CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

Students can access the CBSE Sample Papers for Class 11 Hindi with Solutions and marking scheme Term 2 Set 1 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

समय : 2.00 घण्टा
पूर्णांक : 40

सामान्य निर्देश :

  • इस प्रश्न पत्र में दो खंड हैं- खंड ‘क’ और खंड ‘ख’
  • सभी प्रश्न अनिवार्य हैं। यथासंभव सभी प्रश्नों के उत्तर क्रमानुसार ही लिखिए।
  • लेखन कार्य में स्वच्छता का विशेष ध्यान रखिए।
  • खंड-‘क’ में कुल 4 प्रश्न हैं। दिए गए निर्देशों का पालन करते हुए इनके उपप्रश्नों के उत्तर दीजिए।
  • खंड-‘ख’ में कुल 3 प्रश्न हैं। सभी प्रश्नों के साथ विकल्प दिए गए हैं। निर्देशानुसार विकल्प का ध्यान रखते हुए प्रश्नों के उत्तर दीजिए।

रखण्ड-‘क’

प्रश्न 1.
निम्नलिखित में से किसी एक विषय पर लगभग 200 शब्दों में रचनात्मक लेख लिखिए [5]
(i) स्वच्छता हमें मानसिक, शारीरिक, सामाजिक व बौद्धिक रूप से स्वस्थ बनाती है। इसीलिए विद्यालयों में भी स्वच्छता अभियान चलाए जाते हैं। आपके विद्यालय में हुए स्वच्छता अभियान पर लेख लिखिए।
उत्तरः
2 अक्टूबर को प्रतिवर्ष हम महात्मा गाँधी का जन्मदिन मनाते हैं। इस बार हमारे स्कूल के प्रधानाचार्य जी ने 2 अक्टूबर को स्वच्छता दिवस’ के रूप में मनाने का निर्णय लिया। उनके इस निर्णय से सभी प्रसन्न और उत्साहित हुए। सभी ने तालियाँ बजाकर उनके इस निर्णय का स्वागत किया।

दिन भर स्वच्छता से संबंधित अनेक कार्यक्रम हुए। अध्यापकों ने स्वच्छता से संबंधित अनेक प्रकार की जानकारियाँ दीं। प्रधानाचार्यजी ने बताया कि स्वच्छ जीवन जीने के लिए स्वयं स्वच्छ रहना और अपने आस-पास के वातावरण को स्वच्छ रखना अत्यंत आवश्यक है। स्वच्छता अपनाने से व्यक्ति रोग मुक्त रहता है और स्वस्थ राष्ट्र निर्माण’ में योगदान देता है। अतः प्रत्येक व्यक्ति को जीवन में स्वच्छता अपनानी चाहिए और दूसरों को भी इसके लिए प्रेरित करना चाहिए। किसी को भी खुले में शौच आदि के लिए नहीं जाना चाहिए क्योंकि ऐसा करने से अनेक बीमारियाँ जैसे-हैजा, पेचिस, पोलियो, टाइफाइड जैसी बीमारियाँ फैलती हैं। हमें खाना खाने से पूर्व हाथों को अच्छी प्रकार से साफ करना चाहिए। प्रतिदिन के जीवन की छोटी-छोटी बातों को ध्यान में रखकर भी स्वस्थ रहा जा सकता है। घर हो या स्कूल हर जगह स्वच्छता का ध्यान रखना बहुत आवश्यक है। इसके बारे में समय-समय पर बच्चों को जानकारियाँ देते हुए जागरूक करते रहना चाहिए।

भोजनावकाश के बाद सभी विद्यार्थी, अध्यापक और कर्मचारी, उत्साहपूर्वक सफाई अभियान में जुट गए। कुछ बच्चे गमलों और पौधों के बीच से सूखी और सड़ी हुई पत्तियों आदि को निकाल रहे थे तो कुछ फावड़े और खुरपियों आदि की सहायता से नाली की मिट्टी को निकालने का काम कर रहे थे। मैदान में बिखरी पत्तियों को एक जगह एकत्र करने के लिए विद्यार्थियों ने मैदान में झाडू लगाई फिर प्रार्थना स्थल को भी साफ करके वहाँ की धुलाई की जिसमें शिक्षकों और कर्मचारियों ने भी सहयोग किया। कुछ छात्राओं ने गमलों पर भी रंग से पुताई की।

स्कूल के प्रधानाचार्य महोदय पूरे स्कूल में हो रहे स्वच्छता अभियान में विद्यार्थियों का मार्ग-दर्शन करने के साथ ही उत्साहवर्धन भी कर रहे थे। छोटी-छोटी टोकरियों से बच्चे कूड़ा उठाकर कूड़े की ट्रॉली में डाल रहे थे जिसमें बड़े बच्चे उनकी सहायता कर रहे थे।

दो घंटे में ही पूरे स्कूल की कायापलट हो गई। विद्यालय का हर कोना चमक रहा था। अपनी मेहनत रंग लाते देख सभी के चेहरे प्रसन्नता से चमक रहे थे। किसी को अपने कपड़े गंदे होने की चिंता नहीं थी।
4:00 बजे सफाई अभियान की समाप्ति की घोषणा हेतु घंटी बजाई गई। सभी अपना कार्य समाप्त कर शीघ्रता से बड़े मैदान में एकत्रित हो गए। प्रधानाचार्य जी ने सभी की प्रशंसा की। सभी को जलपान वितरित किया गया और सभी की सहमति से प्रत्येक शनिवार को भोजनावकाश के बाद का समय ‘स्वच्छता अभियान’ के लिए निर्धारित किया गया।

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

(ii) असामाजिक तत्त्वों द्वारा किस प्रकार समाज की शांति भंग की जाती है? इस पर आधारित एक घटना लिखिए।
उत्तरः
असामाजिक तत्त्वों की शरारतों के किस्से प्रायः हम सुनते रहते हैं। बड़े-बड़े भवनों एवं हरियाली से युक्त हमारी कॉलोनी एक शांतिप्रिय कॉलोनी है। अभी कुछ ही दिनों पूर्व हमारी कॉलोनी में एक घटना घटित हुई है-

हमारे पड़ोसी शर्मा अंकल का इकलौता बेटा चेन्नई में रहकर इंजीनियरिंग की पढ़ाई कर रहा था। अंकल व आंटी दोनों ही एक आलीशान कोठी में रहते थे। उनके बेटे के पत्र अक्सर आते रहते थे। कुछ समय पूर्व हमारी कॉलोनी में कुछ शरारती युवक रहने आए। वे अपनी शरारतों से अक्सर लोगों को परेशान करते रहते थे। एक दिन उन्होंने कुछ शरारती पत्र लिखकर दोपहर को लोगों के घर के बाहर लगी पत्र-पेटिकाओं में डाल दिए। शर्मा आंटी ने जब पत्र पढ़ा तो उसमें उनके इकलौते बेटे की दुर्घटना में मृत्यु का समाचार था। पत्र पढ़ते ही सदमे से उन्हें दिल का दौरा पड़ गया। मेरे पिताजी शर्मा अंकल की चीख-पुकार सुन वहाँ पहुँचे और आंटी जी को अस्पताल में दाखिल करवाया। बाद में सारी बात जान पिताजी को कुछ संदेह हुआ। पत्र देखते ही वह सारी शरारत समझ गए क्योंकि उस पत्र पर न तो डाक टिकट था और न ही डाकघर की मुहर। इस तरह की शरारत से दूसरों को कितना नुकसान हो सकता था यह सोचे बिना अपनी बेवकूफी से थोड़ी-सी मस्ती के लिए दूसरों की जान से खिलवाड़ करना गलत है। असामाजिक तत्त्वों की रोकथाम के लिए हमें व प्रशासन को सख्ती से इनके विरुद्ध ठोस कदम उठाने चाहिए। इसके अतिरिक्त स्थानीय व्यक्तियों को भी सतर्क रहने की आवश्यकता है। उन्हें ऐसे व्यक्तियों पर शक होते ही तुरंत पुलिस को सूचना देनी चाहिए। बड़े-बुजुर्गों को इस प्रकार की घटनाओं का सामना प्रायः करना पड़ता है, अतः अगर मजबूरी न हो तो उन्हें अकेले रहने से बचना चाहिए।

(iii) कम्प्यूटर तथा मोबाइल मनोरंजन के साथ-साथ हमारी जरूरत का साधन अधिक बन गए हैं। हर क्षेत्र में इनसे मिलने वाले लाभों तथा हानियों का वर्णन करते हुए अपने विचार लिखिए।
उत्तरः
वर्तमान युग विज्ञान का युग कहलाता है। विज्ञान के आविष्कारों ने आज दुनिया ही बदल दी है तथा मानव जीवन को सुख एवं ऐश्वर्य से भर दिया है। कम्प्यूटर, मोबाइल फोन उनमें से ही अत्यन्त उपयोगी और विस्मयकारी खोज हैं जो मनोरंजन के साथ-साथ हमारी जरूरत का साधन अधिक बन गए हैं। कम्प्यूटर व मोबाइल आज के युग की अनिवार्यता बन गये हैं तथा इनका प्रयोग अनेक क्षेत्रों में किया जा रहा है।

कम्प्यूटर व मोबाइल के माध्यम से बैंक अधिकारी बटन दबाकर ग्राहक के खाते का पूरा विवरण स्क्रीन पर ला देता है। रेलवे स्टेशनों, हवाई अड्डों पर आरक्षण का कार्य इसकी सहायता से किया जा सकता है। इसी प्रकार मौसम की जानकारी एकत्र करने में, टेलीफोन या बिजली के बिल बनवाने व जमा कराने में, छात्रों की उत्तर पुस्तिका जाँचने में, स्वास्थ्य परीक्षण में इनका सफलतापूर्वक प्रयोग किया जा रहा है। आजकल तो पुस्तकों की छपाई का काम कम्प्यूटर के प्रयोग से अत्यन्त तीव्रगामी व सुविधाजनक हो गया है। इस प्रकार मोबाइल व कम्प्यूटर सूचना, प्रसारण तथा नियंत्रण का सशक्त साधन बन गए हैं। इन उपकरणों से तरह-तरह के खेल खेले जा सकते हैं। समाचार, चुटकुले, संगीत आदि का आनन्द लिया जा सकता है। किसी भी तरह की विपत्ति में मोबाइल फोन रक्षक बनकर हमारी सहायता करता है। इंटरनेट के प्रयोग ने सभी के लिए ज्ञान के द्वार खोल दिए हैं। अपने ज्ञान में वृद्धि तथा दूसरों तक जानकारियाँ पहुँचाने का यह सरल व तीव्र माध्यम है। सभी सुविधाएँ होने के बावजूद आज इनके दुष्परिणाम भी सामने आ रहे हैं। जिनमें अफवाहें फैलाना, धमकियाँ देना, अश्लीलता आदि मुख्य हैं।

यद्यपि ये मानव मस्तिष्क की तरह कार्य करते हैं परन्तु मानव की तरह सोच-विचार नहीं कर सकते। ये केवल दिए गए निर्देशों का पालन ही कर सकते हैं। अतः हमें इनके गलत प्रयोग से बचना चाहिए और इनकी सुविधाओं का लाभ उठाना चाहिए जिससे विज्ञान के ये वरदान अभिशाप न बन जाएँ।

सामान्य त्रुटियाँ

  • कई छात्र प्रश्न को समझने में कठिनाई अनुभव करते हैं।
  • उत्तर लिखने में पुनरावृत्ति का दोष पाया गया।
  • कई बार छात्र दिए गए विषय से भटक कर कुछ अन्य ही लिख देते हैं। …

निवारण

  • निरन्तर अभ्यास द्वारा छात्र रचनात्मक लेखन में पारंगत हो सकते हैं।
  • विषय को समझकर, उससे जुड़ाव होने पर वे निर्बाध गति से लेखन कर सकते हैं।
  • विषय को रोचक बनाने की तरफ छात्रों को ध्यान देना चाहिए।

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

प्रश्न 2.
प्लास्टिक थैलों पर प्रतिबन्ध के बावजूद इनके बढ़ते प्रयोग पर अधिकारियों का ध्यान आकर्षित करते हुए क्षेत्र के प्रमुख समाचार-पत्र के सम्पादक को एक पत्र लिखिए। [5]
अथवा
समय का सदुपयोग करते हुए परिश्रमपूर्वक पढ़ने की सलाह देते हुए अपने मित्र को पत्र लिखिए। [5]
उत्तरः
1242 अशोक विहार,
दिल्ली
दिनांक 26 मार्च 20xx
सेवा में,
प्रधान संपादक महोदय,
नवभारत टाइम्स,
बहादुर शाह जफर मार्ग,
नई दिल्ली 110002

विषय : प्लास्टिक थैलों पर प्रतिबंध के बावजूद इनके बढ़ते प्रयोग के संदर्भ में।

महोदय,
मैं आपके प्रतिष्ठित एवं लोकप्रिय समाचार पत्र के माध्यम से प्लास्टिक थैलों पर प्रतिबंध के बावजूद इनके बढ़ते प्रयोग पर आपका ध्यान आकर्षित करना चाहता हूँ। आपसे अनुरोध है कि मेरे इस पत्र को लोकवाणी स्तंभ में प्रकाशित करने का कष्ट करें। दिल्ली हमारे देश की राजधानी है तथा विश्व के प्रमुख नगरों में गिनी जाती है। आज दिल्ली महानगर की प्रदूषण समस्या अत्यंत सोचनीय है। हालांकि सरकार ने प्लास्टिक थैलों पर प्रतिबंध लगा दिया है, परंतु जैसा कि हम देखते हैं कि आज भी बाजार में हर तरह की वस्तुओं को प्लास्टिक बैग में ही डाल कर बेचा जाता है। लोग प्लास्टिक का अत्यधिक प्रयोग कर रहे हैं। कूड़ा प्रतिदिन प्लास्टिक बैग में ही भरकर कूड़ेदान में डाला जाता है। प्लास्टिक को जलाए जाने पर प्रदूषण बढ़ता है। नदी, सरोवर के पानी में भी प्लास्टिक बैग उपयोग करके फेंक दिया जाता है, जिसे जीव-जंतु खाकर मर रहे हैं। प्लास्टिक जलाने के कारण समस्या दिन प्रतिदिन बदतर होती जा रही है। इस समस्या को अत्यंत गंभीरता से लेना आवश्यक है। मेरा अधिकारियों से विनम्र निवेदन है कि इस दिशा में कोई ठोस कदम उठा कर इस समस्या का समाधान करें।
धन्यवाद।
भवदीय,
ज्योति रंजन

अथवा

27, जे. एन. हॉस्टल,
डी. पी. एस.
दिल्ली-11
दिनांक 20 अगस्त 20xx
प्रिय मित्र अनुज,
सप्रेम नमस्कार।
आशा है तुम परिवार सहित सकुशल होंगे। मैं ठीक-ठाक हूँ और इस वर्ष पूरे मनोयोग से अपनी परीक्षा की तैयारी कर रहा हूँ क्योंकि नवीं-दसवीं की पढ़ाई को मैं बुनियादी तौर पर शिक्षा रूपी मकान की नींव मानता हूँ। अगर नींव मजबूत है तो उस पर मजबूत भवन बनाया जा सकता है। मैं तुम्हें भी यही सलाह दूँगा कि इन दो वर्षों में तुम डटकर परिश्रम करो और अपना पूरा ध्यान खेलकूद एवं मटरगश्ती से हटाकर पढ़ने-लिखने पर लगा दो। यदि आपने 10वीं की परीक्षा 90 प्रतिशत या उससे अधिक अंकों से उत्तीर्ण कर ली तो आगे अच्छे कॉलेज में प्रवेश मिल सकेगा जो हमारे भविष्य को बनाने के लिए अति आवश्यक है।
कृपया अपना पूरा ध्यान पढ़ाई पर केन्द्रित करें जिससे अच्छे अंको से आपको सफलता प्राप्त हो सके।
आशा है आप मेरी सलाह पर ध्यान देंगे। घर में सभी बड़ों को मेरा प्रणाम कहें तथा छोटों को स्नेह दें।
पत्र की प्रतिक्षा करूंगा।
आपका मित्र
प्रेम अग्निहोत्री
94120878XX

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

प्रश्न 3.
निम्नलिखित प्रश्नों के उत्तर दीजिए [3 + 2 = 5]

(i) विद्यालय में आयोजित वार्षिक समारोह का प्रतिवेदन प्रस्तुत कीजिए।
अथवा
भारतीय डाक-तार विभाग के महानिदेशक की ओर से एक साधारण परिपत्र का प्रारूप प्रस्तुत कीजिए जिसमें सभी अनुभाग अधिकारियों को सूचित किया जाए कि पूर्व अनुमति के बिना यदि वे कार्यालय में अनुपस्थित रहे तथा कार्यालयी अनुदेशों का विधिवत् अनुपालन नहीं किया तो उनके विरुद्ध कठोर कार्यवाही की जाएगी।
उत्तरः
पांखुरी (विद्यालयी पत्रिका)
डी. वी. एन. कॉलेज
2 फरवरी 20………
राया (मथुरा)
गत 23 जनवरी 20….. को हमारे विद्यालय का वार्षिकोत्सव हुआ। नगर के प्रसिद्ध समाजसेवी श्री श्याम बहादुर कार्यक्रम के मुख्य अतिथि थे। इस वर्ष विद्यालय में काफी उत्साह देखा गया। विद्यालय को पूरी तरह सजाया-सँवारा गया। ठीक 11 बजे कार्यक्रम आरंभ हुआ। पहले एन.सी.सी. स्काउट तथा बैंड के छात्रों ने स्वागत कार्यक्रम प्रस्तुत किए। फिर मलखंभ, ड्रिल, डंबल, लेज़ियम के आकर्षक कार्यक्रम हुए। तत्पश्चात मंच के कार्यक्रम प्रारंभ हुए। विद्यालय के छात्रों ने मंत्रमुग्ध करने वाले अभिनय और गीत प्रस्तुत किए। प्राचार्य महोदय ने विद्यालय की प्रगति की रिपोर्ट पेश करते हुए विज्ञान के छात्रों के लिए नई प्रयोगशाला की कमी का उल्लेख किया। प्राचार्य के भाषण के बाद मुख्य अतिथि ने कार्यक्रम की भूरि-भूरि प्रशंसा की तथा प्रयोगशाला के लिए ₹ 51,000 दान देने की घोषणा की। विद्यालय का प्रांगण तालियों की ध्वनि से गूंज उठा। मुख्य अतिथि ने प्रतिभाशाली छात्रों को चहुँमुखी उन्नति की दिशा में बढ़ने की प्रेरणा दी तथा उनके प्रोत्साहन के लिए कई पुरस्कार योजनाएं शुरू करने की भी घोषणा की। अंत में इस वर्ष के पुरस्कार विजेताओं को मुख्य अतिथि के हाथों से पुरस्कृत किया गया। इसके साथ यह कार्यक्रम सोल्लास संपन्न हुआ।

अथवा

पत्र संख्या-61/9/20xx
21 जनवरी 20xx
महानिदेशक
भारतीय डाक-तार विभाग
भारत सरकार, नई दिल्ली
परिपत्र

विषय-अनुभाग अधिकारियों हेतु सामान्य निर्देश।

महोदय,
हाल ही के कुछ दिनों में अनुभाग अधिकारियों में बढ़ती लापरवाही व उनके खिलाफ मिल रही शिकायतों के मद्देनजर विभागान्तर्गत सभी अनुभाग अधिकारियों को इस बात के लिए सख्त निर्देशित किया जाता है कि वे बिना पूर्व अनुमति के कार्यालयों में अनुपस्थित न रहें तथा कार्यालय अनुदेशों की विधिवत् अनुपालना करें।
इन अनुदेशों की तरफ समुचित ध्यान दिया जाए। दोषी अनुभाग अधिकारियों के खिलाफ कठोर कार्यवाही अपेक्षित है। परिपत्र के प्रति लापरवाही अनुभाग अधिकारियों के विरुद्ध कठोर कानूनी कार्यवाही का ठोस कारण बन सकती है।
हस्ताक्षर
क,ख,ग
डाक-तार विभाग
भारत सरकार

(ii) बैठक के कार्यवृत्त का प्रारूप लिखिए।
अथवा
परिपत्र में विशेष ध्यान देने योग्य बात क्या है?
उत्तरः
(बैठक के कार्यवृत्त का प्रारूप)
आमतौर पर बैठक के कार्यवृत्त में निम्नलिखित भाग होते हैं

  • कंपनी का नाम-पेज के ऊपरी भाग में बायीं ओर।
  • दिनांक-पेज के दाहिनी तरफ सबसे ऊपर।
  • विषय-पृष्ठ के ठीक बीच में।
  • लोग–अनुपस्थित व्यक्तियों के नाम, उनकी भूमिकाएँ और उनकी अनुपस्थिति का कारण /(3 कॉलमों में)।
  • एजेंडा (कार्यसूची)-बैठक में चर्चा का विषय।
  • बैठक में उठाए गए मुद्दे-वक्ताओं के नाम व उनके द्वारा उठाए गए मुद्दे।
  • सुझाव-वक्ताओं के नाम के साथ उनके सुझाव।
  • फैसला-बैठक में लिया गया निर्णय।
  • कार्यसूची-कौन-कौन से कार्य सौंपे गए और किसको सौंपे गए।
  • भविष्य में होने वाली बैठक-अगली बैठक की तारीख और चर्चा का विषय।

अथवा

बैठक में लिए गए महत्वपूर्ण निर्णयों को कार्यान्वित करने के लिए परिपत्र जारी किया जाता है। जिस मुद्दे को लेकर पहला परिपत्र जारी किया जाता है, उस मुद्दे पर होने वाला फैसला भी परिपत्र के रूप में जारी किया जाता है जिसमें निर्णय को कार्यान्वित किए
जाने के निर्देश होते हैं।

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

प्रश्न 4.
निम्नलिखित प्रश्नों के उत्तर दीजिए
(i) संचार क्रांति क्या है? इसका क्या परिणाम निकला? [3 + 2 = 5]
अथवा
संचार कितने प्रकार का होता है? लिखिए।
उत्तरः
संदेशों के आदान-प्रदान में लगने वाले समय और दूरी को कम करने के लिए मनुष्य ने संचार के माध्यमों की खोज कर संचार
क्रांति पैदा की, इसका परिणाम यह निकला कि संचार व जनसंचार के विभिन्न माध्यम जैसे टेलीफोन, इंटरनेट, फैक्स, समाचारपत्र, रेडियो, टेलीविजन और सिनेमा आदि की खोज ने न सिर्फ भौगोलिक दूरियाँ कम कर दीं बल्कि सांस्कृतिक और मानसिक रूप से भी मानव एक-दूसरे के करीब आ रहा है। अब तो ऐसा लगता है कि दुनिया एक गाँव में जैसे बदल गई हो। दुनिया के किसी भी कोने की कोई भी खबर जनसंचार माध्यमों के द्वारा कुछ ही मिनटों में हम तक पहुँच जाती है। ये माध्यम हमें केवल सूचनाएँ ही नहीं देते बल्कि हमें जागरूक बनाने में, हमारा मनोरंजन करने में भी अग्रणी भूमिका निभाते हैं।

अथवा

संचार एक जटिल प्रक्रिया है। अतः इसके कई रूप या प्रकार हैं

  • सांकेतिक संचार-संकेतों द्वारा संदेश पहुँचाना जैसे-हाथ जोड़ना, पाँव छूना, सिगनल देना आदि सांकेतिक संचार हैं।
  • मौखिक संचार-मुख द्वारा व्यक्त ध्वनियों के माध्यम से संदेश पहुँचाना। आपसी बातचीत, टेलीफोन आदि मौखिक संचार हैं।
  • अमौखिक संचार-मौखिक संचार के अतिरिक्त अन्य संचार साधन, जैसे सांकेतिक व लिखित संचार आदि अमौखिक संचार कहलाते हैं।
  • अंतःवैयक्तिक संचार-अकेले में स्वयं अपने साथ किसी विषय पर या मुद्दे पर सोच-विचार करना; विचार-मंथन करना, पूजा-इबादत-प्रार्थना करते वक्त ध्यान में रहना, भाषा, स्मृतियों, गीतों आदि से स्वयं को व्यक्त करना इस संचार का बुनियादी रूप है। इसे अंत:वैयक्तिक (इंट्रापर्सनल) संचार कहते हैं।
  • अंतर वैयक्तिक-जब दो व्यक्ति आपस में और आमने-सामने संचार करते हैं तो इसे अंतर वैयक्तिक (इंटरपर्सनल) संचार कहते हैं। इसमें फीडबैक भी तुरंत मिलता है। हर कदम पर इस कौशल की जरूरत पड़ती है।
  • समूह संचार-संचार का तीसरा प्रकार है-समूह संचार। इसमें एक समूह आपस में विचार-विमर्श या चर्चा करता है। समूह संचार का उपयोग समाज और देश के सामने उपस्थित समस्याओं को बातचीत और वाद-विवाद के ज़रिये हल करने के लिए होता
  • जनसंचार-जब हम व्यक्तियों के समूह के साथ प्रत्यक्ष संवाद की बजाय किसी तकनीकी या यांत्रिक माध्यम के ज़रिये समाज के एक विशाल वर्ग से संवाद कायम करने की कोशिश करते हैं तो इसे जनसंचार (मास-कम्युनिकेशन) कहते हैं।

(ii) पीत पत्रकारिता को स्पष्ट कीजिए।
अथवा
समाचार के लिए जनरुचि का क्या महत्त्व है?
उत्तरः
अफवाहों, व्यक्तिगत आरोपों-प्रत्यारोपों, प्रेम-संबंधों का खुलासा, फिल्मी गपशप आदि से संबंधित समाचार पीत पत्रकारिता के अन्तर्गत आते हैं व उन्हें प्रकाशित करते हैं। यह पत्रकारिता सनसनी फैलाने का कार्य करती है। इस पत्रकारिता की शुरुआत अमेरिका में 19वीं सदी के उत्तरार्द्ध में हुई थी, क्योंकि वहाँ कुछ समाचार पत्रों के बीच पाठकों को आकर्षित करने के लिए आपस में प्रतिस्पर्धा प्रारंभ हो गई थी।

अथवा

समाचार-पत्र जनरुचि के पारखी होते हैं। इसी कारण समाचार-पत्रों में खेल, फिल्म, राजनीति, हिंसा आदि के अलग पृष्ठ होते हैं। प्रायः समाचार-पत्र पाठकों की रुचि के अनुसार ही समाचारों को स्थान प्रदान करते हैं। हर समाचार-पत्र का अपना एक विशेष पाठक वर्ग भी होता है। जिसके अनुसार वे समाचारों का चयन करते हैं।

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

रखण्ड-‘व’

प्रश्न 5.
निम्नलिखित तीन प्रश्नों में से किन्हीं दो प्रश्नों के उत्तर 50-60 शब्दों में दीजिए [3 × 2 = 6]
(i) परिवार के प्रति कवि की भावनाएँ व्यक्त कीजिए।
उत्तरः
परिवार के प्रति कवि की भावनाएँ अत्यन्त हृदयस्पर्शी व मार्मिक हैं। कारागार में कारावास का दंड भुगतते हुए वह स्वयं तो दुःखी है ही, लेकिन इससे अधिक दुःख इस बात का है कि उसके परिवार के लोग उससे न मिल पाने के कारण दुःखी हैं। कवि अपनी विवाहिता बहन को याद करता हुआ कहता है कि वह भी आज रक्षाबंधन पर मायके आई होगी और अपने एक भाई को घर पर न पाकर बहुत दुःखी हुई होगी। उसके चारों भाई चार सहयोगी भुजाओं के समान हैं। चारों बहनें स्नेह की प्रतिमूर्ति हैं। सभी बहनों व भाइयों में अत्यन्त स्नेह है व उनके बीच प्रेम और स्नेह का एक अटूट रिश्ता है। वह अपनी माँ को याद करते हुए कहता है कि उसके कारागार जाने के कारण उसकी माँ भी दुःखी व आहत है। कवि कहता है कि वह अपनी माँ की स्नेहमयी गोद में सिर रखकर सारे दुःख व कष्ट भूल जाता था। माँ के स्नेह और प्यार की धारा को वह कारागार तक महसूस करता है। वह भावुक होते हुए अपने पिता को याद कर रहा है। कवि के पिता उसको याद कर-करके रोने लगते हैं। वे अपने बाकी बच्चों को खेलते, उठते, बैठते देखकर कवि को याद कर दुःखी हो जाते हैं। कवि उनका सबसे प्यारा बेटा है व उनसे दूर कारागार में है। वे कवि की बात करते-करते भाव-विभोर हो उठते हैं। कवि उनको बिल्कुल भी दुःखी नहीं देखना चाहता। उसे अपने माता-पिता व पूरे परिवार से बहुत लगाव था।

सामान्य त्रुटियाँ

  • कुछ छात्र कविता का अध्ययन ध्यानपूर्वक नहीं करते जिसके कारण कविता का केंद्रीय भाव नहीं समझ पाते।
  • वे कविता का भावार्थ समझने में कठिनाई का अनुभव करते हैं।

निवारण

  • छात्रों को कविता के शब्दों पर ध्यान देते हुए उसको आत्मसात करना चाहिए।
  • कविता का भावार्थ समझने के बाद ही छात्र बहुविकल्पात्मक प्रश्नों के सही उत्तर का चुनाव कर सकने में सक्षम हो सकते हैं।

(ii) गज़ल किसे कहते हैं ? दुष्यंत कुमार की गज़ल की विशेषताएँ लिखिए।
उत्तरः
गज़ल काव्य लेखन की एक विधा है। इसमें एक ही बहर और वज़न के अनुसार शेर लिखे जाते हैं। ग़ज़ल में शेरों की संख्या विषम होती है। गज़ल के शेर में जो तुकांत शब्द आते हैं, उन्हें काफिया कहा जाता है और दोहराव वाले शब्दों को रदीफ कहते हैं। यह रुबाई छंद में लिखी जाती है। गज़ल में शीर्षक की आवश्यकता नहीं पड़ती। दुष्यंत कुमार की गज़ल में अद्भुत विशेषताएँ हैं। इन्होंने गज़ल विधा को हिन्दी में लिखकर प्रतिष्ठित किया। इनकी गज़लों के शेर साहित्यिक और राजनीतिक सभाओं में इस तरह से दोहराए जाते हैं मानो ये मुहावरे या लोकोक्तियाँ हों। इन्होंने अपनी गज़लों में साहित्यिक गुणवत्ता को कभी कम नहीं होने दिया। इसीलिए लोकप्रियता के मामले में इनकी गज़लों ने नए कीर्तिमान स्थापित किए। इनकी गज़लों में तत्सम व उर्दू शब्दों का खूबसूरत समावेश किया गया है। जैसे-मेरे सीने में नहीं तो तेरे सीने में सही, हो कहीं भी आग, लेकिन आग जलनी चाहिए।

(iii) “इस दौर में भी बचाने को बहुत कुछ बचा है।” आओ, मिलकर बचाएँ कविता के आधार पर उत्तर दीजिए।
उत्तरः
‘आओ, मिलकर बचाएँ’ नामक कविता प्रकृति-प्रेम और संस्कृति-प्रेम की कविता है। कवयित्री झारखण्ड के संथाली रंग और
जीवन-शैली को बचाना चाहती है। वह अपनी बस्तियों को शहरी अपसंस्कृति से बचाकर झारखण्ड की माटी के रंग में रंगी रहना चाहती है। वह चाहती है कि उनके जीवन में गर्माहट, ताजगी, हरियाली, भोलापन, अक्खड़पन, जुझारूपन बना रहे जो झारखण्डी संस्कृति की पहचान है। वे पहले की तरह धनुष-बाण, कुल्हाड़ी को धारण करें। उन्हें वही जंगल की ताजा हवा, नदियों की पवित्रता, पहाड़ी गीतों की धुन, मिट्टी की सुगन्ध, नाचने-गाने के लिए गीत और आँगन, रोने के लिए एकान्त, बच्चों के लिए खेल का मैदान, पशुओं के लिए हरी घास, बूढ़ों के लिए पहाड़ों की शान्ति मिलती रहे। वह अब भी पहले की तरह विश्वास, आशा और सपनों के संसार में जीना चाहती है।

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

प्रश्न 6.
निम्नलिखित चार प्रश्नों में से किन्हीं तीन प्रश्नों के उत्तर 50-60 शब्दों में दीजिए [3 × 3 = 9]
(i) ‘स्पीति रेगुलेशन’ क्या था? स्पष्ट कीजिए।
उत्तरः
‘स्पीति में बारिश’ पाठ एक यात्रा-वृत्तान्त है। स्पीति, हिमालय के मध्य में स्थित है। यह स्थान अपनी भौगोलिक एवं प्राकृतिक विशेषताओं के कारण अन्य पर्वतीय स्थलों से भिन्न है। लेखक ने इस पाठ में स्पीति की जनसंख्या, ऋतु, फसल, जलवायु और भूगोल का वर्णन किया है जो आपस में एक-दूसरे से सम्बन्धित हैं। कृष्णनाथ जी ने दुर्गम क्षेत्र स्पीति में रहने वाले लोगों के कठिनाई भरे जीवन का भी वर्णन किया है। कुछ युवा पर्यटकों का पहुँचना स्पीति के पर्यावरण को बदल सकता है। ठंडे रेगिस्तान जैसे स्पीति में उनका आना, वहाँ बूंदों भरा एक सुखद संयोग बन सकता है।

(ii) स्पीति के लोगों और मैदानी भागों में रहने वाले लोगों के जीवन की तुलना कीजिए। किनका जीवन आपको ज्यादा अच्छा लगता है और क्यों?
उत्तरः
स्पीति के लोगों का जीवन मैदानी भागों में रहने वाले लोगों के जीवन की तुलना में बहुत कठिन होता है। वहाँ जीवन-यापन की
आधुनिक सुख-सुविधाओं का अभाव होता है, जबकि मैदानी इलाकों में परिवहन, संचार, मनोरंजन आदि की पर्याप्त सुविधाएँ होती हैं। मैदानी इलाकों में जहाँ छः ऋतुएँ बदल-बदल कर आती हैं वहीं स्पीति में सर्दी व वसन्त दो ऋतुएँ ही होती हैं। सर्दी में तो सब कुछ जम जाता है। अतः मैदानी भागों में रहने वालों का जीवन स्पीति के लोगों से सुखी व सरल होने के कारण हमें ज्यादा अच्छा लगता है।

सामान्य त्रुटियाँ

  • विद्यार्थियों को पाठ में आए तथ्यों को याद रखना कठिन लगता है।
  • वे संबंधित प्रश्नों के सटीक उत्तर देने में भ्रमित हो जाते हैं।
  • छात्रों में पाठ के प्रति रोचकता व एकाग्रता की कमी रहती है।

निवारण

  • छात्र पाठ के प्रति रोचक भाव व एकाग्रता का भाव, रख कर ही सही प्रकार से अध्ययन कर सकते हैं।
  • तथ्यों को बार-बार लिख-लिखकर याद रखा जा सकता है।

(iii) ‘बेचारा जामुन का पेड़। कितना फलदार था और इसकी जामुनें कितनी रसीली होती थीं ?’
(क) ये संवाद कहानी के किस प्रसंग में आए हैं?
(ख) इससे लोगों की कैसी मानसिकता का पता चलता है?
उत्तरः
(क) सचिवालय के लॉन में लगा जामुन का पेड़ रात को आँधी में गिर गया। उसके नीचे एक आदमी दब गया। सुबह होने पर सचिवालय के माली ने उसे देखा। उसने क्लर्कों को सूचना दी। सभी क्लर्क इकट्ठे हुए। वे जामुन का पेड़ गिरा देखकर उपर्युक्त बातें करने लगे।

(ख) इससे पता चलता है कि लोग संवेदना शून्य हो चुके हैं। उन्हें मरता हुआ आदमी भी द्रवित नहीं करता। वे इतने स्वार्थांध हैं कि मरते हुए आदमी को अनदेखा करके वे अपना हित पूरा करना चाहते हैं। उन्हें जामुन न मिलने की पीड़ा व्यथित करती है। ऐसे लोग लाश पर बैठकर भी रोटियाँ खा सकते हैं।

(iv) दुनिया के बारे में किसानों को बताना नेहरू जी के लिए क्यों आसान था?
उत्तरः
दुनिया के बारे में किसानों को बताना नेहरू जी के लिए आसान इसलिए था क्योंकि वे देश-विदेश के बारे में विभिन्न बातें पहले से ही जानते थे। वे भारत के पुराणों और महाकाव्यों को पढ़कर भारत के नगरों से परिचित हो चुके थे। तीर्थ-यात्राएँ करके देश के चारों कोनों से परिचित हो चुके थे। अनेक सैनिकों ने विश्व-युद्ध के दौरान विदेशों में जाकर युद्ध किया था और विदेशी नौकरियाँ की थीं। किसान तीसरे दशक में छाई विश्वव्यापी आर्थिक मंदी से भी परिचित थे।

CBSE Sample Papers for Class 11 Hindi Term 2 Set 1 with Solutions

प्रश्न 7.
निम्नलिखित प्रश्नों के उत्तर दीजिए [3 + 2 = 5]
(i) रेजाणी पानी की क्या विशेषता है? इस शब्द का प्रयोग किसलिए किया जाता है?
अथवा
‘मेरा इतना सुख अभी तक कहाँ था’? लेखिका यह क्यों सोचती थी?
उत्तरः
पालर पानी और पाताल पानी के बीच में पानी का तीसरा रूप है-रेजाणी पानी। धरातल के नीचे जाकर पाताल पानी में न मिलकर बीच में ही नमी के रूप में रह जाने वाला पानी रेजाणी पानी कहलाता है। भूमि के अंदर खड़िया पत्थर की सतह के कारण यह पानी पाताल पानी में नहीं मिल पाता। इसी पानी को कुंइयों के माध्यम से इकट्ठा किया जाता है। पाताल पानी के बीच मिलने वाला पानी अर्थात् वर्षा को मापने के लिए इंच या सेंटीमीटर नहीं, रेजा शब्द का उपयोग होता है। रेजा धरातल में समाई वर्षा को मापता है।

अथवा

तातुश के घर में लेखिका को इतना स्नेह मिला कि वह अपने सारे दुःख भूल गई। तातुश हर समय उसका ख्याल रखते थे। उसे किसी चीज की कमी नहीं होने देते थे। उन्होंने उसे पढ़ने-लिखने के लिए प्रेरित किया। वह बीमार होती तो वे उसे डॉक्टर को दिखाते। उसके खाने-पीने का ध्यान रखते। तातुश ने लेखिका के तीन बच्चों को एक साथ कर दिया था। उन्होंने बड़े लड़के को काम पर रखवा दिया था। तातुश का इतना स्नेहपूर्ण व्यवहार देखकर ही लेखिका सोचती थी कि ‘मेरा इतना सुख अभी तक कहाँ था’?

(ii) कुंई की खुदाई फावड़े से क्यों नहीं की जाती?
अथवा
तातुश लेखिका को देखकर अक्सर क्या सोचते थे?
उत्तरः
कुंई का व्यास काफी छोटा होता है। सँकरी जगह में फावड़े से खुदाई का काम नहीं किया जा सकता। कुंई का व्यास इतना छोटा होता है कि चेजारों को हाथ फैलाने की जगह भी नहीं मिलती। वे बसौली से धीरे-धीरे मिट्टी की खुदाई करते हैं। जबकि फावड़े से खुदाई करने के लिए कम-से-कम दस हाथ का घेरा चाहिए। इसी कारण फावड़े से कुंई की खुदाई नहीं की जा सकती।

अथवा

तातुश यही सोचते थे कि बेबी ने क्या अपराध किया है जो उसे अकेले बच्चों के साथ जीवन गुजारना पड़ रहा है। उस पर घर का खर्च और लालन-पालन की सारी जिम्मेदारी आ पड़ी है। उसे निरपराध होकर भी लोगों की बातों का सामना करना पड़ता है। वे सोचते रहते थे कि इतनी सी उम्र में ही इस बेचारी ने अपनी जवानी को बच्चों के नाम कर दिया है।

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Students can access the CBSE Sample Papers for Class 11 Applied Mathematics with Solutions and marking scheme Term 2 Set 1 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Time : 2 Hours
Maximum Marks : 40

General Instructions:

  • The question paper is divided into 3 sections -A, B and C.
  • Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
  • Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
  • Section C comprises of 4 questions. It contains one case study-based question. Internal choice has been provided in one question.

Section – A [2 Marks each]

Question 1.
A particle moves along the curve x2 = 2y. At what point, ordinate increases at the same rate as abscissa increases?
OR
A stone is dropped into a quiet lake and waves move in a circle at a speed of 3.5 cm/sec. At the instant when the radius of the circular wave is 7.5 cm, how fast is the enclosed area increasing?
Answer:
Given curve, x2 = 2y …(i)
Differentiating both sides w.r.t. t, we get
2x\(\frac{d x}{d t}\)= 2\(\frac{d y}{d t}\)
⇒ 2x\(\frac{d x}{d t}\)= 2\(\frac{d y}{d t}\) (∵ Given, \(\frac{d y}{d t}=\frac{d x}{d t}\))
⇒ x = 1
From eq. (i), y = \(\frac{1}{2}\)
So, the required points is (1, \(\frac{1}{2}\))

Commonly Made Error: Some students get confused between abscissa and ordinate. Some student find y but fail to find the point by suitable substitution.

Answering Tip:
Adequate practice is required in problems involving rate of change of bodies.

OR

Let r be the radius and A be the area of circular wave at any time t.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 1

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Question 2.
Mr. Raghav aged 26 years and a resident in India, has a total income of ₹4,40,000, comprising his salary
income and interest on bank fixed deposit. Compute his tax liability for A.Y. 2020-21.
Answer:
Computation of tax liability of Mr. Raghav for A.Y. 2020-21

Particulars
Tax on total income of ₹ 4,40,000
Tax @5% of ₹ 1,90,000 (₹ 4,40,000 – ₹ 2,50,000) 9,500
Less: Rebate u/s 87A (Since total income ≤ ₹ 5,00,000) 9,500
Tax Liability Nil

Question 3.
A machine can be purchased for ₹50,000. Machine will contribute ₹12,000 per year for the next five years.
Assume borrowing is 10% per annum compounded annually. Determine whether machine should be purchased or not. Given P (5,0.10) = 3.79079.
OR
₹5000 is paid every year for three years to pay off a loan. What is the loan amount if interest rate be 14% per annum compounded annually?
Answer:
The present value of annual contribution
P.V. = C.F. × P(n, i)
Here, C.F. = ₹ 12,000, i = 10% = \(\frac{10}{100}\) = 0.10
n = 5
and P(5,0.10) = 3.79079
∴ P.V = 12000 × 3.79079
= ₹ 45489.48 %
which is less than the initial cost of the machine. Therefore, machine must not be purchased.
OR
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 2
Therefore, PV. = C.F. P{n, i)
= 5000 × 2.3216
= ₹ 11,608

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Question 4.
Three identical dice are rolled. Find the probability that the same number appears on each of them.
Answer:
Since, three identical dice are rolled, so number of elements in the sample space S is
n(S) = 63 = 216 y2
Let E be the event of getting same number on each of them i.e., E = {(1,1,1), (2,2,2), (3,3,3), (4,4,4), (5, 5,5), (6, 6,6)}
⇒ n(E) = 6
∴ P(E) = \(\frac{n(E)}{n(S)}=\frac{6}{216}=\frac{1}{36}\) Hence, the probability that the same number appears on all the three dice is \(\frac{1}{36}\).

Question 5.
Find the condition, if the two lines ax + by = c and a’x + b’y = a’b’ are perpendicular.
Answer:
The given lines are:
ax + by = c
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 3
⇒ aa’ + bb’ = 0, which is the required condition

Question 6.
Find the number of ways of selecting 9 balls from 6 red balls, 5 white balls and 5 blue balls if each selection consists of 3 balls of each colour.
Answer:
The number of ways of selecting 3 red balls out of 6 red balls = 6C2
The number of ways of selecting 3 white balls out of 5 white balls = 5C3
The number of ways of selecting 3 blue balls out of 5 blue balls = 5C3
The number of ways of selecting 3 balls of each colour = \({ }^{6} C_{3} \times{ }^{5} C_{3} \times{ }^{5} C_{3}\)
= \({ }^{6} C_{3} \times{ }^{5} C_{3} \times{ }^{5} C_{3}\)
[Using property nCr = nCr-1
= \(\frac{6 \times 5 \times 4}{1 \times 2 \times 3} \times \frac{5 \times 4}{1 \times 2} \times \frac{5 \times 4}{1 \times 2}\)
= 20 × 10 × 10
= 2000

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Section – B (4 marks each)

Question 7.
In a college, 70% students pass in Physics, 75% pass in Mathematics and 10% students fail in both. One student is chosen at random. What is the probability that:
(i) he passes in Physics given that he passes in Mathematics?
(ii) he passes in Mathematics given that he passes in Physics?
Answer:
Let x% students passes in both Mathematics and Physics.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 4
Students who pass in Physics = 70%
∴ P(Ph) = \(\frac{70}{100}\)
Students who pass in Mathematics = 75%
∴ P(M) = \(\frac{75}{100}\)
Students who fail in both = 70%
Now, 70% – x + x + 75% – x = 90%
⇒ x = 55%
∴ P(M ∩ Ph) = \(\frac{55}{100}\)

(i) Probability that student passes in Physics given that he passes in Mathematics is
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 5

(ii) Probability that student passes in Mathematics given that he passes in Physics is
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 6

Question 8.
(i) Find the shortest distance of the point (8,1) from the circle (x + 2)2 + (y – 1)2 = 25.
(ii) Find the farthest distance of the point (1, 5) from the circle (x – 1)2 + (y + 1)2 = 16.
OR
Prove that the equation of parabola, whose vertex and focus are on the axis of X at distances a and a’ from the origin respectively, is y2 = 4a(a’ – a) (x – a).
Answer:
(i) The centre of the circle (x + 2)2 + (y – 1)2 = 25 is C(- 2, 1) and its radius (r) is 5.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 7
If P is the point (8,1), then
CP = |\(\sqrt{(8+2)^{2}+(1-1)^{2}}\)|
= 10 units
The shortest distance of P from the circle
= PA
= CP – AC
= 10 – 5
= 5 units

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

(ii) The centre of the circle (x – 1)2 + (y + 1)2 = 16 is C(1, – 1) and its radius (r) = 4.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 8
If P is the point (1, 5), then
CP = \(\sqrt{(1-1)^{2}+(5+1)^{2}}\)
= 6
The farthest distance of point P(1, 5) from the circle = PB
= CP + BC
= 6 + 4
= 10 units

OR

Let A be the vertex and S be the focus of the required parabola and these lie on the X-axis. Since, distances of A and S from the origin are a and a’, respectively.
So, the coordinates of A are (a, 0) and coordinates of S are (a’, 0).
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 9
Therefore, AS = a’ -a = AZ
Also, ZM is the directrix of the parabola.
∴ OZ = OA – AZ
= a – (a’ – a) = 2a – a’
Now, consider any point P(x, y) on the parabola and draw PM perpendicular from P on the directrix and PN perpendicular on the X-axis, from figure, it is clear that
PM = NZ
= ON – OZ
= x – (2a – a’)
= x – 2a + a’
Therefore, by definition of parabola, we have
SP = PM
⇒ \(\sqrt{\left(x-a^{\prime}\right)^{2}+(y-0)^{2}}\) = x – 2a + a’
⇒ (x – a’)2 + y2 = (x – 2a + a’)2
⇒ y2 = (x – 2a + a’)2 – (x – a’)2
⇒ y2 = [(x – 2a + a’) – (x – a’)]
[(x – 2a + a’) + (x – a’)]
⇒ y2 = (2a’ – 2a) (2x – 2a)
⇒ y2 = 4(a – a’)(x – a)
Hence Proved.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Question 9.
In an automobile factory, certain parts are to be fixed into the chassis in a section before it moves into another section. On a given day, one of the three people A, B and C carries out this task. A has 45% chance, B has 35% chance and C has 20% chance of doing the task. The probability that A, B and C will take more than the allotted time is \(\frac{1}{6}\), \(\frac{1}{10}\) and \(\frac{1}{20}\), respectively. If it is found that the time taken is more than the allotted time, what is the probability that A has done the task?
Answer:
Let E1 E2 and E3 denote the events of carrying out the task A, B and C, respectively.
Let H denote the event of taking more time. Then, P(E1) = 0.45, P(E2) = 0.35 and P(E3) = 0.20
Also,
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 10

Commonly Made Error:
Many students used Bayes’ Theorem correctly but took the probabilities of A, B, C as 45,35, and 20, instead of percentages. Some candidates did not implement the theorem correctly.

Answering Tip:
Be clear that probabilities are ratios and not numbers. Learn conditional probability concept which helps the student to understand the advance concept of Bayes’ Theorem.

Question 10.
The difference between simple and compound interests compounded annually on a certain sum of money for 2 years at 4% per annum is ₹1. Find the sum.
Answer:
Let the sum be ₹x. Then,
Compound Interest = An – P
⇒ I = P(1 + i)n – P
Here, P = x, i = 4% = \(\frac{4}{100}\) = 0.04, n =2
Compound Interest = x(1 + 0.04)2 – x
= \(\frac{676}{625}\)x – x
= \(\frac{51 x}{625}\)
Now, simple interest,
I =Pit
= x × 0.04 × 2
= \(\frac{2 x}{25}\)
Since, given difference = ₹ 1
i.e., \(\frac{51 x}{625}-\frac{2 x}{25}\) = 1
⇒ x = 625

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Section – C [4 Marks each]

Question 11.
How many words, with or without meaning can be made from the letters of the word ‘MONDAY’, assuming that no letter is repeated, if
(i) 4 letters are used at a time.
Answer:
In the word MONDAY, all letters are different.
(i) Out of 6 different letters, 4 letters can be selected in 6C4 ways.
∴ Required number of words
= 6C4 × 4! = 6P4
= \(\frac{6 !}{(6-4) !}\) = \(\frac{6 !}{2 !}\) = \(\frac{6 \times 5 \times 4 \times 3 \times 2 !}{2 !}\) = 360

(ii) all letters are used at a time.
Answer:
The word ‘MONDAY’ has 6 different letters.
Number of ways taking 6 letters at a time = 6P6
∴ Required number of words = 6P6
= \(\frac{6 !}{(6-6) !}\) = \(\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{0 !}\) = 720

(iii) all letters are used but first letter is a vowel.
Answer:
First, we will fix the vowel.
In the word MONDAY, there are two vowels O and A.
∴ First letter can be chosen by 2 ways.
Number of ways taking 5 different letters from remaining 5 letters = 5P5
∴ Required number of words
= 5P5 = \(\frac{5 !}{(5-5) !}\) = \(\frac{5 !}{0 !}\)
= 5 × 4 × 3 × 2 × 1 = 120
Hence, total number of ways = 2 × 120 = 240

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Question 12.
Manjeet, Dilawar and Ravi live in the same city. Manjeet sells an article to Dilawar for ?60,000 and Dilawar sells the same article to Ravi at a profit of ₹8,000. If all the transactions are under GST system at the rate of 12%, find:
(i) The state-government tax (SGST) paid by Dilawar.
(ii) The total tax received by CGST.
(iii) How much does Ravi pay for the article?
OR
OR
X, who is a person with disability, submits the following information.

Particulars Amount (₹)
(i) Salary (per annum) 3,05,000
(ii) Rent received (per month) 2,000
(iii) Dividend From Co-operative Society 3,000
(iv) Interest on Bank Deposits 7,000
(v) Interest on Government securities 5,000
(vi) Winnings from Lotteries 2,000
(vii) NSC (VIII Issue) purchased during the year 15,000
(viii) Deposit under PPF Scheme 35,000

He earned a long-term capital gain of ₹78,000 on sale of shares during the year. Compute
(a) the taxable income; (b) the tax payable for the assessment year 2020-21.
Answer:
Given the rate of GST = 12%
∴ CGST rate = SGST rate = 6%

(i) Tax paid by Dilawar to SGST = SGST received by Dilawar on selling price – SGST paid by him on purchasing
= \(\frac{6}{100}\) × (60,000 + 8,000) – \(\frac{6}{100}\) x 60,000 % 100 100
= \(\frac{6}{100}\) × 68,000 – \(\frac{6}{100}\) x 60,000
= \(\frac{6}{100}\) × (68,000 – 60,000)
= \(\frac{6}{100}\) × 8,000
= ₹ 480

(ii) Total tax received by CGST = CGST paid by Manjeet + CGST paid by Dilawar Vi
= \(\frac{6}{100}\) × 60,000 + ₹480 100
= ₹(3600 + 480)
= ₹4080

(iii) The amount, Ravi paid for the article
= Cost price of the article for Ravi with GST
= ₹ \(\left(68000+\frac{12}{100} \times 68000\right)\)
= ₹ (68000 + 8160)
= ₹ 76160

OR

(a) Computation of Total Income
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 11

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 12
Note: Income from winning of lotteries cannot be shifted to other income to claim full exemption of ₹ 2,50,000.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

Question 13.
An air force plane is ascending vertically at the rate of 100 km/hr. If the radius of the earth is r km, how fast the area of the earth, visible from the plane, increasing at 3 minutes after it started ascending? Given that the visible area A at height h is given by A = 2πr2\(\frac{h}{r+h}\).
Answer:
It is given that the plane is ascending vertically at constant rate of 100 km/hr.
∴ \(\frac{d h}{d t}\) = 100 km/hr.
⇒ Height of the plane after 3 minutes = 100 × \(\frac{3}{60}\) = 5 km [Using h = vt]
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 13
We have to find when t = 3 minutes and at t = 3, we have h = 5 km.
∴ At t = 3,
\(\frac{d A}{d t}=\frac{200 \pi r^{3}}{(r+5)^{2}}\)

Question 14.
Dakshin Haryana Bijli Vitran Nigam, also known as DHBVN is an Indian state-owned power distribution utility company. It is owned by Government of Haryana and its headquarter is located in Hisar city of Haryana. It is responsible for distribution of power in 12 districts of Haryana.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 14
Recently, it revised the tariff rates of electricity for both the industrial and domestic units as follows:
For industrial units:

Unit slab Rate per unit (in ₹) Fixed Charge (in ₹)
1-300 7.50 330
301-500 8.40 390
501 and above 8.75 450

For domestic units:

Unit slab Rate per unit (in ) Fixed Charge (in )
1-150 5.50 110
151-300 6.00 125
301-500 6.50 187
501 and above 7.00 221

Electricity duty will be 5% (for both industrial and domestic units).
Based on the information given above, solve the following problems:
(a) Sumit owns a shoe factory and the monthly consumption of electricity units are 550, calculate the electricity bill. (2)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 15
Thus, final bill amount is ₹ 5058.38.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions

(b) Ranjana is a housewife and her monthly consumption of electricity units are 275, calculate the electricity bill. (2)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with solutions 16
Thus, final bill amount is ₹ 1785.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice

Students can access the CBSE Sample Papers for Class 11 Applied Mathematics with Solutions and marking scheme Term 2 Set 5 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice

Time : 2 Hours
Maximum Marks : 40

General Instructions:

  • The question paper is divided into 3 sections -A, B and C.
  • Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
  • Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
  • Section C comprises of 4 questions. It contains one case study-based question. Internal choice has been provided in one question.

Section – A [2 Marks each]

Question 1.
An edge of a variable cube is increasing at the rate of 10 cm/sec. How fast the volume of the cube is increasing when the edge is 5 cm long ?
OR
If (x2 + y2)2 = xy, find \(\frac{d y}{d x}\).

Question 2.
A product is sold from Kota (Rajasthan) to Gwalior (M.E) for ₹ 8,000 and then from Gwalior to Indore (M.P). If the rate of tax under GST system is 18% and the profit made by the dealer in Gwalior is ₹ 3,000, find net GST payable by the dealer in Gwalior.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice

Question 3.
₹16000 invested at 10% p.a. compounded semi-annually amounts to ₹18522. Find the time period of investment.
OR
Mr. Kohli, a citizen of India, is an export manager of Arjun Overseas Limited, an Indian Company, since 1.5.2014. He has been regularly going to U.S.A. for export promotion. He spent the following days in U.S.A. for the last five years:

Previous year ended No. of days spent in U.S.A.
31.3.2015 317 days
31.3.2016 150 days
31.3.2017 271 days
31.3.2018 311 days
31.3.2019 294 days

Determine his residential status for assessment year 2019-20 assuming that prior to 1.5.2014 he had never travelled abroad.

Question 4.
A die is rolled. If E = {1, 3, 5}, F = {2, 3} and G = {2, 3,4, 5}, find (i) P[(E ∪ F)/G], (ii) P[(E ∩ F)/G]

Question 5.
If a vertex of a triangle is (1, 1) and the mid-points of two sides through this vertex are (-1, 2) and (3, 2). Find the centroid of the triangle.

Question 6.
If nP4: nP2 = 12, find n.

Section – B [3 Marks each]

Question 7.
A card is drawn at random from a well-shuffled pack of 52 cards. Find the probability that it is either a king or spade.

Question 8.
Find the area of the triangle formed by the lines joining the vertex of the parabola x2 = 12y to the ends of its latus rectum.
OR
In what ratio the line joining (-1,1) and (5, 7) is divided by the line x + y = 4 ?

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice

Question 9.
In a class of 60 students, 30 opted for NCC, 32 opted for NSS and 24 opted for both NCC and NSS. If one of these students is selected at random. Find the probability that
(i) The student opted for NCC or NSS.
(ii) The student has opted for neither NCC nor NSS.
(iii) The student has opted for NSS but not NCC.

Question 10.
(a) A man purchased a house valued at ₹300000. He paid ₹200000 at the time of purchased and agreed to pay the balance with the interest at 12% per annum compounded half yearly in 20 equal half yearly instalments. If first instalment is paid after six months from the date of purchase then find the amount of each instalment. [Given that (1.06)20 = 3.2071]
(b) A person invests ₹500 at the end of each year with a bank which pays interest at 10% p.a. compounded annually. Find the amount standing to his credit one year after he has made his yearly investment for the 12th time. [Given that (1.1)12 = 3.1348]

Section – C [4 Marks each]

Question 11.
From 6 different novels and 3 different dictionaries, 4 novels and a dictionary is to be selected and arranged in a row on the shelf so that the dictionary is always in the middle. Then find the number of such arrangements.

Question 12.
(a) A sum of money doubles itself in 4 years compound interest. It will amount to 8 times itself at the same rate of interest in how many years?
(b) Compound interest on a sum of money in 2 years at 4% per annum is ₹ 2448. Find simple interest on the same sum of money at the same rate of interest for 2 years.
OR
Leela is an athlete who believes that her playing career will last 3 years.
(a) To prepared for future, she deposits ₹ 24,000 at the end of each year for 3 years in an account paying 6% compounded annually. How much will she have on deposit after 3 years ? Also, find the value of interest earned.
(b) Instead of investing ₹ 24,000 at the end of each year, suppose Leela deposits ₹ 80,000 at the end of each year for 3 years in an account paying 5% compounded annually. How much will she have on deposit after 3 years ? Also, find the value of interest earned.

Question 13.
The two equal sides of an isosceles triangle with fixed base b are decreasing at the rate of 3 cm/sec. How fast is the area decreasing when two equal sides are equal to the base ?

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice

Question 14.
Read the following text and answer the following questions on the basis of the same:
In XI standard, teacher was giving lecture on GST topic. Following points were discussed on this topic.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice 1

Goods and Services Tax (G.S.T.)
G.S.T. is known as the Goods and Services Tax. It is an indirect tax which has replaced many indirect taxes in India such as the excise duty, V.A.T., services tax, etc. The Goods and Services Tax Act was passed in the Parliament on 29th March 2017 and came into effect on 1st July 2017.

In other words, Goods and Services Tax (G.S.T.) is levied on the supply of goods and services. Goods and Services Tax Law in India is a comprehensive, multi-stage, destination-based tax that is levied on every value addition. G.S.T. is a single domestic indirect tax law for the entire country. In order to address the complex system in India, the Government introduced 4 types of G.S.T. which are given below.
(i) C.G.S.T. (Central Goods and Services Tax): Levied and collected by Central Government.
(ii) S.G.S.T. (State Goods and Services Tax): Levied and collected by State Governments/Union Territories with Legislatures.
(iii) U.T.G.S.T. (Union Territory Goods and Services Tax): Levied and collected by Union Territories without Legislatures, on intra-state supplies of taxable goods and/or services.
(iv) I.G.S.T. (Integrated Goods and Services Tax): Inter-state supplies of taxable goods and/or services are subject to Integrated Goods and Services Tax (I.G.S.T.). I.G.S.T. is the total sum of C.G.S.T. and S.G.S.T./U.T.G.S.T and is levied by Centre on all inter-state supplies.

  • Intra-state means: Supply within the same state.
    In case of intra-state sale of goods/services, or both If G.S.T. rate is 18%, then
    C.G.S.T. = 9% of sales price S.G.S.T. = 9%of sales price I.G.S.T. = 0
  • Inter-state means: Supply from one state to another state.
    In case of inter-state of goods or services or both
    If GST rate is 18%, then IGST = 18% of Sale price
  • Discount is never allowed on amount including GST.
    Based on the information given above, solve the given questions:

(a) A dealer in Bhopal (M.E) supplies products and services worth ₹ 5,000 to another dealer in Kanpur (U.E). If the rate of G.S.T. is 28%, find the tax levied under C.G.S.T.
Also, A dealer in Agra (U.E), say Ramesh, supplies products and services worth ₹ 10,000 to Suresh a person in Lucknow (U.E). If the rate of GST is 28% find the S.G.S.T. (2)
(b) Let Amar, Ram and Rahim be three dealers belonging to different states. Dealer Amar sells some products/services to dealer Ram for ₹ 1000 dealer Rahim at a profit of ₹ 300. Calculate the tax liability of Ram, if the rate of G.S.T. is 12%. (2)

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice

Students can access the CBSE Sample Papers for Class 11 Applied Mathematics with Solutions and marking scheme Term 2 Set 4 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice

Time : 2 Hours
Maximum Marks : 40

General Instructions:

  • The question paper is divided into 3 sections -A, B and C.
  • Section A comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
  • Section B comprises of 4 questions of 3 marks each. Internal choice has been provided in one question.
  • Section C comprises of 4 questions. It contains one case study-based question. Internal choice has been provided in one question.

Section – A [2 Marks each]

Question 1.
The radius r of a right circular cone is decreasing at the rate of 3 cm/min and the height h is increasing at the rate of 2 cm/min. When r = 9 cm and h = 6 cm, find the rate of change of its volume.
OR
Find the value of k for which the function.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice 1

Question 2.
A dealer is in Jhansi buys some articles worth ? 8,000. If the rate of GST is 18%, find how much will the dealer pay for the articles bought.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice

Question 3.
₹ 1000 is invested every 3-months at 4.8% p.a. compounded quarterly. How much will the annuity be worth in 2 years ? [Given that (1.012)8 = 1.1001]
OR
What is the monthly equivalent interest rate to a quarterly interest 2.5% ? [Given that (1.025)1/3 = 1.008265]

Question 4.
If P(E) = \(\frac{7}{13}\) P(F) = \(\frac{9}{13}\) and P(E ∩ f)= \(\frac{4}{13}\) then evaluate : (i) P\(\left(\frac{\bar{E}}{F}\right)\) and (ii)P\(\left(\frac{\bar{E}}{\bar{F}}\right)\)

Question 5.
Determine ∠B of the triangle with vertices A(-2, 1), B(2, 3) and C(-2, -4).

Question 6.
Determine the number of 5 cards combinations out of a deck of 52 cards if there is exactly one ace in each combination.

Section – B (3 marks each)

Question 7.
An unbiased die is thrown twice, let the event A be ‘odd number on first throw’ and B the event ‘odd number on the second throw’. Check independence of the events.

Question 8.
Find the equation of the circle drawn on a diagonal of the rectangle as its diameter whose sides are the lines x = 4, x = – 5, y = 5 and y = – 1.
OR
An equilateral triangle is inscribed in the parabola y2 = 4ax, where one vertex is at the vertex of the parabola, Find the side of the triangle.

Question 9.
Two dice are thrown together. What is the probability that sum of the numbers on the two faces is neither divisible by 3 nor 4 ?

Question 10.
(a) In what time will ₹85000 amount to ₹157675 at 4.5% p.a. ?
(b) A sum of ₹46875 was lent out at simple interest and at the end of 1 year 8 months the total amount was ₹50,000. Find the rate of interest percent per annum.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice

Section – c [4 Marks each]

Question 11.
In how many ways three girls and nine boys can be seated in two vans, each having numbered seats, 3 in the front and 4 at the back ? How many seating arrangements are possible if 3 girls should sit together in a back row on adjacent seats ?

Question 12.
Compute the taxable value of the perquisite in respect of medical facilities availed of by X from his employer in the following situations:
(a) The employer reimburses the following medical expenses:
(i) Treatment of X by his family physician ₹ 8,400
(ii) Treatment of Mrs. X in a private nursing home ₹ 7,200
(iii) Treatment of X’s mother (dependent upon him) ₹ 2,400 by a private doctor
(iv) Treatment of X’s brother (not dependent upon him) ₹ 800
(v) Treatment of X’s grandfather (dependent upon him) ₹ 3,000
(b) The employer reimburses an insurance premium of ₹ 6,000 paid by X under a health insurance scheme on the life of X and his wife.
(c) The employer maintains a hospital for the employees where they and their family members are provided free treatment. The expenses on treatment of X and his family members during the previous year 2019-20 were as under:

Particulars Amount (₹)
(i) Treatment of X’s major son (dependent upon him) 4,400
(ii) Treatment of X 10,400
(iii) Treatment of X’s uncle 9,200
(iv) Treatment of Mrs. X 16,000
(v) Treatment of X’s widowed sister (dependent upon him) 8,200
(vi) Treatment of X’s handicapped nephew 5,000

(d) Expenses on cancer treatment of married daughter of X at Tata Memorial Hospital, Mumbai paid by the employer ₹ 1,00,000 and reimbursement of expenses for medical treatment of himself amounting to ₹ 40,000.
(e) The following expenses on treatment of X’s major son outside India were paid by the employer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice 2
Assume that the other income of X is (a) ₹ 1,20,000 (b) ₹ 1,80,000. (including income under the head salary excluding the above taxable perquisite)
OR
A manufacturer in a firm manufactures a machine and marks it at ₹ 80,000. He sells the machine to a wholesaler (in Gorakhpur) at a discount of 20%. The wholesaler sells the machine to a dealer (in Mathura) at a discount of 15% on the marked price. If the rate of GST 28%, find tax paid by the whole seller to Central Government.

CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice

Question 13.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice 3

Question 14.
Read the following text and answer the following questions on the basis of the same:
Water Bill: The amount one must pay to use water and sewage services each month. Normally, water and sewage is provided by a municipality, but this is not always the case. Water bills are usually based upon one’s usage, such that those who use more water are charged more.

The water bill invoice: is provided by a company that supplies water on a residential and/or commercial basis. A customer that receives their water supply from such a company will receive a water bill invoice complete with the charges for the company’s services and the amount owed for said services. From time to time, people forget to pay their utility bills, so the customer might see a summary of past due charges that must be paid on the next billing period. Payments not received on time could result in interest charges or additional fees. The water bill invoice will show the total amount due and the date upon which payment must be received.
There will be generally following three components of water / sewerage bill:

Fixed Water Charge: With a fixed water charge, the consumer pays a monthly water bill, which is the same independently of the volume consumed. In absence of a water metering system, a fixed water charge is the only possible tariff structure.

Sewerage maintenance charge: This charge is levied for the maintenance of sewerage system and is charged according to volumetric consumption of water.

Service charge: Service charge under the domestic category which is presently linked with the built up area of the property, that is, whether the covered area is more than or less than 200 sq. meters and this has been now delinked from the area concept. Instead, under the new tariff it will be linked with the consumption slab for all categories of consumers including the domestic category.
Based on the information given above, solve the following questions:
(a) What do you understand by is water tariff and fixed water charge? (2)
(b) For an industrial connection monthly consumption of water is 40 ki, calculate the Water bill. (2)
Tarrif rates can be considered as the table given below:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 4 for Practice 4

Quantifiers Exercise for Class 5 CBSE with Answers

Determiners Exercises For Class 5 Cbse With AnswersThis grammar section explains English Grammar in a clear and simple way. There are example sentences to show how the language is used. https://ncertmcq.com/quantifiers-exercise-for-class-5/

Quantifiers Exercise for Class 5 CBSE with Answers PDF

Few A Few Little A Little Exercise
Fundamentals

  • Few, a few, the few, little, a little, the little are quantifiers.
  • ‘Few’ is a countable noun.
  • ‘Little’ is an uncountable noun ‘Few’ means almost none.
  • ‘A few’ means ‘some, but not many’.
  • ‘The few’ means ‘not many, but all of that’.
  • ‘Little’ means no amount.
  • ‘A little’ means ‘some but not much’.
  • ‘The little’ means ‘not much, but all of that.

Presentation
I have written a few story books. In my stories you find the little about fantasy and mystery.
Quantifiers Exercises With Answers

Few story books are selected for school library and a few are selected for Inter school story writing competition.
Quantifiers Worksheet For Grade 5

But I won an award for the story which talked a little about mystery and little about fantasy. I observed that people enjoy to read the little mystery at the climax of the story.
Quantifiers Exercises With Answers For Grade 6

A. Answer the following questions as per the story.

1. How many story books narrator has written?
2. What did her story books talk about?
3. For which story book narrator won the award?

B. Fill in the blanks with ‘a few’ or ‘a little’.
1. He has ________ plans.
2. She has got ________ milk.
3. He drank ________ apple juice.
4. Amit has ________ friends.
5. We saw ________ people at the restaurant.
6. I bought ________ newspapers.
7. There is ________ petrol in his car.
8. There are ________ bottles on the table.
9. There are ________ hotels in this town.
10. I want to eat ________ bread.

Quantifiers Exercises with Answers for Grade 5 CBSE PDF

A. Fill in the blanks with a little’ or ‘the little’.

1. ________ precaution is necessary in handling an electronic device.
2. We have got ________ bacon and a few eggs.
3. Could I try ________ cold drink?
4. Give the plants ________ water everyday.
5. ________ influence that he has, he uses to his advantage.
6. ________ grain we had was damaged in the rain.

B. Fill in the blanks with ‘a few’ or ‘the few’.

1. His ideas are difficult, but ________ people understand them.
2. ________ public gardens that we have are not properly maintained.
3. ________ days’ rest is all that I need.
4. I can’t express my gratitude in ________ words.
5. He spent ________ days that were left to him in solitude and meditation.
6. ________ points that he made were quite significant.
7. ________ Americans have their offices in Bangalore.
8. ________ trinkets she had were not worth much.
9. ________ novels she has written are best sellers.
10. When I met him ________ years later, he looked old and haggard.

C. Fill in the blanks with ‘little’, ‘a little’ or ‘the little’.

1. There is ________ hope of his recovery.
2. There is ________ milk left in the pot.
3. ________ milk he had has turned sour.
4. A poor man has ________ money to waste.
5. There is ________ work left to complete.
6. ________ work left yesterday has been completed.
7. There is ________ time now left.

D. Fill in the blanks with ‘few’, ‘a few’ or ‘the few’.

1. There are ________ friends who remain faithful in hard times.
2. He has only ________ friends.
3. ________ friends he has are really faithful to him.
4. A good man has ________ enemies.
5. ________ passengers were injured in the accident.
6. ________ passengers injured in the accident have been given first-aid.
7. ________ books would serve my purpose.
8. ________ books I had, have all gone out of course.

CBSE Sample Papers for Class 11 Maths Term 2 Set 5 for Practice

Students can access the CBSE Sample Papers for Class 11 Maths with Solutions and marking scheme Term 2 Set 5 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Maths Term 2 Set 5 for Practice

Time: 2 Hours
Maximum Marks:40

General Instructions:

  • This question paper contains three sections A, B and C. Each part is compulsory.
  • Section -A has 6 short answer type (SA1) questions of 2 marks each.
  • Section -B has 4 short answer type (SA2) questions of 3 marks each.
  • Section -C has 4 long answer type questions (LA) of 4 marls each.
  • There is an internal choice in some of the questions.
  • Q14 is a case-based problem having 2 sub parts of 2 marks each.

Section – A

Question 1.
Prove that:
tan 13x = tan 4x + tan 9x + tan 4x ∙ tan 9x ∙ tan 13x (2)

Question 2.
In how many of distinct permutations of the letters in MISSISSIPPI do the four I’s not come together ? (2)
OR
In how many ways can the letters of the word PERMUTATIONS be arranged if the:
(i) Words start with P and end with S,
(ii) Vowels are all together

Question 3.
5(2x – 7) – 3(2x + 3) ≤ 0, 2x + 19 ≤ 6x + 47. (2)

CBSE Sample Papers for Class 11 Maths Term 2 Set 5 for Practice

Question 4.
Find the centre and radius of the circle whose equation is
3x2 + 3y2 + 6x – 4y -1 = 0 (2)

Question 5.
Find the derivatives of x-3(5 + 3x)
OR
Find the derivatives of x5(3 – 6x-9) (2)

Question 6.
Consider the experiment of rolling a die. Let A be the event ‘getting a prime number’ and B be the event ‘getting an odd number’. Write the sets representing the events.
(i) A and B,
(ii) A or B

Section – B

Question 7.
Find the equation of a circle of radius 5 which is touching another circle x2 + y2 – 2x – 4y – 20 = 0 at (5, 5).
OR
Find the equation of the set of all points wherein the sum of whose distances from the points (3, 0), (9, 0) is 12. (3)

Question 8.
Find the solution for given inequalities 2x + y ≥ 6, 3x + 4y ≤ 12. (3)

Question 9.
Proved that:
\(\frac{(\sin 7 x+\sin 5 x)+(\sin 9 x+\sin 3 x)}{(\cos 7 x+\cos 5 x)+(\cos 9 x+\cos 3 x)}\) = tan 6x

Question 10.
Prove that:
cos \(\left(\frac{3 \pi}{4}+x\right)\) – cos \(\left(\frac{3 \pi}{4}-x\right)\) = – √2 sin x (3)

Section – C

Question 11.
If a convex polygon has 44 diagonals, then find the number of its sides.
OR
A committee of 6 is to be chosen from 10 men and 7 women, so as to contain at least 3 men and 2 women. In how many different ways can this be done, if two particular women refuse to serve on the same committee? (4)

CBSE Sample Papers for Class 11 Maths Term 2 Set 5 for Practice

Question 12.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The Roadway which is horizontal and 100 m long is supported by vertical wires attached to the Cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. (4)

Question 13.
Find the derivative of the \(\frac{\sec x-1}{\sec x+1}\) function. (4)

Case-Based/Data Based

Question 14.
Two customer Shyam and Ekta are visiting a particular shop in the same week (Tuesday to Saturday). Each is equally likely to visit the shop on any day as on another day.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 5 for Practice
Based on the given information, answer the following questions
(i) What are the total number of favourable outcomes and what is the probability that both will visit the shop on same day ? (2)
(ii) What are the total number of favourable outcomes if both will
visit the shop on consecutive days and what is the probability that both will visit the shop on different days ? (2)

CBSE Sample Papers for Class 11 Maths Term 2 Set 3 for Practice

Students can access the CBSE Sample Papers for Class 11 Maths with Solutions and marking scheme Term 2 Set 3 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Maths Term 2 Set 3 for Practice

Time: 2 Hours
Maximum Marks:40

General Instructions:

  • This question paper contains three sections A, B and C. Each part is compulsory.
  • Section -A has 6 short answer type (SA1) questions of 2 marks each.
  • Section -B has 4 short answer type (SA2) questions of 3 marks each.
  • Section -C has 4 long answer type questions (LA) of 4 marls each.
  • There is an internal choice in some of the questions.
  • Q14 is a case-based problem having 2 sub parts of 2 marks each.

Section – A

Question 1.
Write the radian measure of 5°37’30”. (2)

Question 2.
Solve \(\frac{1}{x-2}\) < 0, x ∈ R. (2)
OR
Solve, 0 < \(\frac{-x}{3}\) < 1, x ∈ R.

CBSE Sample Papers for Class 11 Maths Term 2 Set 3 for Practice

Question 3.
A polygon has 35 diagonals. Find the number of its sides. (2)

Question 4.
If the distance between the points (a, 2,1) and (1, -1, 1) is 5 units, then find the value(s) of a (2)

Question 5.
Find f'(x), if f(x) = (x – 2)2 (2x – 3). (2)

Question 6.
4 cards are drawn from a well-shuffled deck of 52 cards. What is the probability of obtaining 3 diamonds and one spade ? (2)

Section – B

Question 7.
Show that, if x2 + y2 = 1, then the point (x, y, \(\sqrt{1-x^{2}-y^{2}}\)) is at a distance 1 unit from the origin.
OR
Show that the point A( 1, -1, 3), B(2, -4, 5) and C(5, -13, 11) are collinear. (3)

Question 8.
A group consists of 4 girls and 7 boys. In how many ways can a team of 5 members be selected, if the
team has (3)
(i) no girls.
(ii) at least one boy and one girl.
(iii) at least three girls.
OSWAAL CBSE Sample Question Papers Term-ll, MATHEMATICS, Class-XI

Question 9.
Prove that: \(\frac{\cos x}{1-\sin x}\) = tan \(\left(\frac{\pi}{4}+\frac{x}{2}\right)\)
OR
Prove that:
sinx + sin 2x + sin 4x + sin 5x = 4cos \(\frac{x}{2}\) cos \(\frac{3x}{2}\) sin 3x (3)

Question 10.
If tan A = \(\frac{a}{a+1}\) and tan B = \(\frac{1}{2 a+1}\), then find the value of A + B. (3)

Section – C

Question 11.
Solve the following inequality graphically in two-dimensional plane:
x + y < 5 (4)

Question 12.
Find the equation of the hyperbola whose conjugate axis is 5 and distance between the foci is 13.
OR
Find the equation of the hyperbola passing through the point (2, 3) and having foci (0, ± √10). (4)

Question 13.
Find the derivative of the \(\frac{x}{\sin ^{n} x}\) function where n is the non zero constant (4)

CBSE Sample Papers for Class 11 Maths Term 2 Set 3 for Practice

Case-Based/Data Based

Question 14.
In a game, the entry fee is ₹ 5. The game consists of a tossing a coin 3 times, If one or two heads show, Sweta gets her entry fee back. If she throws 3 heads, she receives double entry fees. Otherwise she will lose. For tossing a coin three times, find the following:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 3 for Practice 1
Based on above information, answer the following question.
(i) Find the Probability that she loses the entry fee.
(ii) Find the Probability that she just gets her entry fee and also find the Probability that she gets double entry fee.

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Students can access the CBSE Sample Papers for Class 11 Maths with Solutions and marking scheme Term 2 Set 1 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Time: 2 Hours
Maximum Marks:40

General Instructions:

  • This question paper contains three sections A, B and C. Each part is compulsory.
  • Section -A has 6 short answer type (SA1) questions of 2 marks each.
  • Section -B has 4 short answer type (SA2) questions of 3 marks each.
  • Section -C has 4 long answer type questions (LA) of 4 marls each.
  • There is an internal choice in some of the questions.
  • Q14 is a case-based problem having 2 sub parts of 2 marks each.

Section – A

Question 1.
If \(\frac{1}{6 !}+\frac{1}{8 !}=\frac{x}{9 !}\), find x
OR
If nP4 : nP2 = 12 : 1, find n (2)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 1
57 = \(\frac{x}{9}\)
x = 57 × 9 = 513
x = 513

OR

nP4 : nP2 = 12 : 1
\(\frac{n !}{(n-4) !}: \frac{n !}{(n-2) !}\) = 12 : 1
\(\frac{(n-2) !}{(n-4) !}\) = \(\frac{12}{1}\)
\(\frac{(n-2)(n-3)(n-4) !}{(n-4) !}\) = \(\frac{12}{1}\)
(n – 2)(n – 3) = 12
n2 – 5n – 6 = 0
(n – 6)(n + 1) = 0
If n + 1 = 0
∴ n = – 1 is not possible (n ∈ N)
If n – 6 = 0
∴ n = 6

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Question 2.
Write the eccentricity of the hyperbola, 9y2 – 4x2 = 36 (2)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 2

Question 3.
Differentiate: \(\frac{3 x+4}{5 x^{2}-7 x+9}\) (2)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 3

Question 4.
If sin A = \(\frac{3}{5}\) and \(\frac{\pi}{2}\) < A < π. Find cos A, tan 2A. (2)
Answer:
Since, sin A > 0 and \(\frac{\pi}{2}\) < A < π, then A is in II Quadrant.
sin A = \(\frac{3}{5}\) ⇒ sin2 A = \(\frac{9}{25}\)
∴ cos2 A = 1 – \(\frac{9}{25}\) = \(\frac{16}{25}\)
⇒ cos A = \(\frac{-4}{5}\) [in II Quadrant]
Now, tan A = \(\frac{\sin A}{\cos A}\) = \(\frac{3 / 5}{-4 / 5}\) = – \(\frac{3}{4}\)
and tan 2 A = \(\frac{2 \tan A}{1-\tan ^{2} A}\) = \(\frac{2(-3 / 4)}{1-(-3 / 4)^{2}}\) = \(\frac{-6 / 4}{7 / 16}\) = – \(\frac{24}{7}\)

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Question 5.
Solve for x : \(\frac{2 x-3}{4}\) + 9 ≥ 3 + \(\frac{4 x}{3}\), x ∈ R (2)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 4

Question 6.
If the letters of the word ‘ALGORITHM’ are arranged at random in a row what is the probability the letter ‘GOR’ must remain together as a unit ?
OR
A card is selected from a pack of 52 cards. (2)
(i) What is the sample space?
(ii) Calculate the probability that card is an ace of spade?
Answer:
Number of letters in the word ‘ALGORITHM’ is 9
If ‘GOR’ remain together, then considered it as 1 number
∴ Number of letters = 6 + 1 = 7
Number of words, if ‘GOR’ remain together = 7!
Total number of words from the letters of the word ‘ALGORITHM’ = 9!
∴ Required probability
= \(\frac{7 !}{9 !}=\frac{7 !}{9 \times 8 \times 7 !}=\frac{1}{9 \times 8}=\frac{1}{72}\)

OR

(i) Sample space i.e. n(S) = 52
(ii) Number of ace of spade in a pack = 1
i.e. n(E) = 1
Probability that card is an ace = \(\frac{n(E)}{n(S)}=\frac{1}{52}\)

Section – B

Question 7.
If tan θ + sin θ = m and tan θ – sin θ = n, then prove that: m2 – n2 = 4sinθ.tan θ (3)
Answer:
Given, tan θ + sin θ = m and tan θ – sin θ = n,
To prove, m2 – n2 = 4 sin θ tan θ
L.H.S. = m2 – n2
= (m + n) (m – n)
= [(tan θ + sin θ) + (tan θ – sin θ)]. [(tan θ + sin θ) – (tan θ – sin θ)]
= (2 tan θ) (2 sin θ)
= 4 sin θ tan θ
= R.H.S

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Question 8.
Find the co-ordinate of the vertices, foci eccentricity and length of latus rectum of the hyperbola
\(\frac{x^{2}}{25}-\frac{y^{2}}{4}\) = 1
OR
Find the distance between the directrices of the hyperbola x2 – y2 = 8. (3)
Answer:
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 5

Commonly Made Error: Many students get confused between the equation of ellipse and hyperbola. They write equation of ellipse when asked of hyperbola.

Answering Tip: Learn equation of hyperbola and terms related to it. Understand the equation and its properties with the help of its diagram which will help you to remember long.

OR

Given equation of the parabola is
x2 – y2 = 8.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 6

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Question 9.
If tan (A + B) = p, tan (A – B) = q, then show that: tan 2A = \(\frac{p+q}{1-p q}\) (3)
Answer:
Given, tan (A + B) = p, and tan (A-B) – q,
L.H.S. = tan2A = tan (A + B + A – B)
= tan [(A + B) + (A – B)]
= \(\frac{\tan (A+B)+\tan (A-B)}{1-\tan (A+B) \cdot \tan (A-B)}\)
= \(\frac{p+q}{1-p q}\)
= R.H.S.
Hence proved.

Question 10.
From a group of 7 boys and 5 girls, a team consisting of 4 boys and 2 girls is to be made. In how many different ways it can be done? (3)
Answer:
From a group of 7 boys, 4 boys can be choose in 7C4 ways.
From a group of 5 girls, 2 girls can be choose in 5C2 ways.
∴ Required number of ways to choose a team consisting 4 boys and 2 girls are
= 7C4 × 7C4
= \(\frac{7 !}{3 ! 4 !} \times \frac{5 !}{3 ! 2 !}\)
= \(\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} \times \frac{5 \cdot 4}{2 \cdot 1}c\)
= 35 × 10
= 350

Section – C

Question 11.
Find the derivative of the functions \(\frac{a}{x^{4}}-\frac{b}{x^{2}}\) + cos x where a and b are non-zero constant. (4)
Answer:
Let f(x) = \(\frac{a}{x^{4}}-\frac{b}{x^{2}}\) + cos x
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 7

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Question 12.
Find the equation of a circle passing through the point (7, 3) having radius 3 units and whose centre lies on the line y = x – 1.
OR
Find the equation of a circle whose centre is (3, – 1) and which cuts off a chord length 6 units on the line 2x – 5y + 18 = 0. (4)
Answer:
Let equation of circ1e be
(x – h)2 + (y – k)2 = r2
⇒ (x – h)2 + (y – k)2 = 9 …(i)
Now, the circ1e passes through the point (7, 3)
∴ (7 – h)2 + (3 – k)3 = 9 …(ii)
⇒ 49 – 14h + h2 + 9 – 6k + k2 = 9
⇒ h2 + k2 – 14h – 6k + 49 = 0 …(iii)
Now, y = x – 1, k = h – 1
On putting k = h – 1 in Eq. (iii), we get
h2 + (h – 1)2 – 14h – 6(h -1) + 49 = 0
⇒ h2 + h2 – 2h + 1 – 14h – 6h + 6 + 49 = 0
⇒ 2h2 – 22h + 56 = 0
⇒ h2 – 11h + 28 = 0
⇒ h2 – 7h – 4h + 28 = 0
⇒ h(h – 7) – 4(h – 7) = 0
⇒ (h – 7)(h – 4) = 0
∴ h = 4, 7
When h = 7 then k = 7 – 1 = 6
∴ Centre (7, 6)
When h = 4 then h = 3
∴ Centre = (4, 3)
So, the equation of circ1e when centre (7, 6), is
(x – 7)2 +(y – 6)2 = 9
⇒ x2 – 14x + 49 + y2 – 12y + 36 = 9
⇒ x2 + y2 – 14x – 12y + 76 = 0
when centre (4,3), then the equation of circle is,
(x – 4)2 + (y – 3)2 = 9
⇒ x2 – 8x + 16 + y2 – 6y + 9 = 9
⇒ x2 + y2 – 8x – 6y + 16 = 0

OR

Given, centre of the circle is (3, -1),
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 8
Now, OM = \(\left|\frac{6+5+18}{\sqrt{4+25}}\right|\) = \(\frac{29}{\sqrt{29}}\) = √29 units
In ∆OMB, OB2 = OM2 + AB2 [∵ AB = 6 ⇒ AM = MB = \(\frac{1}{2}\), AB = 3]
⇒ OB2 = 29 + 9
⇒ OB2 = 38 units
So, the radius of circle is √38 units
∴ Equation of the circle with radius
r = √38 units and centre (3, -1) is
⇒ (x – 3)2 + (y + 1)2 = 38
⇒ x2 – 6x + 9 + y2 + 2y + 1 = 38
x2 + y2 – 6x + 2y = 28
x2 + y2 – 6x + 2y – 28 = 0

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Question 13.
Solve the following system of inequalities graphically (4)
2x + y ≤ 24,
x + y ≥ 11,
2x + 5y ≤ 40, x, y ≥ 0.
Answer:
Inequality (x > 0) represents the region on the right of Y-axis and Y-axis itself. Inequality (y > 0) represents the region above X-axis and X-axis itself.
2x + y ≤ 24 …(i)
x + y ≥ 11 …(ii)
2x + 5y ≤ 40, x, y ≥ 0 …(iii)
We first draw the graph of lines
2x + y = 24, x + y = 11 and 2x + 5y = 40
Now, 2x + y = 24, passes through A(12, 0) and B(0, 24)
Again, x + y = 11, passes through C(11, 0) and D(0, 11)
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 9
Further 2x + 5y = 40, passes through E(20, 0) and F( 0,8)
Shaded area PQAC is the solution area.

Commonly Made Error: Many students get confused to find the common (Feasible) region. They must have proper knowledge on intercept form of equation and coordinate geometry. They should have know how to handle inequations.

Answering Tip: The points of the line are also included in the solution of the inequality and the graph of the inequality lies below or above the graph of the equation.

CBSE Sample Papers for Class 11 Maths Term 2 Set 1 with Solutions

Case-Based/Data Based

Question 14.
One of the four persons John, Rita, Aslam or Gurpreet will be promoted next month. Consequently the sample space consists of four elementary outcomes S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted}. You are told that the chances of John’s promotion is same as that of Gurpreet, Rita’s chances of promotion are twice as likely as Johns. Aslam’s chances are four times that of John.
CBSE Sample Papers for Class 11 Applied Mathematics Term 2 Set 1 with Solutions 10

Based on the given information, answer the following questions:
(i) What is the probability that John got promoted? (2)
(ii) If A = {John promoted or Gurpreet promoted}, Find P(A). (2)
Answer:
Let Event:
J = John promoted
R = Rita promoted
A = Aslam promoted
G = Gurpreet promoted
Given sample space, S = {John promoted, Rita promoted, Aslam promoted, Gurpreet promoted}
i.e., S = {J, R, A, G)
It is given that, chances of John’s promotion is same as that of Gurpreet.
P(J) = P(G)
Rita’s chances of promotion are twice as likely as John.
P(R) = 2P(J)
and Aslam’s chances of promotion are four times that of John.
P(A) = 4P(J)

(i) P(J) + P(R) + P(A) + P(G) = 1
⇒ P(J) + 2P(J) + 4P(J) + P(J) = 1
⇒ 8P(J) = 1
P(J) = P(John Promoted) = \(\frac{1}{8}\)

(ii) A = John promoted or Gurpreet promoted
∴ A = J ∪ G
P(A) = P(J ∪ G)
∴ P(A) = P(J) + P(G) – P(J ∩ G)
P(A) = \(\frac{1}{8}+\frac{1}{8}\) – 0 [∵ P(J ∩ G) = 0]
= \(\frac{1}{4}\)

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

Students can access the CBSE Sample Papers for Class 11 Computer Science with Solutions and marking scheme Term 2 Set 2 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

Time: 2 Hours
Maximum Marks: 35

General Instructions:

  • The question paper is divided into 3 sections -A, B and C
  • Section A, consists of 7 questions (1-7). Each question carries 2 marks.
  • Section B, consists of 3 questions (8-10). Each question carries 3 marks.
  • Section C, consists of 3 questions (11-13). Each question carries 4 marks.
  • Internal choices have been given for question numbers 7, 8 and 12.

Section – A [2 marks each]

Question 1.
Write output of the following code snippets. (2)
list1, list2 = [123, ‘xyz’], [456, ‘abc’]
list1. extend (list2)
print(list1)
print(listl. index (456))
list1. insert (3, ‘Hello’)
print(list1)
del listl [2]
print(list1)
Answer:
Output
[123, ‘xyz’, 456, ‘abc’]
2
[123, ‘xyz’, 456, ‘HelIo’, ‘abc’]
[123, ‘xyz’, ‘Hello’, ‘abc’]
>
extend( ) method adds the specified list elements (or any iterable) to the end of the current list.
insert( ) method inserts the specified value at the specified position.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

Question 2.
(a) Write the suitable method to add an element in the beginning of the list.
Answer:
insert (0, value)
Commonly Made Error:
Students do not count the index number from 0 for the first element.

Answering Tip:
While answering any of the question related to index numbers do remember that index for first number is always 0 and last number has index -1 for backward indexing.

(b) What are digital footprints? [1+1]
Answer:
The records and traces left behind by any individual’s online activities are his digital footprints Whatever one does online – visiting sites, online shopping, using social media accounts, etc. all create digital footprints.

Question 3.
Write a python program to calculate area of a triangle after obtaining its three sides (a, b, c) using [2]
Herons formula s = \(\frac{(a+b+c)}{2}\)
Area = \(\sqrt{s(s-a)(s-b)(s-c)}\)
Answer:
import math
a = float (input (“Enter first side of triangle :”))
b = float (input (“Enter second side :”))
c = float (input (“Enter third side :”))
s =(a + b + c)/2
area = math.sqrt (s * (s-a) * (s-b) * (s-c))
print (” Area of triangle is “, area)

Question 4.
Write ways each in which the following affects a computer system.
(a) VIRUS
Answer:
VIRUS
(a) A VIRUS infects system files thus making a system to behave unexpectedly.
(b) A VIRUS tends to slow down the system by executing itself in the background.

(b) Ransomware
Answer:
Ransomware sneaks into a system through e-mail attachments or wThen a user clicks some suspicious link. These then put the system resources on hostage and ask for paying ransom to some account to release these resources.

Question 5.
Find the output of the following questions based on given dictionary:
Employee-{‘NameYRakesh’, ‘Dept’: ‘Accountant’, ‘Salary’: 25000}
(i) Employee .keys ( )
Answer:
{‘Name’,’Dept’,’Salary’}

(ii) Employee .values ( )
Answer:
{‘Rakesh’, ‘Accountant’, 25000}

(iii) Employee [‘Age’] = 25
Answer:
{‘Name’: ‘Rakesh’, ‘Dept’: ‘Accountant’,’Salary’: 25000, ‘Age’: 25}

(iv) Employee .pop (‘Dept’)
Answer:
‘Accountant’

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

Question 6.
(i) How can we protect identity online?
Answer:
(a) Never list your full name, parent’s details, home address or telephone numbers online.
(b) Create a separate e-mail address that is used only with social media sites.
(c) Never share your location online.

(ii) What is IT Act? [1 + 1]
Answer:
The Government of India’s The Information Technology Act, 2000 (also known as IT Act), was amended in 2008, and provides guidelines to the user on the processing, storage and transmission of sensitive information.

Question 7.
Write a program to calculate and display the sum of all odd numbers in a list.
OR
What is math module? Name any four mathematical functions which are used in python. [2]
Answer:

size = int(input("Enter the size of the list: ")) 
sum = 0
int_list = [ ]
for i in range(size):
n = int(input("Enter element:")) 
int_list.append(n) 
for i in range(size):
if(int_list[i] % 2 != 0): 
sum + = int_list[i]
print("Sum of odd numbers : {} " (sum))

OR

In Python, math module is used to perform mathematical functions. Definitions of all mathematical functions are stored in math module. To perform mathematical functions one must import the math module. Various mathematical functions are as follows:
(i) sqrt( )
(ii) ceil( )
(iii) floor( )
(iv) fabs( )

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

Section – B [3 marks each]

Question 8.
Define E-waste. How can E- waste be reduced?
OR
How does eavesdropping leads a victim to give personal information?
Answer:
E-waste or Electronic waste includes electric or electronic gadgets and devices that are no longer in use. Hence, discarded computers, laptops, mobile phones, televisions, tablets, music systems, speakers, printers, scanners etc. constitute e-waste when they are near or end of their useful life. Globally, e-waste constitutes more than 5 per cent of the municipal solid waste. Therefore, it is very important that e-waste is disposed off in such a manner that it causes minimum damage to the environment and society.
OR
Eavesdropping activities do not affect normal operation of transmission and communication. Therefore, both the sender as well as the recipient is unaware of it. If there is any security breach in communication such as an email not being encrypted or without a digital signature it can easily be intercepted. Now the attacker defaces the normal email and deceives the recipient in believing it and give out personal or sensitive information. This type of interception is also known as Man-in-the Middle-attack.

Commonly Made Error:
Eavesdropping is thought to be an act of cyber bullying by most students.

Answering Tip:
You have to write only about eavesdropping and not about any other cybercrime.

Question 9.
(i) How do you add key value pair to an existing dictionary:
Answer:
Dictionary Name[Key] = Value

(ii) How can a list be updated? Explain with examples.
Answer:
To update a list, we can directly assign new value to it by using indices or append the elements at the end of the list using append ().

e.g., 1.
list1 = [4, 6, 7,8, 9] 
list1[3] = 11 
print (list1) 
output 
[4,6,7,11,9] 
e.g., 2.
Iist2 = [12,13,15,18] 
list2.append (19) 
print (list2) 
output
[12,13,15,18,19]
extend () method can be used to add a list of elements at the end of an existing list.
e.g., 3.
list3 = [105,107,109, 111]
11=[113,115,117] 
list3. extend(11) 
print (list3) 
output
[105,107,109, 111, 113,115,117].

Commonly Made Error:
Students tend to write about update method from list updation, which is not a method.

Answering Tip:
Write about all the list methods that are used to add an element to the list.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

Question 10.
How can we maintain data confidentiality?
Answer:
To maintain data confidentiality, we should do following things:

  • Data access should be managed to ensure confidentiality of data. Access should be allowed to the authenticated users. Access can be controlled by making strong password.
  • We should protect our devices and documents from misuse. We should keep them in a secure place. Never leave device and sensitive information on a place where they can easily be stolen by the attacker.
  • When data is no longer useful than it should be destroyed carefully so that it can’t be misused by anyone.

Section – C [4 marks each]

Question 11.
Write a program to input any two matrices and print product of matrices. [4]
Read the case study given below and attempt any 4 sub-questions (out of 5). Each sub-question carries 1 mark.
Answer:

import random
m1 = int(input ("Enter number of rows in first matrix")) 
n1 = int(input ("Enter number of columns in first matrix")) 
a = [[random.random ( ) for row in range (m1)] for col in range (n1)] 
for i in range (m1): 
for j in range (n1): 
a[i][j] = int(input ( ))
m2 = int(input ("Enter the number of rows in the second matrix")) 
n2 = int(input ("Enter the number of columns in the second matrix")) 
b = [[random.random () for row in range (m2)] for col in range (n2)] 
for i in range (m2): 
for j in range (n2): b[i][j] = int(input ())
c = [[random.random 0 for row in range (m1)] for col in range (n2)] 
if (n1 == m2):
for i in range (m1): 
for j in range (n2): 
c[i][j] = 0 
for k in range (n1): 
c[i][j] += a[i][j]*b[i][j]
for s in c: 
print(s) 
else:
print("Multiplication is not possible")

Question 12.
(i) What is the use of Reduce process in e-waste management? [4]
OR
How can you manage your digital footprint?
Answer:
We should try to reduce the generation of e-waste by purchasing the electronic or electrical devices only according to our need. Also, they should be used to their maximum capacity and discarded only after their useful life has ended. Good maintenance of electronics devices also increases the life of the devices.
OR
(a) Keep a list of accounts that you have created.
(b) Close the ones that you don’t need (less clutter – more clarity)
(c) Be consistent and cordial about what you say online, especially if you are hoping for recruitment (no tantrums or arguments!)
(d) When in doubt, do not post. It is impossible to completely erase (or take second opinion or even a third)
(e) Use tools such as Grammarly to keep language and grammar accurate.
(f) Ensure that you check your privacy settings regularly, especially on social media.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

(ii) Write a short note on hacking. [2+2]
Answer:
Hacking refers to the act of breaking into a system by finding any security breach and using the system’s resources for one’s own personal gains. When hacking is done to find out a security breach in a system to make it fool proof it is termed as ethical hacking. Hacking is punishable under law. People who hack a system are known as hackers. They can be black hat, white hat or grey hat hackers.

Question 13.
Read the following text and answer the following questions on the basis of the same:
A dictionary in Python is the unordered and changeable collection of data values that holds key value pairs. Each key value pair in the dictionary maps the key to its associated value making it more optimized. A dictionary in Python is declared by enclosing a comma separated list of key value pairs using curly braces ({}). Python dictionary is classified into two elements: keys values. Keys will be a single element. Values can be a list or list within a list, numbers, etc.
(i) What is the type of Dictionary in Python?
Answer:
Dictionary is mutable type. But key of dictionary are immutable type.

(ii) The unordered and changeable collection of data values that holds key value pairs is:
Answer:
Python dictionary.

(iii) Which type of bracket is used to define dictionary?
Answer:
To define Dictionary curly braces ( { } ) is used.

(iv) What are keys in dictionary?
Answer:
In Dictionary, Keys are the single element.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 2 with Solutions

(v) How many elements are classified by Python Dictionary? [4]
Answer:
Keys Values, there are two elements classified by Python.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

Students can access the CBSE Sample Papers for Class 11 Computer Science with Solutions and marking scheme Term 2 Set 1 will help students in understanding the difficulty level of the exam.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

Time: 2 Hours
Maximum Marks: 35

General Instructions:

  • The question paper is divided into 3 sections -A, B and C
  • Section A, consists of 7 questions (1-7). Each question carries 2 marks.
  • Section B, consists of 3 questions (8-10). Each question carries 3 marks.
  • Section C, consists of 3 questions (11-13). Each question carries 4 marks.
  • Internal choices have been given for question numbers 7, 8 and 12.

Section – A [2 marks each]

Question 1.
Find the output of the following questions based on list value = [45, 32, 98, – 78, – 6, ‘Hello’, ‘Honesty’]
(i) value [5]
Answer:
Hello

(ii) value [-5]
Answer:
98

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

(iii) value [1] + value [-1]
Answer:
TypeError : unsupported operand type (s) for + ‘int’ and ‘str’

(iv) Value [4] + value [-4]
Answer:
-84

Question 2.
(i) Find the output
a = [10,20,30,40,50,60]
for i in range (1, 5):
a[i – 1] = a[i]
for i in range (0, 5):
print (a[i], end = ” “)
Answer:
20 30 40 50 50

(ii) If you are getting negative, demeaning messages on social networking profile, mails from many unknown people, what do you think is happening? [1 + 1]
Answer:
All these indicate cyber bullying and cyber stalking.

Question 3.
Write a program which will find all such numbers which are divisible by 8 but are not a multiple of 5, between 500 and 1000 (both included). [2]
Answer:
list = [ ]
for i in range (500,1001):
if (i % 8 ==0) and (i % 5 != 0):
list, append (str (i))
print (list)

Question 4.
(a) What should we do with e-waste?
Answer:
Reduce, reuse, and recycle. Reduce your generation of e-waste through smart procurement and good maintenance. Reuse still-functioning electronic equipment. Recycle those components that cannot be repaired.

(b) What is eavesdropping? [1+1]
Answer:
When an attacker accesses an active communication channel to listen the ongoing communication and gets information about the content. It is carried out through all communication devices and media such as telephone systems, emails, instant messaging, chat rooms or social networking sites.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

Question 5.
Write the corresponding python expressions for the following mathematical expressions.
(i) \(\sqrt{\left(a^{2}+b^{2}+c^{2}\right)}\)
Answer:
math.sqrt (a*a + b*b + c*c)

(ii) p + q/(r + s)4
Answer:
p + q/ math.pow ((r + s),4)

(iii) |55 – x|
Answer:
math.fabs (math.pow (5, 5) – x)

(iv) 2 – 4z2y + 4y [2]
Answer:
2 – 4 * (math.pow(z, 2)*y) + 4* y

Question 6.
(i) What is Adware ?
Answer:
Adware are the software that deliver unwanted ads to your computer.

(ii) Name the categories of public licenses. [1+1]
Answer:
(a) GNU General Public License (GPL)
(b) Creative Commons (CC)

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

Question 7.
Write a python program to find sum of three random numbers between 51 and 1000.
OR
What are the characteristics of Python Dictionaries?
Answer:
import random
num1 = random, randint (51,1000)
num2 = random, randint (51,1000)
num3 = random, randint (51,1000)
print (“sum of numbers is “, num1 + num2 + num3)
OR
The 3 main characteristic of a dictionary are:
(i) Dictionaries are unordered: The dictionary elements (key-value pairs) are not in ordered form.

(ii) Dictionary Keys are Case Sensitive: The same key name but with different case are treated as different keys in Python dictionaries.

(iii) Keys must be immutable: We can use strings, number or tuples as dictionary keys but something like [‘key’] is not allowed.

Section – B [3 marks each]

Question 8.
List few practices to ensure confidentiality of information.
OR
How your private information can be stolen?
Answer:

  • Use firewall, wherever possible.
  • Control browser setting to block tracking.
  • Browse privately, wherever possible.
  • Be careful while posting on Internet.
  • Ensure safe sites while entering crucial information.
  • Carefully handle emails.
  • Do not give sensitive information on wireless networks.
  • Avoid using public computer.

OR

You share your personal information with your family and friends. They can misuse your personal information and you can be victim of Identity theft.

  • The attacker can steal your information by accessing your documents like bills, your bank documents, your PAN card, driving license, etc.
  • Your private information can be stolen if someone uses your personal computer or your phone because when you allow them to use your personal computer means you are giving permission to make use of your personal data.
  • Your personal data can be stolen by the attacker by making fake call or sending fake mail.
  • Attacker can steal your information by keeping an eye on you when you are entering your information for example. When you are logging in your social media account site id by entering your user id and password then someone could see it if you are not careful about it.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

Question 9.
(i) What is the output ?
a = [5 ,6, 8, – 7, 6, 4, 3, 0, -8]
a [:: 1] = 5, 15, 25, 35, 45, 55
print (a)
Answer:
[5, 15, 25, 35, 45, 55]
[::] and [:: 1] give entire list.

(ii) Write the output of the following.
(a) string 1 = ‘Rainbow’ print(list(stringl))
(b) listl = [0, 5, 10, 15, 20, 25, 30]
listl.clear( )
print(list1)
Answer:
The output is:
(a) [‘R’, ‘a’, ‘i’, ‘n’, ‘b’, ‘o’, ‘w’]
Method list() takes sequence types and converts them to lists.
(b) [ ]
clear() method removes all the elements from the list. It clears the list completely and returns nothing.

Question 10.
Define the violation of intellectual property right. [1+2]
Answer:
Violation of intellectual property right may happen in one of the following ways:
(a) Plagiarism: Presenting someone else’s idea or work as one’s own idea or work is called . plagiarism. If we copy some contents from Internet, but do not credit the source or the original
creator, then it is considered as an act of plagiarism. It is a serious ethical offense and sometimes considered as an act of fraud.

(b) Copyright Infringement: Copyright infringement is when we use other person’s work without obtaining their permission to use when we have not paid for it, if it is being sold.

(c) Trademark Infringement: Trademark Infringement means unauthorized use of other’s trademark on products and services. An owner of a trademark may commence legal proceedings against someone who infringes its registered trademark.

Section – C [4 Marks each]

Question 11.
Explain the following methods with respect to lists.
(i) insert ( )
Answer:
insert ( ): This method inserts an element to the list at a given index.
Syntax
listName. insert (index, element)

(ii) extend ( )
Answer:
extend ( ): This methods extend the list by adding all items of the list (passed as an argument) to the end of the list.
Syntax
list1. extend (list2)

(iii) remove ( )
Answer:
remove ( ): This method searches for the given element in the list and removes the first matching element.
Syntax
listName. remove (element)

(iv) count ( )
Answer:
count ( ): This method returns the number of occurrences of an element in a list.
Syntax
listName. count (element)

(v) pop ( ) [4]
Answer:
pop ( ): This method removes the item at the given index from the list. The method also returns the removed item.
Syntax
listName. pop (index)

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

Question 12.
(i) What is the importance of digital footprint? [4]
OR
What do you mean by Phishing?
Answer:
Digital footprint stays forever and cannot be undone. College/ universities and employers look
back at them to know about applicants. They try to figure out how they conduct themselves in real life before appointing them.
OR
Phishing is an unlawful activity where fake websites or emails that look original or authentic are presented to the user to fraudulently collect sensitive and personal details, particularly usernames, passwords, banking and credit card details.

(ii) What aspects of communications are included in digital communication?
Answer:
Digital communication includes email, texting, instant messaging, talking on the cell phone, audio or video conferencing, posting on forums, social networking sites, etc. All these are great ways to connect with people in order to exchange ideas, share data and knowledge.

Read the case study given below and attempt any 4 sub-questions (out of 5). Each sub-question carries 1 mark.

Question 13.
A Python module can be defined as a python program file which contains a python code including python functions, classes, or variables. In other words, we can say that our python code file saved with extension (.py) is treated as the module. We may have a runnable code inside the python module. Modules in Python provide us the flexibility to organize the code in a logical way. To use the functionality of one module into another, we must have to import the specific module. The import statement is used to import all the functionality of one module into another. Here, we must notice that we can use the functionality of any python source file by importing that file as the module into another python source file. We can import multiple modules with a single import statement, but a module is loaded once regardless of the number of times, it has been imported into our file
(i) Which extension is used to save the Python file?
Answer:
Python files are stored with .py extension.

(ii) What is the use of import statement?
Answer:
import statement is used to import all functionality of one module into another Python code.

(iii) ……………….. is a file containing Python definition and statement.
Answer:
Module is a file containing python definition and statement.

(iv) How many kinds of module are there in Python?
Answer:
There are two types of modules in Python as Built in and user defined.

CBSE Sample Papers for Class 11 Computer Science Term 2 Set 1 with Solutions

(v) Which keyword is used to import the module?
Answer:
import keyword is used to import module.

Interjection Worksheet Exercises for Class 2 Examples with Answers CBSE

Interjection Worksheet For Class 2

This grammar section explains English Grammar in a clear and simple way. There are example sentences to show how the language is used. https://ncertmcq.com/interjection-exercises-for-class-2/

Interjection Worksheet Exercises for Class 2 Examples with Answers CBSE PDF

Interjection Exercises for Grade 2 with Answers CBSE PDF

  • An Interjections is a part of speech which shows strong feeling, such as surprise, anger or joy.
  • They are followed by either an exclamation sign (!) or a comma(,).
  • She shouted at him, “Go away! I hate you!”
  • He exclaimed: “What a fantastic house you have!”
  • “Good heavens!” he said, “Is that true?”
  • “Help!”
  • “Shut up!”
  • “Stop!”

Interjection Practice Exercises for Grade 2 with Answers CBSE PDF

Interjection Class 2
A. Put exclamation mark (!) wherever necessary in the following sentences.

a. Wow What a wonderful crowd
b. I’m so happy to see you
c. What a pleasant surprise
d. Look out
e. Ouch I’ve cut my finger
f. Oh no I’ve lost my bag
g. How hot it was
h. How exciting that was
i. Watch out

Interjection For Class 2
B. How many words can you think of that express how the children feel? Write your words in clouds. Don’t forget the exclamation marks.
Interjection Exercise For Class 2