i) Let radius of first cylinder = 3x
and height = 2y
∴ Curved surface area = 2πrh
= 2π(3x) (2y) = 12 πxy
and radius of second cylinder = 5x
and height = 3y
∴  Curved surface = 2πrh
= 2π x 5x 3y
= 30πxy
∴ Ratio in their curved surface
= 12πxy : 30πxy
= 2 :5
(ii) Volume of first cylinder = πr2h
= π(3x)2 x 2y = 18πx2y
and volume of second cylinder = π(5x)2 x 3y
= 75πx2y
∴ Ratio = 18πx2y : 75πx2y
= 6:25

Question 28.
A closed cylindrical tank, made of thin iron sheet, has diameter = 8.4 m and height 5.4 m. How much metal sheet, to the nearest m2, is used in making this tank, if $$\frac { 1 }{ 15 }$$ of the sheet actually used was wasted in making the tank ?
Solution:
Diameter of a closed cylindrical tank=8.4 cm
∴ Radius (r) = $$\frac { 8.4 }{ 2 }$$ = 4.2 m
and height (h) = 5.4 m
∴ Total surface area = 2πr(r + h)
= 2 x $$\frac { 22 }{ 7 }$$ x 4.2(4.2+ 5.4) m2
=26.4 x 9.6 m2=253.44 m2
Area of sheet used in wastage
= $$\frac { 1 }{ 15 }$$ of 253.44= 16.896 m2
Total sheet required = 16.896 +253.44 m2
= 270.336 m2
=270.34 m2 (approx)

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 20 Cylinder, Cone and Sphere Ex 20A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 15 Similarity (With Applications to Maps and Models) Ex 15E

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 15 Similarity Ex 15E.

Other Exercises

Question 1.
In the following figure, XY is parallel to BC, AX = 9 cm, XB = 4.5 cm and BC = 18 cm.

Solution:
In the given figure,

Question 2.
In the following figure, ABCD to a trapezium with AB // DC. If AB = 9 cm, DC = 18 cm, CF= 13.5 cm, AP = 6 cm and BE = 15 cm. Calculate:
(i) EC
(ii) AF
(iii) PE

Solution:
In the figure,
ABCD is a trapezium
AB || DC
AB = 9 cm, DC = 18 cm, CF = 13.5 cm AP = 6 cm and BE = 15 cm

Question 3.
In the following figure, AB, CD and EF are perpendicular to the straight line BDF.

Solution:
In the given figure,
AB, CD and EF are perpendicular to the line BDF
AB = x, CD = z, EF = y

Question 4.
Triangle ABC is similar to triangle PQR. If AD and PM are corresponding medians of the two triangles, prove that:
$$\frac { AB }{ PQ }$$ = $$\frac { AD }{ PM }$$
Solution:
∆ABC ~ ∆PQR
AD and PM are the medians of ∆ABC and ∆PQR respectively.

Question 5.
Triangle ABC is similar to triangle PQR. If AD and PM are altitudes of the two triangles, prove that: $$\frac { AB }{ PQ }$$ = $$\frac { AD }{ PM }$$.
Solution:
Given, ∆ABC ~ ∆PQR
AD and PM are altitude of these two triangles

Question 6.
Triangle ABC is similar to triangle PQR. If bisector of angle BAC meets BC at point D and bisector of angle QPR meets QR at point M, prove that: $$\frac { AB }{ PQ }$$ = $$\frac { AD }{ PM }$$
Solution:
Given, ∆ABC ~ ∆PQR
AD and PM are the angle bisectors of ∠A and ∠P respectively.

Question 7.

Solution:

But ∠AXY = ∠AYX is given
∠B = ∠C
AC = AB (Side opposite to equal angles)
∆ABC is an isosceles triangle.

Question 8.
In the following diagram, lines l, m and n are parallel to each other. Two transversals p and q intersect the parallel lines at points A, B, C and P, Q, R as shown.

Solution:
In the given figure,
l || m || n
Transversal p and q intersects them at A, B, C and P, Q, R respectively as shown in the given figure.

Question 9.

Solution:

Question 10.
In the figure given below, AB // EF // CD. If AB = 22.5 cm, EP = 7.5 cm, PC = 15 cm and DC = 27 cm.
Calculate:
(i) EF
(ii) AC

Solution:
In the given figure,
AB || EF || CD
AB = 22.5 cm, EP = 7.5 cm
PC = 15 cm and DC = 27 cm

Question 11.
In quadrilateral ABCD, its diagonals AC and BD intersect at point O such that
$$\frac { OC }{ OA }$$ = $$\frac { OD }{ OB }$$ = $$\frac { 1 }{ 3 }$$
Prove that:
(i) ∆OAB ~ ∆OCD
(ii) ABCD is a trapezium.
Further if CD = 4.5 cm; find the length of AB.
Solution:
In quadrilateral ABCD, diagonals AC and BD intersect each other at O and

Question 12.
In triangle ABC, angle A is obtuse and AB = AC. P is any point in side BC. PM ⊥ AB and PN x AC.
Prove that: PM x PC = PN x PB
Solution:
Given, AB = AC
Since equal sides has equal angle opposite to it
∠B = ∠C …(i)
In ∆PMB and ∆PNC, we have
∠B = ∠C [using (i)]
∠PMB = ∠PNC (each 90°)

Question 13.
In triangle ABC, AB = AC = 8 cm, BC = 4 cm and P is a point in side AC such that AP = 6 cm. Prove that ∆BPC is similar to ∆ABC. Also, find the length of BP.
Solution:
In ∆ABC,
AB = AC = 8 cm
BC = 4cm
P is a point on AC such that AP = 6 cm
PB and PC are joined
To prove: ∆BPC ~ ∆ABC
and find length of BP
Proof: AC = 8 cm and AP = 6 cm
PC = AC – AP = 8 – 6 = 2 cm

Question 14.
In ∆ABC, ∠ABC = ∠DAC. AB = 8 cm, AC = 4 cm, AD = 5 cm.
(i) Prove that ∆ACD is similar to ∆BCA.
(ii) Find BC and CD.
(iii) Find area of ∆ACD : area of ∆ABC. (2014)
Solution:
In ∆ACD and ∆BCA
∠C = ∠C (common)
∆ACD = ∆BCA (by AA axiom)

Question 15.
In the given triangle P, Q and R are the mid-points of sides AB, BC and AC respectively. Prove that triangle PQR is similar to triangle ABC.

Solution:
Given : P and R the mid points of AB and AC respectively.
PR || BC and PR = $$\frac { 1 }{ 2 }$$ BC = BQ.
PRQB is a || gm.
∠B = ∠PRQ ….(i)
Similarly, Q and R are the mid points of sides. BC and AC respectively
RQ || AB and QR = $$\frac { 1 }{ 2 }$$ AB = AP
APQR is a ||gm.
∠A = ∠PQR ….(ii)
Similarly, we can prove that ∠C = ∠RPQ.
Now in ∆PQR and ∆ABC,
∠PQR = ∠A , ∠PRQ = ∠B and ∠RPQ = ∠C
(i) In ∆BCE
D is mid-point of BC and DF || CE
∆PQR ~ ∆ABC (AAA criterion of similarity)

Question 16.
In the following figure, AD and CE are medians of A ABC. DF is drawn parallel to CE. Prove that:
(i) EF = FB
(ii) AG : GD = 2 : 1

Solution:
Proof:
(i) In ∆BCE
D is the mid point of BC and DF || CE
E is mid-point of BE and EF = FB
(ii) AE = EB (E is mid point of AB)
and EF = FB (Proved)

Question 17.
In the given figure, triangle ABC is similar to triangle PQR. AM and PN are altitudes whereas AX and PY are medians.

Solution:

Question 18.
The two similar triangles are equal in area. Prove that the triangles are congruent.
Solution:
Given : ∆ABC ~ ∆PQR and are equal in area

Question 19.
The ratio between the altitudes of two similar triangles is 3 : 5; write the ratio between their:
(i) medians
(ii) perimeters
(iii) areas
Solution:
∆ABC ~ ∆PQR
AL ⊥ BC and PM ⊥ QR

Question 20.
The ratio between the areas of two similar triangles is 16 : 25. Find the ratio between their:
(i) perimeters
(ii) altitudes
(iii) medians.
Solution:
∆ABC ~ ∆DEF,
AL ⊥ BC and DM ⊥ EF
and AP and DQ are the medians and also
area ∆ABC : area ∆DEF = 16 : 25

Question 21.
The following figure shows a triangle PQR in which XY is parallel to QR. If PX : XQ = 1 : 3 and QR = 9 cm, find the length of XY. Further, if the area of ∆PXY = x cm²; find in terms of x, the area of :
(i) triangle PQR.
(ii) trapezium XQRY.

Solution:
In ∆PQR, XY || QR and PX : XQ = 1 : 3, QR = 9 cm.

Question 22.
On a map, drawn to a scale of 1 : 20000, a rectangular plot of land ABCD has AB = 24 cm, and BC = 32 cm. Calculate :
(i) The diagonal distance of the plot in kilometre
(ii) The area of the plot in sq. km.
Solution:

Question 23.
The dimensions of the model of a multistoreyed building are 1 m by 60 cm by 1.20 m. If the scale factor is 1 : 50,. find the actual dimensions of the building. Also, find :
(i) the floor area of a room of the building, if the floor area of the corresponding room in the model is 50 sq cm.
(ii) the space (volume) inside a room of the model, if the space inside the corresponding room of the building is 90 m3.
Solution:
The scale factor is 1 : 50 or k = $$\frac { 1 }{ 50 }$$
Dimension of the building = 100 cm x 60 cm x 120 cm.
k x actual dimensions of the building = Dimension of the model.

Question 24.
In a triangle PQR, L and M are two points on the base QR, such that ∠LPQ = ∠QRP and ∠RPM = ∠RQP. Prove that:
(i) ∆PQL ~ ∆RPM
(ii) QL x RM = PL x PM
(iii) PQ² = QR x QL [2003]

Solution:
(i) In ∆PQL and ∆RPM
∠PQL = ∠RPM (Given)
∠LPQ = ∠MRP (Given)
∆PQL ~ ∆RPM (AA criterion of similarity)
(ii) ∆PQL ~ ∆RPM (Proved)

Question 25.

Solution:

Question 26.
A triangle ABC with AB = 3 cm, BC = 6 cm and AC = 4 cm is enlarged to ∆DEF such that the longest side of ∆DEF = 9 cm. Find the scale factor and hence, the lengths of the other sides of ∆DEF.
Solution:
In ∆ABC.
AB = 3 cm. BC = 6 cm and AC = 4 cm
In ∆DEF,
Longest side EF = 9 cm
and longest side in ∆ABC is BC = 6 cm

Question 27.
Two isosceles triangles have equal vertical angles. Show that the triangles are similar. If the ratio between the areas of these two triangles is 16 : 25, find the ratio between their corresponding altitudes.
Solution:
Let in two ∆ABC and ∆DEF
The vertical angles of two isosceles triangles are equal i.e. ∠A = ∠D
But AB = DE and AC = DF (isosceles ∆s)
Then base angles are also equal (Angles opposite to equal sides)
The two triangles are similar.
∆ABC ~ ∆DEF
Let AL ⊥ BC and DM ⊥ EF

Question 28.
In ∆ABC, AP : PB = 2 : 3. PO is parallel to BC and is extended to Q so that CQ is parallel to BA.

Find: (i) area ∆APO : area ∆ABC.
(ii) area ∆APO : area ∆CQO.
Solution:
In ∆ABC,
AP : PB = 2 : 3
PQ || BC and CQ || BA

Question 29.
The following figure shows a triangle ABC in which AD and BE are perpendiculars to BC and AC respectively.

Show that:
(ii) CA x CE = CB x CD
(iii) ∆ABC ~ ∆DEC
(iv) CD x AB = CA x DE
Solution:
In ∆ABC, AD ⊥ BC and BE ⊥ AC, DE is joined
To prove:
(ii) CA x CE = CB x CD
(iii) ∆ABC ~ ∆DEC
(iv) CD x AB = CA x DE
Proof:
∠C = ∠C (common)
∠ABE = ∠BEC (each 90°)

Question 30.
In the given figure, ABC is a triangle-with ∠EDB = ∠ACB. Prove that ∆ABC ~ ∆EBD.
If BE = 6 cm, EC = 4 cm, BD = 5 cm and area of ∆BED = 9 cm². Calculate the
(i) length of AB
(ii) area of ∆ABC

Solution:
In ∆ABC and ∆EBD
∠1 = ∠2 (given)
∠B = ∠B (common)

Question 31.
In the given figure, ABC is a right-angled triangle with ∠BAC = 90°.
(ii) If BD = 18 cm, CD = 8 cm, find AD.
(iii) Find the ratio of the area of ∆ADB is to area of ∆CDA.

Solution:
(i) In ∆ADB and ∆CDA :
∆ADB ~ ∆CDA [by AA similarity axiom]

Question 32.
In the given figure, AB and DE are perpendicular to BC.
(i) Prove that ∆ABC ~ ∆DEC
(ii) If AB = 6 cm, DE = 4 cm and AC = 15 cm. Calculate CD.
(iii) Find the ratio of the area of ∆ABC : area of ∆DEC.

Solution:
(i) To prove : ∆ABC ~ ∆DEC
In ∆ABC and ∆DEC
∠ABC = ∠DEC = 90°
∠C = ∠C (common)
∆ABC ~ ∆DEC (by AA axiom)

Question 33.
ABC is a right angled triangle with ∠ABC = 90°. D is any point on AB and DE is perpendicular to AC. Prove that:

(ii) If AC = 13 cm, BC = 5 cm and AE = 4 cm. Find DE and AD.
Solution:
In the given figure,
∆ABC is right angled triangle right angle at B.
D is any point on AB and DE ⊥ AC
To prove:
(ii) If AC = 13 cm, BC = 5 cm and AE = 4 cm.Find DE and AD.
Proof:
∠A = ∠A (common)
∠E = ∠B (each = 90°)
(ii) AC = 13 cm, BC = 5 cm, AE = 4 cm

Question 34.

Solution:
In the given figure, AB || DE, BC || EF

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 15 Similarity Ex 15E are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

## Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18A

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 18 Tangents and Intersecting Chords Ex 18A.

Other Exercises

Question 1.
The radius of a circle is 8cm. Calculate the length of a tangent drawn to this circle from a point at a distance of 10cm from its centre.
Solution:

OP = 10 cm,
∵ OT ⊥ PT
∴ In right ΔOTP,
OP= OT2+PT2
⇒  (10)2 =(8)2+PT2
⇒  100 = 64+PT2
⇒ PT2 = 100-64 = 36
∴ PT = $$\sqrt{36}$$ = 6 cm

Question 2.
In the given figure O is the centre of the circle and AB is a tangent at B. If AB = 15 cm and AC = 7.5 cm, calculate the radius of the circle.

Solution:

∠OBA = 90° (Radius through the point of contact is perpendicular to the tangent)
⇒  OB2 = OA2 – AB2 ⇒ r2 = (r + 7.5)2 – 152
⇒ r2 = r2 + 56.25 + 15r – 225 168.75
⇒   15r= 168.75
⇒  r =$$\frac { 168.75 }{ 75 }$$ ⇒ r=11.25
Hence, radius of the circle = 11.25 cm

Question 3.
Two circles touch each other externally at point P. Q is a point on the common tangent through P. Prove that the tangents QA and QB are equal.

Solution:
Given: Two circles with centre O and O’ touches at P externally. Q is a point on the common tangent through P.
QA and QB are tangents from Q to the circles respectively.
To Prove: QA=QB.
Proof: From Q, QA and QP are the tangents to the circle with centre O
∴  QA=QP ….(i)
Similarly, QP and QB are the tangents to the circle with centre O’
∴ QP=QB   ….(ii)
From (i) and (ii)
QA=QB                           Q.ED.

Question 4.
Two circles touch each other internally. Show that the tangents drawn to the two circles from any point on the common tangent, are equal in length.
Solution:
Given: Two circles with centre O and O’ touch each other internally at P. Q is a point on the common tangent through P. QP an QB are tangents from Q to the circles respectively.

Question 5.
Two circles of radii 5 cm and 3 cm are concentric. Calculate the length of a chord of the outer circle which touches the inner.

Solution:
Given: Two concentric circles with radius 5 cm and 3 cm with centre O. PQ is the chord of the outer circle which touches the inner circle at L. Join OL and OP.
OL=3 cm, OP = 5 cm

Question 6.
Three circles touch each other externally. A triangle is formed when the centres of these circles are j oined together. Find the radii of the circles, if the sides of the triangle formed are 6 cm, 8 cm and 9 cm.
Solution:
Three circles touches each other externally
Δ ABC is formed by joining the centres A, B and C of the circles.
AB = 6 cm, AC = 8 cm and BC = 9 cm
Let radii of the circles having centres A, B and C be r1, r2, r3 respectively

Question 7.
If the sides of a quadrilateral ABCD touch a circle, prove that: AB + CD = BC + AD.

Solution:
Given: A circle touches the sides AB, BC, CD and DA of quad. ABCD at P,Q,R and S respectively.

To Prove: AB + CD = BC + AD
Proof: Since AP and AS are the tangents to the circle from external point A.
∴ AP = AS     ….(i)
Similarly, we can prove that,
BP=BQ               ….(ii)
CR=CQ             …(iii)
DR=DS          ….(iv)
AP + BP + CR + DR = AS + BQ + CQ + DS
AP + BP + CR + DR = AS + DS + BQ + CQ
AB + CD = AD + BC
Hence AB + CD = BC + AD.     Q.E.D.

Question 8.
If the sides of a parallelogram touch a circle (refer figure of Q/7) prove that the parallelogram is a rhombus.
Solution:
Given : The sides AB, BC, CD and DA of ||gm ABCD touches the circle at P, Q, R and S respectively.

To Prove : ABCD is a rhombus.
Proof : From A, AP and AS are the tangents to the circle.
∴ AP = AS    ….(i)

Question 9.
From the given figure, prove that:
AP + BQ + CR = BP + CQ + AR.

Solution:
Given: In the figure, sides of Δ ABC touch a circle at P, Q, R.
To Prove:
(i) AP + BQ + CR = BP + CQ + AR
(ii) AP + BQ + CR = $$\frac { 1 }{ 2 }$$ Perimeter of Δ ABC.
Proof :
∵  From B, BQ and BP are the tangents to the circle.
∴ BQ = BP   ….(i)
Similarly we can prove that
AP= AR    ……… (ii)
and CR = CQ  …..(iii)
AP + BQ + CR = BP + CQ + AR ….(iv)
Adding AP + BQ + CR both sides,
2(AP + BQ + CR) = AP + PQ + CQ + QB + AR+CR.
⇒  2 (AP + BQ + CR) = AB + BC + CA
∴ AP + BQ + CR = $$\frac { 1 }{ 2 }$$ (AB + BC + CA)
= $$\frac { 1 }{ 2 }$$ Perimeter of Δ ABC.            Q.E.D.

Question 10.
In the figure of Q.9 if AB = AC then prove that BQ = CQ.
Solution:
Given:  A circle touches the sides AB, BC, CA of Δ ABC at P, Q and R respectively, and AB = AC

Question 11.
Radii of two circles are 6.3 cm and 3.6 cm. State the distance between their centres if
(i) they touch each other externally,
(ii) they touch each other internally.
Solution:
Radius of bigger circle = 6.3 cm

and raduis of smaller circle = 3.6 cm.
(i) Two circles touch each other at P externally. 0 and O’ are the centres of the circles.
Join OP and OP’
OP = 3.6 cm, O’P = 6.3 cm.
OO’ = OP + O’P = 3.6 + 6.3 = 9.9 cm
(ii) If the circles touch each other internally at P.
OP = 3.6 cm and O’P = 6.3 cm.

∴ OO’ = O’P – OP
= 6.3 – 3.6 = 2.7 cm

Question 12.
From a point P outside a circle, with centre O, tangents PA and PB are drawn. Prove that:
(i) ∠AOP = ∠BOP,
(ii) OP is the ⊥ bisector of chord AB.
Solution:
Given:  A circle with centre 0. A point P out side the circle. From P, PA and PB are the tangents to the circle, OP and AB are joined.

To prove:
(i) ∠AOP = ∠BOP
(ii) OP is the perpendicular bisector of chord AB.
Proof : In ∆ AOP and ∆ BOP,
AP = BP (Tangents from P to the circle.)
OP = OP (Common)
OA = OB (Radii of the same circle)
∴ ∆ AOP s ∆ BOP (SSS postulate)
∴∠AOP = ∠BOP (C.P.C.T.)
Now in ∆ OAM and ∆ OBM,
OA = OB (Radii of the same circle)
OM = OM (Common)
∠AOM = ∠BOM (Proved ∠AOP = ∠BOP)
∴ ∆ OAM = ∆ OBM (S.A.S. Postulate)
∴ AM = MB (C.P.C.T.)
and ∠OMA = ∠OMB (C.P.C.T.)
But ∠OMA + ∠OMB = 180° (Linear pair)
∴ ∠OMA = ∠OMB = 90°
Hence OM or OP is the perpendicular bisector of AB. Q.E.D.

Question 13.
In the given figure, two circles touch each other externally at point P, AB is the direct common tangent of these circles. Prove that:
(i) tangent at point P bisects AB.
(ii) Angle APB = 90°

Solution:
Given : Two circles with centre O and O’ touch each other at P externally. AB is the direct common tangent touching the circles at A and B respectively.

AP, BP are joined. TPT’ is the common tangent to the circles.
To Prove : (i) TPT’ bisects AB (ii) ∠APB = 90°
Proof :
∵ TA and TP arc the tangents to the circle
∴ TA = TP …(i)
Similarly TP. = TB ….(ii)
From (i) and (ii)
TA = TB
∴ TPT’ is the bisector of AB.
Now in ∆ ATP
TA = TP
∴ ∠TAP = ∠TPA
Similarly in A BTP.
∠TBP = ∠TPB
∠TAP + ∠TBP = ∠APB
But ∠TAP + ∠TBP + ∠APB = 180°
∴ ∠APB = ∠TAP + ∠TBP = 90°. Q.E.D.

Question 14.
Tangents AP and AQ are drawn to a circle, with centre O, from an exterior point A. Prove that:
∠PAQ = 2∠OPQ
Solution:
Given: A circle with centre O. two tangents PA and QA are drawn from a point A out side the circle OP, OQ. OA and PQ are joined.

Question 15.
Two parallel tangents of a circle meet a third tangent at points P and Q. Prove that PQ subtends a right angle at the centre.
Solution:
Given: A circle with centre O, AP and BQ are two parallel tangents. A third tangent PQ intersect them at P and Q. PO and QO are joined

Question 16.
ABC is a right angled triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.

Calculate the value of x, the radius of the inscribed circle.
Solution:
In ∆ ABC, ∠B = 90°
OL ⊥ AB, OM ⊥ BC and
ON ⊥ AC.

Question 17.
In a triangle ABC, the incircle (centre O) touches BC, CA and AB at points P, Q and R respectively. Calculate :
(i) ∠ QOR
(ii) ∠ QPR given that ∠ A = 60°.
Solution:

Question 18.
In the following figure, PQ and PR are tangents to the circle, with centre O. If ∠ QPR = 60°, calculate:
(i) ∠ QOR
(ii) ∠ OQR
(iii) ∠ QSR.

Solution:

Question 19.
In the given figure, AB is the diameter of the circle, with centre O, and AT is the tangent. Calculate the numerical value of x.

Solution:

Question 20.
In quadrilateral ABCD; angle D = 90°, BC = 38 cm and DC = 25 cm. A circle is inscribed in this quadrilateral which touches AB at point Q such that QB = 27 cm. Find the radius of the circle. |1990]
Solution:
BQ and BR arc the tangenls from B to the circle.

∴ BR = BQ = 27 cm.
∴ RC = 38-27 = 11 cm.
Since CR and CS are the tangents from C to the circle
∴ CS = CR= 11 cm.
∴ DS = 25 – 11 = 14 cm.
DS and DP are the tangents to the circle
∴ DS = DP
∴ ∠ PDS = 90° (given)
and OP ⊥ AD, OS ⊥ DC
∴ Radius = DS = 14 cm

Question 21.
In the given, PT touches the circle with centre O at point R. Diameter SQ is produced to meet the tangent TR at P.
Given ∠ SPR = x° and ∠ QRP = y°;
Prove that
(i) ∠ ORS = y°
(ii) Write an expression connecting x and y. [1992]

Solution:
∠ QRP = ∠ OSR = y (Angles in the alternate segment)

But OS = OR (radii of the same circle)
∴ ∠ ORS = ∠ OSR = y°
∴ OQ = OR (radii of the same circle)
∴ ∠ OQR = ∠ ORQ = 90° – y° ….(i) (OR ⊥ PT)
But in ∆ PQR,
Ext. ∠ OQR = x° + y° ….(ii)
from (i) and (ii)
x° + y° = 90° – y°
⇒ x° + 2y° = 90°

Question 22.
PT is a tangent to the circle at T. If ∠ ABC = 70° and ∠ ACB = 50°; calculate :

Solution:

Question 23.
In the given figure. O is the centre of the circumcircle ABC. Tangents at A and C intersect at P. Given angle AOB = 140° and angle APC 80°; find the angle BAC. [1996]

Solution:

Join OC
∴ PA and PC are the tangents
∴ OA ⊥ PA and OC ⊥ PC
∴ ∠ BAC = $$\frac { 1 }{ 2 }$$∠BOC
= $$\frac { 1 }{ 2 }$$ x 120° = 60°