RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2

RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2

Question 1.
Rationalise the denominators of each of the following(i – vii):
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q1.1>
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q1.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q1.3

Question 2.
Find the value to three places of decimals of each of the following. It is given that
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q2.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q2.3
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q2.4

Question 3.
Express each one of the following with rational denominator:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.3
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.4
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.5
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.6
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.7
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.8
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.9
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q3.10

Question 4.
Rationales the denominator and simplify:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.3
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.4
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.5
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.6
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q4.7

Question 5.
Simplify:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q5.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q5.3
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q5.4
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q5.5
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q5.6

Question 6.
In each of the following determine rational numbers a and b:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.3
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.4
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.5
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.6
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.7
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q6.8

Question 7.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q7.2

Question 8.
Find the values of each of the following correct to three places of decimals, it being given that \(\sqrt { 2 } \)  = 1.4142, \(\sqrt { 3 } \) = 1-732, \(\sqrt { 5 } \)  = 2.2360, \(\sqrt { 6 } \) =  2.4495 and \(\sqrt { 10 } \)  = 3.162.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q8.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q8.3

Question 9.
Simplify:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q9.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q9.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q9.3
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q9.4

Question 10.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q10.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q10.3

Question 11.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q11.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q11.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q11.3

Question 12.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q12.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 Q12.2

Hope given RD Sharma Class 9 Solutions Chapter 3 Rationalisation Ex 3.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS

Question 1.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q1.2

Question 2.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q2.3

Question 3.
If a + b = 7 and ab = 12, find the value of a2 + b2.
Solution:
a + b = 7, ab = 12
Squaring both sides,
(a + b)2 = (7)2
⇒  a2 + b2 + 2ab = 49
⇒  a2 + b2 + 2 x 12 = 49
⇒ a2 + b2 + 24 = 49
⇒ a2 + b2 = 49 – 24 = 25
∴ a2 + b2 = 25

Question 4.
If a – b = 5 and ab = 12, find the value of a2 + b2 .
Solution:
a – b = 5, ab = 12
Squaring both sides,
⇒ (a – b)2 = (5)2
⇒  a2 + b2 – 2ab = 25
⇒  a2 + b2 – 2 x 12 = 25
⇒  a2 + b2 – 24 = 25
⇒  a2 + b2 = 25 + 24 = 49
∴ a2 + b2 = 49

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS Q7.2

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS

RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS

Mark the correct alternative in each of the following:
Question 1.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q1.2

Question 2.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q2.2

Question 3.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q3.2

Question 4.
The rationalisation factor of 2 + \(\sqrt { 3 } \)  is
(a) 2 – \(\sqrt { 3 } \)
(b) \(\sqrt { 2 } \) + 3
(c)  \(\sqrt { 2 } \) – 3
(d) \(\sqrt { 3 } \) – 2
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q4.1

Question 5.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q6.2

Question 7.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q7.2

Question 8.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q8.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q8.2

Question 9.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q9.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q9.2

Question 10.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q10.2

Question 11.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q11.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q11.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q11.3

Question 12.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q12.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q12.2

Question 13.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q13.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q13.3

Question 14.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q14.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q14.2
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q14.3

Question 15.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q15.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q15.2

Question 16.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q16.2

Question 17.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q17.2

Question 18.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q18.2

Question 19.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q19.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q19.2

Question 20.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q20.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q20.2

Question 21.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q21.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q21.2

Question 22.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q22.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q22.2

Question 23.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q23.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q23.2

Question 24.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q24.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q24.2

Question 25.
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q25.1
Solution:
RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS Q25.2

Hope given RD Sharma Class 9 Solutions Chapter 3 Rationalisation MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2

Other Exercises

Factorize each of the following expressions:
Question 1.
p3 + 27
Solution:
We know that a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + aft + b2)
p3 + 21 = (p)3 + (3)3
= (p + 3) (p2– p x 3 + 32)
= (p + 3) (p2 – 3p + 9)

Question 2.
y3 + 125
Solution:
y3 + 125 = (p)3 + (5)3
= (p + 5) (p2 – 5y + 52)
= (P + 5) (p2 – 5y + 25)

Question 3.
1 – 21a3
Solution:
1 – 21a3 = (1)3 – (3a)3
= (1 – 3a) [12 + 1 x 3a + (3a)2]
= (1 – 3a) (1 + 3a + 9a2)

Question 4.
8x3y3 + 27a3
Solution:
8x3y3 + 27a3
= (2xy + 3a) [(2xy)2 – 2xy x 3a + (3a)2]
= (2xy + 3a) (4x2y – 6xya + 9a2)

Question 5.
64a3 – b3
Solution:
64a3 – b3 = (4a)3 – (b)3
= (4a – b) [(4a)2 + 4a x b + (b)2]
= (4a – b) (16a2 + 4ab + b2)

Question 6.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q6.2

Question 7.
10x4– 10xy4
Solution:
I0x4y- 10xy4 = 10xy(x3 -y3)
= 10xy(x – y) (x2 + xy + y2)

Question 8.
54x6y + 2x3y4
Solution:
54 x6y + 2x3y4 = 2x3y(27x3 + y3)
= 2x3y[(3x)3 + (y)3]
= 2x3y(3x + y) [(3x)2 -3x x y + y2]
= 2x3y(3x + y) (9x2 -3xy + y2)

Question 9.
32a3 + 108b3
Solution:
32a3 + 108b3
= 4(8a3 + 27b3) = 4 [(2a)3 + (3 b)3]
= 4(2a + 3b) [(2a)2 – 2a x 3b + (3b)2]
= 4(2a + 3b) (4a2 – 6ab + 9b2)

Question 10.
(a – 2b)3 – 512b3
Solution:
(a – 2b)3 – 512b3
= (a – 2b)3 – (8b)3
= (a – 2b- 8b) [(a – 2b)2 + (a – 2b) x 8b + (8b)2]
= (a – 10b) [a2 + 4b2 – 4ab + 8ab – 16b2 + 64b2]
= (a – 10b) (a2 + 4ab + 52b2)

Question 11.
8x2y3 – x5
Solution:
8x2y3 – x5 = x2(8y3 – X3)
= x2(2y)3 – (x)3]
= x2[(2y – x) (2y)2 + 2y x x + (x)2]
= x2(2y – x) (4y2 + 2xy + x2)

Question 12.
1029 -3x3
Solution:
1029 – 3X3 = 3(343 – x3)                       ‘
= 3 [(7)3 – (x)3]
= 3(7 – x) (49x + 7x + x2)

Question 13.
x3y3+ 1
Solution:
x3y3 + 1 = (xy)3 + (1)3
= (xy + 1) [(xy)2 – xy x 1 + (1)2]
= (xy + 1) (x2y2 – xy + 1)
= (xy + 1) (x2y – xy + 1)

Question 14.
x4y4 – xy
Solution:
x4y4 – xy = xy(x3y3 – 1)
= xy[(xy3-(1)3]
= xy (xy – 1) [x2y2 + 2xy + 1]

Question 15.
a3 + b3 + a + b
Solution:
a3 + b3 + a + b
= (a + b) (a2 – ab + b2) + 1 (a + b)
= (a + b) (a2 – ab + b2 + 1)

Question 16.
Simplify:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q16.2
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q16.3

Question 17.
(a + b)3 – 8(a – b)3
Solution:
(a + b)3 – 8(a – b)3
= (a + b)2 – (2a – 2b)3
= (a+ b – 2a + 2b) [(a + b)2 + (a + b) (2a-2b) + (2a – 2b)2)]
= (3b – a) [a2 + b2 + 2ab + 2a22ab + 2ab – 2b2 + 4a2 – 8ab + 4b2]
= (3b – a) [7a2 – 6ab + 3b2]

Question 18.
(x + 2)3 + (x- 2)3
Solution:
(x + 2)3 + (x – 2)3
= (x + 2 + x – 2) [(x + 2)2 – (x + 2) (x – 2) + (x – 2)2]
= 2x [x2 + 4x + 4 – (x2 + 2x – 2x – 4) + x4x + 4]
= 2x[x2 + 4x + 4- x2-2x + 2x + 4+ x2– 4x + 4]
= 2x[x2 + 12]

Question 19.
x6 +y6
Solution:
x6 + y= (x2)3 + (y2)3
= (x2 + y2) [x4 – x2y2 + y4]

Question 20.
a12 + b12
Solution:
a12 + b12 = (a4)3 + (b4)3
= (a4 + b4) [(a4)2 – a4b4 + (b4)2]
= (a4 + b4) (a8 – a4b4 + b8)

Question 21.
x3 + 6x2 + 12x + 16
Solution:
x3 + 6x2 + 12x + 16
= (x)3 + 3.x2.2 + 3.x.4 + (2)3 + 8           {∵ a3 + 3a2b + 3ab2 +b3 = (a + b)3}
= (x + 2)3 + 8 = (x + 2)3 + (2)3
= (x + 2 + 2) [(x + 2)2 – (x + 2) x 2 + (2)2] {∵ a3 + b2 = (a + b) (a2 – ab + b2}
= (x + 4) (x2 + 4x + 4 – 2x – 4 + 4)
= (x + 4) (x2 + 2x + 4)

Question 22.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q22.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 Q22.2

Question 23.
a3 + 3a2b + 3ab2 + b3 – 8
Solution:
a3 + 3a2b + 3ab2 + b3 – 8
= (a + b)3 – (2)3
= (a + b -2)[(a + b)2 + (a +b)x2 + (2)2]
= (a + b-2) (a2 + b2 + 2ab + 2a + 2b + 4)
= (a + b – 2) (a2 + b2 + 2ab + 2(a + b) + 4]
= (a + b – 2) [(a + b)2 + 2(a + b) + 4}

Question 24.
8a3 – b3 – 4ax + 2bx
Solution:
8a3 – b3 – 4ax + 2bx
(2a)3 – (b)3 – 2x(2a – b)
= (2a-b)[(2a)2 + 2a x b + (b)2]- 2x(2a-b)
= (2a – b) [4a2 + 2ab + b2] – 2x(2a – b)
= (2a – b) [4a2 + 2ab + b2 – 2x]

Hope given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2

Question 1.
Write the following in the expanded form:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q1.5

Question 2.
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + be + ca.
Solution:
a + b+ c = 0
Squaring both sides,
(a + b + c)2 = 0
⇒ a2 + b2 + c2 + 2(ab + bc + ca) = 0
16 + 2(ab + bc + c) = 0
⇒ 2(ab + bc + ca) = -16
⇒  ab + bc + ca =-\(\frac { 16 }{ 2 }\) = -8
∴ ab + bc + ca = -8

Question 3.
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
= 16 + 2 x 10
= 16 + 20 = 36
= (±6)2
∴ a + b + c = ±6

Question 4.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Solution:
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca)
⇒ (9)2 = a2 + b2 + c2 + 2 x 23
⇒ 81= a2 + b2 + c2 + 46
⇒  a2 + b2 + c2 = 81 – 46 = 35
∴ 
a2 + b2 + c2 = 35

Question 5.
Find the value of 4x2 + y2 + 25z2 + 4xy – 10yz – 20zx when x = 4, y = 3 and z = 2.
Solution:
x = 4, y – 3, z = 2
4x2 + y2 + 25z2 + 4xy – 10yz – 20zx
= (2x)2 + (y)2 + (5z)2 + 2 x2 x x y-2 x y x 5z – 2 x 5z x 2x
= (2x + y- 5z)2
= (2 x 4 + 3- 5 x 2)2
= (8 + 3- 10)2
= (11 – 10)2
= (1)2 = 1

Question 6.
Simplify:
(i)  (a + b + c)2 + (a – b + c)2
(ii) (a + b + c)2 –  (a – b + c)2
(iii) (a + b + c)2 +   (a – b + c)2 + (a + b – c)2
(iv) (2x + p – c)2 – (2x – p + c)2
(v) (x2 + y2 – z2)2 – (x2 – y2 + z2)2
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q6.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q6.3

Question 7.
Simplify each of the following expressions:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 Q7.5

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4

Question 1.
Find the following products:
(i) (3x + 2y) (9X2 – 6xy + Ay2)
(ii) (4x – 5y) (16x2 + 20xy + 25y2)
(iii) (7p4 + q) (49p8 – 7p4q + q2)
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.5
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q1.6

Question 2.
If x = 3 and y = -1, find the values of each of the following using in identity:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.4
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q2.5

Question 3.
If a + b = 10 and ab = 16, find the value of a2 – ab + b2 and a2 + ab + b2.
Solution:
a + b = 10, ab = 16 Squaring,
(a + b)2 = (10)2
⇒ a2 + b2 + lab = 100
⇒ a2 + b2 + 2 x 16 = 100
⇒  a2 + b2 + 32 = 100
∴ a2 + b2 = 100 – 32 = 68
Now, a2 – ab + b2 = a2 + b2 – ab = 68 – 16 = 52
and a2 + ab + b2 = a2 + b2 + ab = 68 + 16 = 84

Question 4.
If a + b = 8 and ab = 6, find the value of a3 + b3.
Solution:
a + b = 8, ab = 6
Cubing both sides,
(a + b)3 = (8)3
⇒ a3 + b3 + 3 ab{a + b) = 512
⇒  a3 + b3 + 3 x 6 x 8 = 512
⇒  a3 + b3 + 144 = 512
⇒  a3 + b3 = 512 – 144 = 368
∴ a3 + b3 = 368

Question 5.
If a – b = 6 and ab = 20, find the value of a3-b3.
Solution:
a – b = 6, ab = 20
Cubing both sides,
(a – b)3 = (6)3
⇒  a3 – b3 – 3ab(a – b) = 216
⇒  a3 – b3 – 3 x 20 x 6 = 216
⇒  a3 – b3 – 360 = 216
⇒  a3 -b3 = 216 + 360 = 576
∴ a3 – b3 = 576

Question 6.
If x = -2 and y = 1, by using an identity find the value of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 Q6.3

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1

RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1

Other Exercises

Question 1.
Which of the following expressions are polynomials in one variable and which are not? State reasons for your answer:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 Q1.1
Solution:
(i) 3x2 – 4x + 15,
(ii) y2 + 2\(\sqrt { 3 } \) are polynomial is one variable. Others are not polynomial or polynomials in one variable.

Question 2.
Write the coefficient of x2 in each of the following:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 Q2.1
Solution:
Coefficient of x2,
in (i) is 7
in (ii) is 0 as there is no term of x2 i.e. 0 x2
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 Q2.2

Question 3.
Write the degrees of each of the following polynomials:
(i) 7x3 + 4x2 – 3x + 12
(ii) 12 – x + 2x3
(iii) 5y – \(\sqrt { 2 } \)
(iv) 7
(v) 0
Solution:
(i) Degree of the polynomial 7x3 + 4x2 – 3x + 12 is 3
(ii) Degree of the polynomial 12 – x + 2x3 is 3
(iii) Degree of the polynomial 5y – \(\sqrt { 2 } \)is 1
(iv) Degree of the polynomial 7 is 0
(v) Degree of the polynomial 0 is 0 undefined.

Question 4.
Classify the following polynomials as linear, quadratic, cubic and biquadratic polynomials:
(i) x + x2 + 4
(ii) 3x – 2
(iii) 2x + x2 [NCERT]
(iv) 3y
(v) t2 + 1
(v) 7t4 + 4t3 + 3t – 2
Solution:
(i)  x + x2 + 4 It is a quadratic polynomial.
(ii) 3x – 2 : It is a linear polynomial.
(iii) 2x + x2: It is a quadratic polynomial.
(iv) 3y It is a linear polynomial.
(v) t2+ 1 It is a quadratic polynomial.
(vi) 7t4 + 4t3 + 3t – 2 It is a biquadratic polynomial.

Question 5.
Classify the following polynomials as polynomials in one-variable, two-variables etc.
(i) x2-xy +7y2
(ii) x2 – 2tx + 7t2 – x + t
(iii) t3 -3t2 + 4t-5
(iv) xy + yz + zx
Solution:
(i) x2 – xy + 7y2: It is a polynomial in two j variables x, y.
(ii) x2 – 2tx + 7t2 – x + t: It is a polynomial in two variables in x, t.
(iii) t3 – 3t2 + 4t – 5 : It is a polynomial in one variable in t.
(iv) xy +yz + zx : It is a polynomial in 3 variables in x, y and

Question 6.
Identify polynomials in the following:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 Q6.2

Question 7.
Identify constant, linear, quadratic and cubic polynomials from the following polynomials:
RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 Q7.1
Solution:
(i) f(x) = 0 : It is a constant polynomial as it has no variable.
(ii) g(x) = 2x3 – 7x + 4 : It is a cubic polynomial.
(iii) h(x) = -3x + \(\frac { 1 }{ 2 }\) : It is a linear polynomial.
(iv) p(x) = 2x2 – x + 4 : It is a quadratic polynomial.
(v) q(x) = 4x + 3 : It is linear polynomial.
(vi) r(x) = 3x3 + 4x2 + 5x – 7 : It is a cubic polynomial.

Question 8.
Give one example each of a binomial of degree 35 and of a monomial of degree 100.   [NCERT]
Solution:
Example of a binomial of degree 35 = 9x35 + 16
Example of a monomial of degree 100 = 2y100

 

Hope given RD Sharma Class 9 Solutions Chapter 6 Factorisation of Polynomials Ex 6.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5

Question 1.
Find the following products:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
(ii) (4x -3y + 2z) (16x2 + 9y2+ 4z2 + 12xy + 6yz – 8zx)
(iii) (2a – 3b – 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
(iv) (3x -4y + 5z) (9x2 + 16y2 + 25z2 + 12xy- 15zx + 20yz)
Solution:
(i) (3x + 2y + 2z) (9x2 + 4y2 + 4z2 – 6xy – 4yz – 6zx)
= (3x + 2y + 2z) [(3x)2 + (2y)2 + (2z)2 – 3x x 2y + 2y x 2z + 2z x 3x]
= (3x)3 + (2y)3  + (2z)3 – 3 x 3x x 2y x 2z
= 27x3 + 8y3 + 8Z3 – 36xyz
(ii) (4x – 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz – 8zx)
= (4x -3y + 2z) [(4x)2 + (-3y)2 + (2z)2 – 4x x (-3y + (3y) x (2z) – (2z x 4x)]
= (4x)3 + (-3y)3 + (2z)3 – 3 x 4x x (-3y) x (2z)
= 64x3 – 27y3 + 8z3 + 72xyz
(iii) (2a -3b- 2c) (4a2 + 9b2 + 4c2 + 6ab – 6bc + 4ca)
= (2a -3b- 2c) [(2a)2 + (3b)2 + (2c)2 – 2a x (-3b) – (-3b) x (-2c) – (-2c) x 2a]
= (2a)3 + (3b)3 + (-2c)3 -3x 2a x (-3 b) (-2c)
= 8a3 – 21b3 -8c3 – 36abc
(iv) (3x – 4y + 5z) (9x2 + 16y2 + 25z2 + 12xy – 15zx + 20yz)
= [3x + (-4y) + 5z] [(3x)2 + (-4y)2 + (5z)2 – 3x x (-4y) -(-4y) (5z) – 5z x 3x]
= (3x)3 + (-4y)3 + (5z)3 – 3 x 3x x (-4y) (5z)
= 27x3 – 64y3 + 125z3 + 180xyz

Question 2.
Evaluate:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 Q2.4

Question 3.
If x + y + z = 8 and xy + yz+ zx = 20, find the value of x3 + y3 + z3 – 3xyz.
Solution:
We know that
x3 + y3 + z3 – 3xyz = (x + y + z) (x2 + y2 + z2 -xy -yz – zx)
Now, x + y + z = 8
Squaring, we get
(x + y + z)2 = (8)2
x2 + y2 + z2 + 2(xy + yz + zx) = 64
⇒ x2 + y2 + z2 + 2 x 20 = 64
⇒  x2 + y2 + z2 + 40 = 64
⇒  x2 + y2 + z2 = 64 – 40 = 24
Now,
x3 + y3 + z3 – 3xyz = (x + y + z) [x2 + y2 + z2 – (xy + yz + zx)]
= 8(24 – 20) = 8 x 4 = 32

Question 4.
If a +b + c = 9 and ab + bc + ca = 26, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9, ab + be + ca = 26
Squaring, we get
(a + b + c)2 = (9)2
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  a2 + b2 + c2 + 2 x 26 = 81
⇒ a2 + b2 + c2 + 52 = 81
∴  a2 + b2 + c2 = 81 – 52 = 29
Now, a3 + b3 + c3 – 3abc = (a + b + c) [(a2 + b2 + c2 – (ab + bc + ca)]
= 9[29 – 26]
= 9 x 3 = 27

Question 5.
If a + b + c = 9, and a2 + b2 + c2 = 35, find the value of a3 + b3 + c3 – 3abc.
Solution:
a + b + c = 9
Squaring, we get
(a + b + c)2 = (9)2
⇒  a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  35 + 2(ab + bc + ca) = 81
2(ab + bc + ca) = 81 – 35 = 46
∴  ab + bc + ca = \(\frac { 46 }{ 2 }\) = 23
Now, a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)]
= 9[35 – 23] = 9 x 12 = 108

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.5 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1

Question 1.
Evaluate each of the following using identities:
(i) (2x –\(\frac { 1 }{ x }\))2
(ii)  (2x + y) (2x – y)
(iii) (a2b – b2a)2
(iv) (a – 0.1) (a + 0.1)
(v) (1.5.x2 – 0.3y2) (1.5x2 + 0.3y2)
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q1.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q1.2

Question 2.
Evaluate each of the following using identities:
(i) (399)2
(ii) (0.98)2
(iii) 991 x 1009
(iv) 117 x 83
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q2.1
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q2.2

Question 3.
Simplify each of the following:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q3.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q3.3

Question 4.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q4.2

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q6.3

Question 7.
If 9x2 + 25y2 = 181 and xy = -6, find the value of 3x + 5y.
Solution:
9x2 + 25y2 = 181, and xy = -6
(3x + 5y)2 = (3x)2 + (5y)2 + 2 x 3x + 5y
⇒ 9X2 + 25y2 + 30xy
= 181 + 30 x (-6)
= 181 – 180 = 1
= (±1 )2
∴ 3x + 5y = ±1

Question 8.
If 2x + 3y = 8 and xy = 2, find the value of 4X2 + 9y2.
Solution:
2x + 3y = 8 and xy = 2
Now, (2x + 3y)2 = (2x)2 + (3y)2 + 2 x 2x x 3y
⇒  (8)2 = 4x2 + 9y2 + 12xy
⇒ 64 = 4X2 + 9y2 + 12 x 2
⇒ 64 = 4x2 + 9y2 + 24
⇒ 4x2 + 9y2 = 64 – 24 = 40
∴ 4x2 + 9y2 = 40

Question 9.
If 3x -7y = 10 and xy = -1, find the value of 9x2 + 49y2
Solution:
3x – 7y = 10, xy = -1
3x -7y= 10
Squaring both sides,
(3x – 7y)2 = (10)2
⇒ (3x)2 + (7y)2 – 2 x 3x x 7y = 100
⇒  9X2 + 49y2 – 42xy = 100
⇒  9x2 + 49y2 – 42(-l) = 100
⇒ 9x2 + 49y2 + 42 = 100
∴ 9x2 + 49y2 = 100 – 42 = 58

Question 10.
Simplify each of the following products:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q10.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q10.3

Question 11.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q11.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q11.2

Question 12.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q12.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q12.2

Question 13.
Simplify each of the following products:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q13.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q13.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q13.3
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q13.4

Question 14.
Prove that a2 + b2 + c2 – ab – bc – ca is always non-negative for all values of a, b and c.
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 Q14.1
∵  The given expression is sum of these squares
∴ Its value is always positive Hence the given expression is always non-­negative for all values of a, b and c

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities Ex 4.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3

RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3

Other Exercises

Factorize:
Question 1.
64a3 + 125b3 + 240a2b + 300ab2
Solution:
64a3 + 125b3 + 240a2b + 300ab2
= (4a)3 + (5b)3 + 3 x (4a)2 x 5b + 3(4a) + (5b)2
= (4a + 5b)3
= (4a + 5b) (4a + 5b) (4a + 5b)

Question 2.
125x3 – 27y3 – 225x2y + 135xy2
Solution:
125x3 – 27y3 – 225x2y + 135xy2
= (5x)3 – (3y)3 – 3 x (5x)2 x (3y) + 3- x 5x x (3y)2
= (5x – 3y)3
=
(5x – 3y) (5x – 3y) (5x – 3y)

Question 3.
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3 Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3 Q3.2

Question 4.
8x3 + 27y3 + 36x2y + 54xy2
Solution:
8x3 + 27y3 + 16x2y + 54xy2
= (2x)3 + (3y)3 + 3 x (2x)2 x 3y  +  3 x 2x x (3y)2
= (2x + 3y)3
= (2x + 3y) (2x + 3y) (2x + 3y)

Question 5.
a3 – 3a2b + 3ab2 – b3 + 8
Solution:
a3 – 3a2b + 3ab2 – b3 + 8
= (a – b)3 + (2)3
= (a – b + 2) [(a -b)2– (a – b) x 2 + (2)2]
= (a- b + 2) (a2 + b2 -2ab – 2a + 2b + 4)

Question 6.
x3 + 8y3 + 6x2y + 12xy2
Solution:
x3 + 8y3 + 6x2y + 12xy2
= (x)3 + (2y)3 + 3 x x2x 2y + 3 x x x (2y)2
= (x + 2y)3
= (x + 2y) (x + 2y) (x + 2y)

Question 7.
8x3 + y3 + 12x2y + 6xy2
Solution:
8x3 + y3 + 12x2y + 6xy2
= (2x)3 + (y)3 + 3 x (2x)2 x y + 3 x 2x x y2
= (2x + y)3
= (2x + y) (2x + y) (2x + y)

Question 8.
8a3 + 27b3 + 36a2b + 54ab2
Solution:
8a3 + 27b3 + 16a2b + 54ab2
= (2a)3 + (3b)3 + 3 x (2a)x 3b + 3 x 2a x (3b)2
= (2a + 3b)3
= (2a + 3b) (2a + 3b) (2a + 3b)

Question 9.
8a3 – 27b3 – 36a2b + 54ab2
Solution:
8a3 – 27b3 – 36a2b + 54ab2
= (2a)3 – (3b)3 – 3 x (2a)2 x 3b + 3 x 2a x (3b)2
= (2a – 3b))3
= (2a – 3b) (2a – 3b) (2a – 3b)

Question 10.
x3 – 12x(x – 4) – 64
Solution:
x3 – 12x(x – 4) – 64
= x3 – 12x2 + 48x – 64
= (x)3 – 3 x x2 x 4 + 3 x x x (4)2– (4)3
= (x – 4)3
= (x – 4) (x – 4) (x – 4)

Question 11.
a3x3 – 3a2bx2 + 3ab2x – b3
Solution:
a3x3 – 3a2bx2 + 3ab2x – b3
= (ax)3 – 3 x (ax)2 x  b + 3 x ax x (b)2– (b)3
= (ax – b)3
= (ax – b) (ax – b) (ax – b)

 

Hope given RD Sharma Class 9 Solutions Chapter 5 Factorisation of Algebraic Expressions Ex 5.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS

RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS

Question 1.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q1.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q1.2

Question 2.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q2.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q2.2

Question 3.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q3.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q3.2

Question 4.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q4.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q4.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q4.3

Question 5.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q5.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q5.2

Question 6.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q6.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q6.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q6.3

Question 7.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q7.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q7.2

Question 8.
If a + b + c = 9 and  ab + bc + ca = 23, then a2 + b2 + c2 =
(a) 35
(b) 58
(c) 127
(d) none of these
Solution:
a + b + c = 9, ab + bc + ca = 23
Squaring,
(a + b+ c) = (9)2
a2 + b2 + c2 + 2 (ab + bc + ca) = 81
⇒ a2 + b2 + c2 + 2 x 23 = 81
⇒  a2 + b2+ c2 + 46 = 81
⇒  a2 + b2+ c2 = 81 – 46 = 35   (a)

Question 9.
(a – b)3 + (b – c)3 + (c – a)3 =
(a) (a + b + c) (a2 + b2 + c2 – ab – bc – ca)
(d) (a -b)(b- c) (c – a)
(c) 3(a – b) (b – c) (c – a)
(d) none of these
Solution:
(a – b)3 + (b- c)3 + (c- a)3
∵ a – b + b – c + c – a = 0
∴ (ab)3 + (b – c)3 + (c – a)3
= 3
(a -b)(b- c) (c – a)        (c)

Question 10.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q10.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q10.2

Question 11.
If a – b = -8 and ab = -12 then a3 – b3 =
(a) -244
(b) -240
(c) -224
(d) -260
Solution:
a – b = -8, ab = -12
(a – b)3 = a3 – b3 – 3ab (a – b)
(-8)3 = a3 – b3 – 3 x (-12) (-8)
-512 = a3-b3– 288
a3 – b3 = -512 + 288 = -224      (c)

Question 12.
If the volume of a cuboid is 3x2 – 27, then its possible dimensions are
(a) 3, x2, -27x
(b) 3, x – 3, x + 3
(c) 3, x2, 27x
(d) 3, 3, 3
Solution:
Volume = 3x2 -27 = 3(x2 – 9)
= 3(x + 3) (x – 3)
∴ Dimensions are   = 3, x – 3, x   +  3        (b)

Question 13.
75 x 75 + 2 x 75 x 25    + 25 x 25 is equal to
(a) 10000
(b) 6250
(c) 7500
(d) 3750
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q13.1

Question 14.
(x – y) (x + y)(x2 + y2) (x4 + y4) is equal to
(a) x16 – y16
(b) x8 – y8
(c) x8 + y8
(d) x16 + y16
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q14.1

Question 15.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q15.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q15.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q15.3

Question 16.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q16.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q16.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q16.3

Question 17.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q17.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q17.2

Question 18.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q18.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q18.2
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q18.3

Question 19.
If a2 + b2 + c2 – ab – bc – ca = 0, then
(a) a + b = c
(b) b + c = a
(c) c + a = b
(d) a = b = c
Solution:
a2 + b2 + c2 – ab – bc – ca = 0
2 {a2 + b2 + c2 – ab – be – ca) = 0 (Multiplying by 2)
⇒  2a2 + 2b2 + 2c2– 2ab – 2bc – 2ca = 0
⇒  a2 + b2 – 2ab + b2 + c2 – 2bc + c2 + a2 – 2ca = 0
⇒  (a – b)2 + (b – c)2 + (c – a)2 = 0
(a – b)2 = 0, then a – b = 0
⇒ a = b
Similarly, (b – c)2 = 0, then
b-c = 0
⇒ b = c
and (c – a)2 = 0, then c-a = 0
⇒ c = a
∴ a = b – c           (d)

Question 20.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q20.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q20.2

Question 21.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q21.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q21.2

Question 22.
If a + b + c = 9 and ab + bc + ca = 23, then a3 + b3 + c3 – 3 abc =
(a) 108
(b) 207
(c) 669
(d) 729
Solution:
a3 + b3 + c3 – 3abc
= (a + b + c) [a2 + b2 + c2 – (ab + bc + ca)
Now, a + b + c = 9
Squaring,
a2 + b2 + c2 + 2 (ab + be + ca) = 81
⇒  a2 + b2 + c2 + 2 x 23 = 81
⇒  a2 + b2 + c2 + 46 = 81
⇒  a2 + b2 + c2 = 81 – 46 = 35
Now, a3 + b3 + c3 – 3 abc = (a + b + c) [(a2 + b2 + c2) – (ab + bc + ca)
= 9[35 -23] = 9 x 12= 108                     (a)

Question 23.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q23.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q23.2

Question 24.
The product (a + b) (a – b) (a2 – ab + b2) (a2 + ab + b2) is equal to
(a) a6 +   b6
(b) a6 – b6
(c) a3 – b3
(d) a3 + b3
Solution:
(a + b) (a – b) (a2 – ab + b2) (a2 + ab +b2)
= (a + b) (a2-ab + b2) (a-b) (a2 + ab + b2)
= (a3 + b3) (a3 – b3)
= (a3)2 – (b3)2 = a6 – b6   (b)

Question 25.
The product (x2 – 1) (x4 + x2 + 1) is equal to
(a) x8 –   1
(b) x8 + 1
(c) x6 –   1
(d) x6 + 1
Solution:
(x2 – 1) (x4 + x2 + 1)
= (x2)3 – (1)3 = x6 – 1                            (c)

Question 26.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q26.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q26.2

Question 27.
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q27.1
Solution:
RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS Q27.2

Hope given RD Sharma Class 9 Solutions Chapter 4 Algebraic Identities MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.