CBSE Sample Papers for Class 9 Hindi A Paper 1

CBSE Sample Papers for Class 9 Hindi A Paper 1 are part of CBSE Sample Papers for Class 9 Hindi A Here we have given CBSE Sample Papers for Class 9 Hindi A Paper 1.

CBSE Sample Papers for Class 9 Hindi A Paper 1

Board CBSE
Class IX
Subject Hindi A
Sample Paper Set Paper 1
Category CBSE Sample Papers

Students who are going to appear for CBSE Class 9 Examinations are advised to practice the CBSE sample papers given here which is designed as per the latest Syllabus and marking scheme, as prescribed by the CBSE, is given here. Paper 1 of Solved CBSE Sample Papers for Class 9 Hindi A is given below with free PDF download solutions.

समय : 3 घंटे
पूर्णांक : 80

निर्देश

  • इस प्रश्न-पत्र के चार खंड हैंक, ख, ग और घ।
  • चारों खंडों के प्रश्नों के उत्तर देना अनिवार्य है।
  • यथासंभव प्रत्येक खंड के उत्तर क्रमशः दीजिए।

खंड {क} अपठित बोध [ 15 अंक ]

प्रश्न 1.
निम्नलिखित गद्यांश को ध्यानपूर्वक पढ़कर दिए गए प्रत्येक प्रश्न का उत्तर लगभग 20 शब्दों में लिखिए

हँसी भीतरी आनंद को प्रकट करने का बाहरी चिह्न है। हँस लेना जीवन की सबसे प्यारी और उत्तम वस्तु है। एक बार खिलखिलाकर हँसना शरीर को स्वस्थ रखने की बेहतरीन दवा है। पुराने लोग कह गए हैं कि हँसो और पेट फुलाओ। जितना अधिक हँसोगे, उतनी ही आयु बढ़ेगी।

एक पाश्चात्य विद्वान् की पुस्तक में बताया गया है कि हँसी, उदास-से-उदास मनुष्य के चित्त को प्रफुल्लित कर देती है। हँसी तो एक शक्तिशाली इंजन की तरह है। यह शोक और दुःख की दीवारों को गिरा देती है। चित्त को प्रसन्न रखना प्राण-रक्षा का बेहतरीन उपाय है। हँसी सभी के लिए काम की चीज़ है। हँसी कई काम करती है-पाचन शक्ति बढ़ाती है, रक्त को चलाती है और अधिक पसीना लाती है। एक डॉक्टर के अनुसार, यह जीवन की मीठी मदिरा है। कारलाइल कहता है कि जो जी से हँसता है, वह कभी बुरा नहीं होता। जी से हँसो तुम्हें अच्छा लगेगा, अपने मित्र को हँसाओ, वह अधिक प्रसन्न होगा, शत्रु को हँसाओ, वह तुमसे कम घृणा करेगा, अनजान को हँसाओ वह तुम पर भरोसा करेगा।

(क) “हँसी भीतरी आनंद को प्रकट करने का बाहरी चिह है” कथन से लेखक का क्या आशय है?
(ख) हँसने से क्या बढ़ती है तथा हँसी के कार्यों को स्पष्ट कीजिए।
(ग) हँसी एक शक्तिशाली इंजन है, कैसे?
(घ) ‘मदिरा का पर्यायवाची शब्द लिखिए।
(ङ) प्रस्तुत गद्यांश का उचित शीर्षक लिखिए।

प्रश्न 2.
निम्नलिखित काव्यांश को ध्यानपूर्वक पढ़कर दिए गए प्रत्येक प्रश्न का उत्तर लगभग 20 शब्दों में लिखिए

सच हम नहीं, सच तुम नहीं
सच है महज संघर्ष ही
संघर्ष से हटकर जिए तो क्या जिए हम या कि तुम।
जो नत हुआ वह मृत हुआ ज्यों वृंत से झरकर कुसुम।
जो लक्ष्य भूल सका नहीं।
जो हार देख झुका नहीं।

(क) काव्यांश के आधार पर जीवन का सच क्या है?
(ख) “जो नत हुआ वह मृत हुआ”-पंक्ति का क्या आशय है?
(ग) काव्यांश के आधार पर बताइए कि जीवन में जीत किसकी होती है?
(घ) काँटे और कलियाँ किसके प्रतीक हैं?
(ङ) ‘लक्ष्य’ का समानार्थी शब्द क्या है?

खंड {खा} व्याकरण [ 15 अंक ]

प्रश्न 3.
निर्देशानुसार उत्तर दीजिए

(क) “संगीत’ में कौन-सा उपसर्ग प्रयुक्त हुआ है?
(ख) ‘पर’ उपसर्ग से बनने वाले दो शब्द लिखिए।
(ग) “सनसनाहट’ में से प्रत्यय अलग कीजिए।
(घ) ‘पन’ प्रत्यय से दो शब्दों का निर्माण कीजिए।

प्रश्न 4.
निम्नलिखित समस्त पदों का विग्रह करके समास का भेद लिखिए

(क) घी-शक्कर,
(ख) आजन्म,
(ग) नीलोत्पल

प्रश्न 5.
निर्देशानुसार वाक्य को परिवर्तित कीजिए

(क) नवाब साहब का सहसा भाव-परिवर्तन अच्छा लगा। (विधानवाचक वाक्य से निषेधवाचक वाक्य में) |
(ख) अब तुम बिलकुल स्वस्थ हो गए हो। (निश्चयवाचक से प्रश्नवाचक में)
(ग) रमेश सुरेश से बड़ा है। (विधिवाचक से निषेधवाचक में)
(घ) ओ हो! तुम खूब आए। (विस्मयवाचक से विधिवाचक में)

प्रश्न 6.
निम्नलिखित काव्यांशों में विद्यमान अलंकारों के नाम बताइए

(क) सिंधु-सा विस्तृत और अथाह, एक निर्वासित का उत्साह।
(ख) रहिमन पानी राखिए, बिन पानी सब सून।
(ग) तौ पर वारौ उरबसी, सुनि राधिके सुजान। तू मोहन के उर बसी, ह्वै उरबसी समान।
(घ) सूरदास प्रभु इंद्र नीलमणि
ब्रज बनिता उर लाई गही री।

खंड {ग} पाठ्यपुस्तक व पूरक पुस्तक [ 30 अंक ]

प्रश्न 7.
निम्नलिखित गद्यांश को ध्यानपूर्वक पढ़कर पूछे गए प्रश्नों के उत्तर लगभग 20 शब्दों में दीजिए

फोटो खिंचाना था, तो ठीक जूते पहन लेते या न खिचाते। फोटो न खिंचाने से क्या बिगड़ता था। शायद पत्नी का आग्रह रहा हो और तुम, ‘अच्छा, चल भई’ कहकर बैठ गए होंगे। मगर यह कितनी बड़ी ‘ट्रेजडी’ है कि आदमी के पास फोटो खिंचाने को भी जूता न हों मैं तुम्हारी यह फोटो देखते-देखते, तुम्हारे क्लेश को अपने भीतर महसूस करके जैसे रो पड़ना चाहता हूँ, मगर तुम्हारी आँखों का यह तीखा दर्द भरा व्यंग्य मुझे एकदम रोक देता है।

(क) लेखक किसे और क्या सुझाव दे रहा है?
(ख) लेखक ने किस बात को ‘ट्रेजडी’ कहा है?
(ग) प्रेमचंद के फोटो को देखकर लेखक क्या अनुभव करता है?

प्रश्न 8.
निम्नलिखित प्रश्नों के उत्तर लगभग 20 शब्दों में दीजिए

(क) “सालिम अली प्रकृति की दुनिया में एक टापू बनने की बजाय अथाह सागर बनकर उभरे थे’ कथन का आशय स्पष्ट कीजिए।
(ख) “तिब्बत में लोग बंदूक या पिस्तौल को लाठी की तरह लेकर घूमते थे’-कथन के अभिप्राय को स्पष्ट कीजिए।
(ग) “सर टामस हे’ का चरित्र कैसे व्यक्ति का चरित्र है? ‘नाना साहब की पुत्री देवी मैना को भस्म कर दिया गया’ पाठ के आधार पर उत्तर दीजिए।
(घ) सुभद्रा कुमारी चौहान और महादेवी वर्मा दोनों की रुचि में समानता ही उनकी मित्रता का कारण बनी। ‘मेरे बचपन के दिन’ पाठ के आधार पर स्पष्ट कीजिए।

प्रश्न 9.
निम्नलिखित काव्यांश को ध्यानपूर्वक पढ़कर प्रत्येक प्रश्न का उत्तर लगभग 20 शब्दों में दीजिए

‘औ’ यहीं से –
भूमि ऊँची है जहाँ से –
रेल की पटरी गई है।
ट्रेन का टाइम नहीं है।
मैं यहाँ स्वच्छंद हूँ, जाना नहीं है।
चित्रकूट की अनगढ़ चौड़ी
कम ऊँची-ऊँची पहाड़ियाँ
दूर दिशाओं तक फैली हैं।
बाँझ भूमि पर इधर-उधर रीवा के पेड़ कॉटेदार कुरूप खड़े हैं।

(क) “मैं यहाँ स्वच्छंद हूँ” कवि ने ऐसा क्यों कहा है?
(ख) कवि ने भूमि को बाँझ क्यों कहा है? यों कहा है?
(ग) चित्रकूट की ज़मीन कैसी है?

प्रश्न 10.
निम्नलिखित प्रश्नों के उत्तर लगभग 20 शब्दों में दीजिए

(क) बच्चे काम पर जा रहे हैं कविता में कवि समाज की किस कुरीति की ओर संकेत करता है?
(ख) मेघ आए कविता में कवि ने आकाश में बादल और गाँव में मेहमान (दामाद) के आने का जो रोचक वर्णन किया है, उसे लिखिए।
(ग) लोग ईश्वर प्राप्ति के लिए क्या-क्या क्रियाएँ करते हैं? ‘साखियाँ एवं सबद के आधार पर बताइए।
(घ) कवयित्री ललद्यद ने परमात्मा प्राप्ति का क्या उपाय बताया है?

प्रश्न 11.
‘माटी वाली’ नामक पाठ में निहित मानवीय संदेश को लगभग 150 शब्दों में व्यक्त कीजिए।
अथवा
लेखिका के व्यक्तित्व पर उसके परिवार के किस प्राणी का अधिक प्रभाव पड़ा? ‘मेरे संग की औरतें’ पाठ के आधार पर अपने उत्तर को लगभग 150 शब्दों में स्पष्ट कीजिए।

खंड {घ} लेखन [20 अंक]

प्रश्न 12.
निम्नलिखित विषयों में से किसी एक विषय पर दिए गए संकेत बिंदुओं के आधार पर लगभग 200-250 शब्दों में एक निबंध लिखिए

(क) जाति-प्रथा

  • आरंभ
  • वर्तमान परिदृश्य

संकेत बिंदु

  • प्रस्तावना
  • हानियाँ
  • उपसंहार

प्रश्न 13.
अपने क्षेत्र में डाक वितरण की व्यवस्था ठीक न होने की शिकायत करते हुए पोस्टमास्टर को शिकायती-पत्र लिखिए।
अथवा
अपने अनुज को कुसंगति त्यागने की सलाह देते हुए पत्र लिखिए।

प्रश्न 14.
पिछले पाँच दिनों से विद्यालय नहीं आने का कारण बताते हुए अपने मित्र राकेश के साथ होने वाले संवाद को लगभग 50 शब्दों में लिखिए।
अथवा
‘खो गया है बचपन’ पर दो व्यक्तियों के मध्य होने वाले संवाद को लगभग 50 शब्दों में लिखिए।

जवाब

उत्तर 1.
(क) “हँसी भीतरी आनंद को प्रकट करने का बाहरी चिह्न है।” इस कथन से लेखक का आशय यह है कि हँसी हृदय का आंतरिक आनंद प्रकट करती है। इसके साथ-साथ हँसने से स्वास्थ्य भी उत्तम बना रहता है।

(ख) गद्यांश में स्पष्ट रूप से बताया गया है कि हँसने से व्यक्ति की आयु बढ़ती है। ‘हँसना’ शरीर को स्वस्थ रखने की श्रेष्ठ औषधि है। ‘हँसी’ अनेक कार्य करती है। यह हमारी पाचन शक्ति को बढ़ाने के साथ-साथ हमारे शरीर में रक्त का सुचारु रूप से संचार करती है और अधिक पसीना लाती है।

(ग) हँसी एक शक्तिशाली इंजन की भाँति है। हँसी, उदास-से-उदास मनुष्य के चित्त को प्रफुल्लित कर देती है। हँसी के शक्तिशाली इंजन द्वारा शोक और दुःख की दीवारों को गिराया जा सकता है।

(घ) ‘मदिरा’ के पर्यायवाची शब्द सुरा, मद्य, मधु और वारूणी हैं।

(ङ) प्रस्तुत गद्यांश का उपयुक्त शीर्षक ‘जीवन में हँसी का महत्त्व’ ही होगा।

उत्तर 2.
(क) काव्यांश में स्पष्ट रूप से बताया गया है कि सच न तुम हो न उसकी जीत होती है। हम हैं। सच तो जीवन का संघर्ष है अर्थात् व्यक्ति को जीवन काव्यांश के अनुसार काँटे और कलियाँ दुःख और सुख में कभी भी हार नहीं माननी चाहिए यहीं उसके जीवन का के प्रतीक हैं। आधार है, यही उसके जीवन का सच है।

जिसने प्रणय पाथेय माना जीत उसकी ही रही।
सच हम नहीं, सच तुम नहीं।
ऐसा करो जिससे न प्राणों में कहीं जड़ता रहे।
जो भी परिस्थितियाँ मिले
काँटे चुभे कलियाँ खिले
हारे नहीं इंसान, संदेश जीवन का यही।

(ख) ‘जो नत हुआ वह मृत हुआ’ पंक्ति से आशय यह है कि जो डर गया, वह मर गया अर्थात् हमें जीवन में आई कठिन परिस्थितियों के सामने हार नहीं माननी चाहिए अपितु उनका डटकर सामना करना चाहिए, क्योंकि यदि हम कठिन परिस्थितियों से डरकर बैठ गए तो समझो हम हार गए।

(ग) जो व्यक्ति अपने लक्ष्य को नहीं भूलता, हार के सामने नहीं झुकता तथा प्रेम-पाथेय (मार्ग) को अपनाता है, उसकी जीत होती है

(घ) कावयंश के अनुसार काँटे और कलियाँ दुःख और सुख के प्रतीक है

(ङ) लक्ष्य का समानार्थी शब्द ‘ध्येय’ है।

उत्तर 3.

(क) ‘सम्’ उपसर्ग
(ख) पराजय, पराभव
(ग) ‘आहट’ प्रत्यय
(घ) बचपन, पागलपन

उत्तर 4.

(क) घी और शक्कर – द्वंद्व समास यहाँ पूर्वपद और उत्तरपद दोनों ही प्रधान हैं और उनके मध्य संयोजक शब्द का लोप है, इसलिए यहाँ द्वन्द्व समास है।
(ख) जन्मभर – अव्ययीभाव समास यहाँ पूर्वपद अव्यय है, इसलिए यहाँ अव्ययीभाव समास है।
(ग) नीला है, जो उत्पल -कर्मधारय तत्पुरुष समास यहाँ पूर्वपद (नीला) विशेषण और उत्तरपद (उत्पल) विशेष्य है, इसलिए यहाँ कर्मधारय समास है।

उत्तर 5.

(क) नवाब साहब का सहसा भाव-परिवर्तन बुरा नहीं लगा।
(ख) क्या तुम अब बिलकुल स्वस्थ हो गए हो?
(ग) रमेश सुरेश से छोटा नहीं है।
(घ) मुझे तुम्हारे आगमन से अपार खुशी है।

उत्तर 6.

(क) उपमा अलंकार यहाँ ‘उत्साह’ की तुलना ‘सिंधु’ की गहराई और व्यापकता से की गई है इसलिए यहाँ उपमा अलंकार है।
(ख) श्लेष अलंकार यहाँ ‘पानी’ के दो अर्थ है – पहला कान्ति (चमक) और दूसरा आत्मसम्मान। अतः श्लेष अलंकार है।
(ग) यमक अलंकार यहाँ ‘उरबसी’ शब्द तीन बार आया है। प्रथम का अर्थ एक अप्सरा का नाम (उर्वशी), द्वितीय उरबसी का अर्थ हृदय में बसी तथा तृतीय ‘उरबसी’ का अर्थ एक आभूषण का नाम है। अतः यहाँ यमक अलंकार है।
(घ) रूपक अलंकार यहाँ श्रीकृष्ण (उपमेय) को नीलमणि पर्वत. (उपमान) पर आरोपित करने के कारण यहाँ रूपर्क अलंकार है।

उत्तर 7.
(क) लेखक प्रेमचंद को यह सुझाव दे रहा है कि या तो फोटो ही न खिंचाते और यदि खिंचाना ही था तो ठीक जूते पहन लेते, क्योंकि फोटो खिंचवाते समय प्रेमचंद के जूते फोटो खिंचाने योग्य नहीं लग रहे थे।

(ख) एक महान् लेखक के पास फोटो खिंचाने के लिए ठीक जूते नहीं थे, इसी को लेखक हरिशंकर परसाई जी ने ‘ट्रेजडी’ कहा है, क्योंकि प्रेमचंद जैसे विख्यात लेखक के पास फटे जूते होना ट्रेजडी के ही समान है।

(ग) प्रेमचंद के फोटो को देखकर लेखक अपने भीतर प्रेमचंद के कष्ट को अनुभव करता है।

उत्तर 8.
(क) “सालिम अली प्रकृति की दुनिया में एक टापू बनने की बजाय अथाह सागर बनकर उभरे थे’ लेखक के इस कथन द्वारा यह प्रतीत हो रहा है कि वह सालिम अली के कार्य, अनुभव तथा व्यक्तित्व से बहुत प्रभावित हैं। सालिम अली ने स्वयं को कभी किसी सीमा में कैद करके अर्थात् बाँधकर नहीं रखा, बल्कि प्रकृति के खुले संसार में खोज करने के लिए निकल पड़े। उन्होंने एक टापू की भाँति किसी स्थान विशेष या किसी पशु-पक्षी विशेष के लिए कार्य नहीं किया, अपितु मार्ग में मिलने वाले सभी अनुभवों को एकत्रित कर लिया। अतः उनका कार्य क्षेत्र अत्यधिक व्यापक था। जिस प्रकार, सागर की गहराई का अनुमान लगाना सरल नहीं होता, उसी प्रकार उन्हें समझ पाना भी सरल नहीं था।

(ख) “तिब्बत में लोग बंदूक या पिस्तौल को लाठी की भॉति लेकर घूमते थे’ कथन से अभिप्राय है कि तिब्बत में उस समय कानून व्यवस्था व सुरक्षा प्रबंध की स्थिति चिंताजनक थी सरकार गुप्तचर विभाग व पुलिस पर अधिक खर्च नहीं करती थी। हथियार रखने के संबंध में कोई कानून नहीं था, यहाँ डाकू-लुटेरों का आतंक था। पहले वे आदमी को मारते, उसके बाद लूटते थे। मरने वालों का कोई साक्षी नहीं होता था, इसलिए अपराधी को दंड भी नहीं मिल सकता था। अतः लोग अपनी सुरक्षा के लिए बंदूक और पिस्तौल लाठी की तरह लेकर घूमते थे।

(ग) प्रस्तुत पाठ ‘नाना साहब की पुत्री देवी मैना को भस्म कर दिया गया’ में ‘सर टामस हे’ का चरित्र एक करुण हृदय व्यक्ति के चरित्र के समान है। यद्यपि वह अंग्रेज़ सरकार के प्रति समर्पित है और उसकी अवज्ञा नहीं कर सकता, फिर भी वह बालिका मैना के आग्रह पर उसके महल को बचाने का प्रयत्न करता है। वह यह जानकर बहुत भावुक हो जाता है कि मैना उसकी पुत्री की घनिष्ठ मित्र थी।

(घ) छात्रावास में महादेवी वर्मा और सुभद्रा कुमारी को रहने के लिए एक ही कमरा मिला। सुभद्रा कुमारी को कविता लिखने का शौक था। महादेवी वर्मा ने सुभद्रा कुमारी से छिपकर कविता लिखना शुरू कर दिया। कुछ समय बाद सुभद्रा कुमारी को महादेवी वर्मा की कविता लिखने की आदत के विषय में पता चल गया। उन्होंने महादेवी वर्मा की कविताओं को पूरे छात्रावास में दिखाया। बाद में दोनों में मित्रत हो गई, जो आगे जाकर और भी गहरी हो गई।

उत्तर 9.
(क) “मैं यहाँ स्वच्छंद हूँ” कवि ने ऐसा इसलिए कहा है, क्योंकि ट्रेन का समय नहीं हुआ है और अभी उसे जाना भी नहीं है। वह प्रकृति के विविध रूपों को देखकर आनंदित अनुभव कर रहा है।

(ख) कवि ने चंद्र गहनों की भूमि को बॉझ कहा है, क्योंकि वहाँ दूर-दूर तक हरियाली दिखाई नहीं दे रही है, केवल रीवा के काँटेदार पेड़ हैं। वह भूमि पूर्ण रूप से बंजर है, उसमें कोई फसल नहीं उग सकती है।

(ग) चित्रकूट की ज़मीन ऊँची-नीची और पथरीली है, उस , पर केवल रीवा के काँटेदार कुरूप पेड़ उगे हुए हैं।

उत्तर 10.
(क) इस कविता में कवि समाज में व्याप्त बाल मज़दूरी जैसी कुप्रथा की ओर संकेत करता है। यह एक भयावह समस्या है, जिससे देश का भविष्य प्रभावित होता है। इससे बच्चों का बचपन नष्ट हो जाता है और भविष्य अंधकारमय बन जाता है। समाज को इस कुरीति का उन्मूलन शीघ्र ही करना चाहिए।

(ख) ‘मेघ आए’ कविता में कवि ने आकाश में बादल और गाँव में मेहमान के आने में समानता व्यक्त की है। कवि ने मेघ के आगमन का चित्रण गाँव में आए मेहमान (दामाद) के समान किया है, जो अधिक प्रतीक्षा कराने के पश्चात् आया है। उसे देखने व उसका स्वागत करने के लिए सारा गाँव एकत्रित हो जाता है। आज भी गाँवों में यह प्रथा देखने को मिलती है। कि दामाद के आने पर सब उसका स्वागत-सत्कार करते हैं। लोग ईश्वर प्राप्ति के लिए भिन्न-भिन्न प्रकार की क्रियाएँ करते हैं; जैसे-तीर्थ, व्रत, मंदिर, मस्जिद, योग-वैराग आदि धार्मिक कर्मकांड। कहने का तात्पर्य यह है कि धार्मिक कर्मकांडों एवं बाह्य आडंबरों में ईश्वर को ढूंढना व्यर्थ है, क्योंकि ईश्वर तो व्यक्तियों की अंतरात्मा में स्थित होता है।

(घ) कवयित्री ललद्यद ने परमात्मा प्राप्ति के उपायों में दिल में ‘हूक’ उठना आवश्यक बताया है। तत्पश्चात् त्याग और भोग के बीच सहज जीवन जीना आवश्यक है। भोग में आसक्ति, त्याग की अतिशयता और हठयोग जैसे उपायों से कुछ भी प्राप्त नहीं होता है। परमात्मा को जानने के लिए आवश्यक है। कि मनुष्य स्वयं को जाने अर्थात् आत्मज्ञान प्राप्त करे।

उत्तर 11.
प्रस्तुत पाठ के माध्यम से लेखक ने गरीब एवं लाचार महिला को महत्त्वपूर्ण बताते हुए उसकी सेवा भावना को उभारा है। बुढ़िया द्वारा लाई गई माटी (मिट्टी) से ही घरों में चूल्हे लिपने का कार्य किया जाता था। उसके द्वारा लाई गई मिट्टी की प्रत्येक घर को आवश्यकता थी, क्योंकि इसी से वे चल्हें-चौके की लिपाई करते थे। इसके बिना किसी का कार्य नहीं चलता था।

माटाखान ही उसकी जीविकोपार्जन का साधन है। टिहरी बाँध बनने के कारण उसे अपने स्थान से विस्थापित (दूर) होना पड़ेगा और नई जगह पर स्थान पाने के लिए उसे सरकारी दस्तावेजों, प्रमाण-पत्रों आदि की आवश्यकता होगी, जो उसके लिए संभव नहीं है। ऐसे में अब वह क्या करेगी, कहाँ जाएगी, उसके जीवन का निर्वाह कैसे होगा? इन्हीं प्रश्नों के उत्तर खोजने की आवश्यकता है। समाज के लोगों को इस वर्ग के गरीब लोगों की इस समस्या पर ध्यान देने की आवश्यकता है।

अथवा

लेखिका के व्यक्तित्व पर अपने परिवार के लोगों में से सर्वाधिक प्रभाव अपनी नानी के व्यक्तित्व का पड़ा। लेखिका अपनी नानी के व्यक्तित्व के बारे में सुनकर ही बहुत कुछ जान सकी थी, क्योंकि लेखिका की नानी लेखिका के जन्म से पूर्व ही संसार से जा चुकी थीं। लेखिका अपनी नानी के बारे में जो समझ सकी थी, वह इस प्रकार था कि वे एक परंपरावादी, अनपढ़ और सभ्य महिला थीं। उनका विवाह एक ऐसे व्यक्ति से हो गया, जो विलायती (विदेशी) संस्कृति से बहुत अधिक प्रभावित था। उनके पति कैम्ब्रिज विश्वविद्यालय से बैरिस्ट्री पढ़कर आए थे और अंग्रेजी रहन-सहन के अनुसार ही जीवन जीने लगे, पर नानी पर इसका कोई प्रभाव नहीं हुआ। वे अपने तरीके से ही जीवन जीती रहीं। उन्होंने पति की जीवन-शैली का कभी विरोध नहीं किया, लेकिन मरने से पहले अपने पति से कहकर प्रसिद्ध क्रांतिकारी प्यारेलाल शर्मा को बुलवा लिया। तब घर के सभी लोग आर्यचकित रह गए थे। वह अपनी बेटी की शादी किसी साहब से ने करवाकर आज़ादी के सिपाही अर्थात् स्वतंत्रता सेनानी से करवाना चाहती थीं। नानी की इस इच्छा से अनुमान लगाना मुश्किल नहीं है कि वे विचारों के स्तर पर अपने पति से भिन्न एवं आज़ाद विचारों वाली महिला थीं। उनके मन में आज़ादी की भावना कूट-कूट कर भरी थी।

नानी की राष्ट्र-चेतना और भारतीयता को लेखिका के व्यक्तित्व पर गहरा प्रभाव पड़ा। अतः लेखिका अपनी नानी के विचारों और सस्कारों से अत्यधिक प्रभावित हुई थी।

उत्तर 12.
प्रस्तावना स्वतंत्रता के पश्चात् भारतवर्ष में एक नए युग का आरंभ हुआ। आज भारत निरंतर प्रगति कर रहा है, परंतु कुछ सामाजिक बुराइयाँ अभी भी इस देश की संस्कृति में विद्यमान हैं। ऐसी ही एक सामाजिक कुरीति है-जाति-प्रथा। जाति-प्रथा एक प्रकार की स्तरीकरण व्यवस्था है, जिसके अंतर्गत मानव-जाति को विभिन्न जातियों में बाँट दिया गया है। इससे लोगों में ऊँच-नीच की भावना का जन्म होता है। कुछ मनुष्य स्वयं को ऊँची जाति का बताकर शेष समाज के व्यक्तियों के साथ अमानवीय तथा संकीर्ण व्यवहार करते हैं।

आरंभ प्राचीनकाल में भारत में जाति व्यवस्था को आरंभ किया गया था। यह मनुष्य के कर्म पर आधारित एक अत्यंत उपयोगी सामाजिक व्यवस्था थी, लेकिन समय के साथ-साथ कर्म आधारित जाति व्यवस्था जन्म आधारित सामाजिक व्यवस्था की संकीर्ण रूढ़ियों में जकड़ गई। हिंदू धर्म में परंपरागत रूप से समाज को चार वर्षों ब्राह्मण, क्षत्रिय, वैश्य तथा शूद्र में विभक्त किया गया है। समय के साथ-साथ इन्हीं चार वर्णो से लगभग 4,000 से अधिक जातियों का उद्भव हुआ। अधिक जातियों का सीधा-सा अर्थ है-समाज में अधिक स्तरीकरण और अत्यधिक असमानता।

हानियाँ वर्तमान समय में जाति-प्रथा एक सामाजिक बुराई के रूप में देखी जाती है, जिससे राष्ट्र को अनेक हानियाँ होती हैं। आज के युग में यह प्रथा पूर्णतः अनुपयोगी है। इसके कारण राष्ट्र की एकता को आघात पहुँचता है। लोग जात-पात के नाम पर लड़ने-मरने को तैयार हो जाते हैं। कुछ स्वार्थी लोग इसका अनुचित लाभ उठाते हैं और भोली-भाली जनता को मूर्ख बनाते हैं। जाति-प्रथा से लोगों में द्वेष तथा बैर-भाव बढ़ता है और एक ऐसी दासता का जन्म होता है, जिसके अंतर्गत कुछ व्यक्तियों को उच्च समझे जाने वाले व्यक्तियों के द्वारा निर्धारित व्यवहार एवं कर्तव्यों का पालन करने के लिए विवश होना पड़ता है। डॉ. अंबेडकर के अनुसार, जाति-प्रथा श्रम-विभाजन को जन्म देती है। इसके द्वारा ‘समता’ की भावना का लोप हो जाने के साथ, गरीबी और बेरोज़गारी को भी बढ़ावा मिलता है।

वर्तमान परिदृश्य स्वतंत्रता के पश्चात् डॉ.अंबेडकर के प्रयासों से जाति-प्रथा के उन्मूलन की दिशा में सराहनीय कदम उठाए गए। संविधान ने जाति-प्रथा को लोक-कल्याण में बाधा मानते हुए, जातिगत भेदभाव को अनुचित ठहराया है। धीरे-धीरे जाति-प्रथा का प्रभाव मंद होने लगा, परंतु आज भी देखा जा रहा है कि यह प्रथा पूर्ण रूप से समाप्त नहीं हुई है। राजनीति में अपने लक्ष्यों की प्राप्ति के लिए जातीय समीकरणों का सहारा लिया जाता है। बड़े ही खेद का विषय है कि जाति का धार्मिक आधार टूट जाने के पश्चात् भी जातिवाद में वृद्धि हो रही है।

उपसंहार वर्षों से चली आ रही परंपराएँ जब युगानुकूल नहीं रहतीं, तो कोई भी सभ्य समाज उसमें आवश्यकतानुसार परिवर्तन करने में संकोच नहीं करता। यदि समाज परिवर्तन को नहीं अपनाता तो वह पिछड़ जाता है। अब समय आ गया है कि जाति-प्रथा को पूर्णतः समाप्त किया जाए, जिससे राष्ट्र की एकता, अखंडता तथा समृद्धि में वृद्धि हो। हमें समाज के प्रत्येक वर्ग में चेतना का संचार करना होगा और अपने राष्ट्र को इस कुप्रथा से मुक्त करना होगा।

(ख) पुस्तक मेला

संकेत बिंदु

  • प्रस्तावना
  • पुस्तक मेले की उपयोगिता
  • पुस्तक मेलों का आयोजन
  • उपसंहार

उत्तर

प्रस्तावना पुस्तकें ज्ञान-विज्ञान को सुरक्षित रखने को एक साधन हैं। इनकी तुलना बाग में लगे उन फूलों से की जा सकती है, जो मन को शांति और प्रसन्नता प्रदान कर दूषित विचारों को दूर कर देते हैं। पुस्तकों के विषय में कहा गया है, ‘पुस्तकें मनुष्य की सच्ची मित्र होती हैं।’ मनुष्य का अपने दोस्त, सगे-संबंधी से तो मतभेद हो सकता है, किंतु पुस्तकें सदैव उसका सही मार्गदर्शन करती हैं।

पुस्तक मेले की उपयोगिता मनुष्य स्वभाव से ही ज्ञान की खोज़ में लगा रहता है। इस क्षेत्र में पुस्तकें उसकी सहायता करती हैं। सभी विषयों की पुस्तकें एक ही स्थान पर प्राप्त करना आसान कार्य नहीं है। सर्वश्रेष्ठ पुस्तकें ढूंढने में मनुष्य को अधिक धन, परिश्रम और समय खर्च करना पड़ता है। इसके बाद भी अनेक बार उसे मनपसंद पुस्तकें नहीं मिल पातीं। इन्हीं सब कारणों से पुस्तक मेलों का आयोजन किया जाता है। इनमें देश के प्रसिद्ध प्रकाशक भाग लेते हैं। अनेक प्रसिद्ध लेखक भी इन मेलों में उपस्थित रहते हैं, जो विभिन्न विषयों पर अपना सुझाव देते हैं। यहाँ देश की किसी-न-किसी ज्वलंत समस्या पर सेमिनार भी आयोजित किया जाता है। पाठक इन सेमिनारों में भाग लेकर अपना सुझाव भी। लेखकों तक पहुँचा सकते हैं।

पुस्तक मेलों का आयोजन पुस्तक मेलों का आयोजन सरकार, सरकारी संस्थाएँ, प्रकाशन संस्थान तथा लेखकों के संघ मिल-जुलकर करते हैं। इसमें देश-विदेश के प्रसिद्ध लेखकों, साहित्यकारों, कलाकारों तथा प्रकाशकों को आमंत्रित किया जाता है, जिससे पाठकों को सभी महत्त्वपूर्ण विषयों तथा भाषाओं में अच्छी पुस्तकें सरलता से उपलब्ध हो सकें। पुस्तक मेलों के महत्त्व को ध्यान में रखते हुए हमारे देश में भी प्रतिवर्ष अनेक पुस्तक मेलों का आयोजन किया जाता है, जिनमें दिल्ली पुस्तक मेला, नई दिल्ली विश्व पुस्तक मेला, जयपुर दैनिक भास्कर पुस्तक मेला, नोएडा बुक एंड स्टेशनरी फेयर, चेन्नई पुस्तक मेला अथवा मद्रास बुक फेयर, हैदराबाद पुस्तक महोत्सव, मुंबई अंतर्राष्ट्रीय पुस्तक मेला, पुणे बुक फेयर, कोलकाता बुक फेयर आदि प्रमुख हैं। इनके अतिरिक्त नेशनल बुक ट्रस्ट (एनबीटी) भी विभिन्न संस्थाओं के सहयोग से देशभर में अनेक पुस्तक मेलों का आयोजन करता है। पुस्तक मेलों के आयोजनकर्ताओं ने इस बात को समझा है कि यदि पुस्तक मेलों की सार्थकता तथा अस्तित्व को बनाए रखना है, तो इन्हें संचार प्रौद्योगिकी के साथ जोड़ना आवश्यक है। अतः संचार क्रांति और इंटरनेट ने पुस्तकों के प्रचार-प्रसार में सार्थक योगदान दिया है।

उपसंहार पुस्तकों को जन-जन तक पहुँचाने में पुस्तक मेले का बहुत बड़ा योगदान है। पुस्तक मेले अपने उद्देश्य में तभी सफल हो सकते हैं, जब पाठकों को प्रसिद्ध लेखकों की रचनाएँ कम मूल्य पर प्राप्त हो सकें।

(ग) धरती की रक्षा

संकेत बिंदु

  • प्रस्तावना
  • जल संकट का समाधान
  • पर्यावरण प्रदूषण पर नियंत्रण
  • वृक्षारोपण
  • ओजोन परत की सुरक्षा
  • उपसंहार

उत्तर

प्रस्तावना आधुनिक युग में दुनिया विकास की दिशा की ओर तीव्र गति से बढ़ती जा रही है। मनुष्य स्वयं को विकसित करते हुए पर्यावरण व धरती के लिए अनेक खतरों को उत्पन्न कर रहा है। पृथ्वी संपूर्ण मनुष्य जाति एवं जीवों का निवास स्थान है। पृथ्वी ही एकमात्र ऐसा ग्रह है, जिस पर जीवन संभव है। प्रकृति मनुष्य के जीवन हेतु कितने ही साधन जुटाती है, मनुष्य के पालन-पोषण हेतु स्वच्छ पानी, हवा, वनस्पति एवं खनिज उपलब्ध कराती रही है।

आज वही प्रकृति मनुष्य के क्रिया-कलापों द्वारा खतरे में पड़ गई है। वस्तुओं के अत्यधिक उपभोग एवं औद्योगीकरण के फलस्वरूप धरती पर जीवन प्रभावित हो रहा है। मानव द्वारा अपनी स्वार्थ सिद्धि हेतु प्रकृति का इस प्रकार दोहन किया जा रहा है, जिससे हमारा पर्यावरण इतना दूषित हो गया है कि यह विश्व के लिए एक गंभीर समस्या बन गई है।

जल संकट का समाधान जल, मानव जीवन की मूल आवश्यकता है। पृथ्वी पर मनुष्य के प्रयोग हेतु कुल जल का मात्र 3% भाग ही मृदु जल के रूप में उपलब्ध है। वर्तमान समय में इस सीमित जल का बड़ा भाग प्रदूषित हो चुका है, जिसके कारण पृथ्वी पर पेयजल की समस्या उत्पन्न हो गई है। औद्योगीकरण के कारण नदियों का जल प्रदूषित होता जा रहा है। मनुष्य ने अपने स्वार्थ के लिए प्रकृति का संतुलन बिगाड़ा है औ स्वयं के लिए खतरे की स्थिति उत्पन्न की है। अतः जल के संरक्षण पर बल दिया जाना चाहिए। पृथ्वी की रक्षा के लिए मनुष्य को इस जल संकट की समस्या का समाधान शीघ्र ही करना होगा।

पर्यावरण प्रदूषण पर नियंत्रण पर्यावरण प्रदूषण एक ओर हमारे वातावरण को प्रदूषित कर रहा है, वहीं दूसरी ओर इसके कारण अन्य जटिल समस्याएँ भी उत्पन्न हो रही हैं, जो हमारी पृथ्वी के लिए हानिकारक सिद्ध होती हैं। हमें अपनी धरती की रक्षा के लिए प्रदूषण को कम करना होगा। मनुष्य ने अपने लाभ के लिए जंगलों की तीव्र गति से कटाई की है। जंगल के पेड़ प्राकृतिक रूप से प्रदूषण नियंत्रण का कार्य करते हैं। मशीनों से निकलने वाला धुआँ पर्यावरण के प्रदूषण के प्रमुख कारकों में से एक है। रासायनिक पदार्थों को नदियों में बहा दिए जाने पर पर्यावरण प्रदूषित होता है। धरती की रक्षा पर्यावरण के प्रदूषण को कम करके तथा प्राकृतिक संसाधनों का उपयुक्त प्रयोग करके की जा सकती है।

वृक्षारोपण वृक्ष हमारे लिए अद्वितीय बहुमूल्य रत्न हैं। इसके उपरांत भी मनुष्य ने इनकी कटाई में वृद्धि की है। औद्योगिक क्रांति एवं वनोन्मूलन के कारण पर्यावरण अत्यंत प्रदूषित हो गया है। वृक्ष, पर्यावरण को प्रदूषण मुक्त रखने में सहायक होते हैं। मनुष्य अपने लाभ के लिए कारखानों की संख्या में तो वृद्धि करता रहा, किंतु उस वृद्धि के अनुपात में उसने पेड़ों को लगाने की ओर ध्यान नहीं दिया तथा वृक्षों की अंधाधुंध कटाई की, जिसके कारण पृथ्वी का पर्यावरण भी असंतुलित हो गया। हमें पृथ्वी की रक्षा व पर्यावरण को सुरक्षित करने के लिए वृक्षारोपण का सहारा लेना होगा, क्योंकि मनुष्य का अस्तित्व एवं जीवन की गुणवत्ता एक स्वस्थ प्राकृतिक पर्यावरण पर निर्भर है।

ओजोन परत की सुरक्षा ओजोन परत पृथ्वी की सुरक्षा के दृष्टिकोण से अत्यंत महत्त्वपूर्ण है। यह पृथ्वी पर आने वाली सूर्य की खतरनाक पराबैंगनी किरणों को अवशोषित करती है, किंतु औद्योगीकरण के बाद वातावरण के दूषित होने के कारण पृथ्वी के इस सुरक्षा कवच में क्षरण हुआ है। ओजोन परत के क्षरण के लिए सर्वाधिक ज़िम्मेदार क्लोरो-फ्लोरो कार्बन एवं हाइड्रो क्लोरो-फ्लोरो कार्बन जैसे रासायनिक पदार्थ रहे हैं। ग्रीन हाउस इफेक्ट के कारण भी ओजोन परत को क्षति पहुँची है।

पृथ्वी पर सीधे आने वाली सौर ऊर्जा की बड़ी मात्रा अवरक्त किरणों के रूप में पृथ्वी के वातावरण के बाहर चली जाती है। ओज़ोन परत पृथ्वी की सुरक्षा कवच है। इसलिए अधिक-से-अधिक पेड़-पौधों को लगाकर और उन्हें सुरक्षा प्रदान करके ओजोन परत के संरक्षण में सहयोग देकर पृथ्वी की रक्षा की जा सकती है।

उपसंहार धरती की रक्षा करने हेतु हमें अपने प्राकृतिक संसाधनों का सदुपयोग करना चाहिए। पृथ्वी की रक्षा हेतु हमें सर्वप्रथम भूमि, जल, वायु इत्यादि सभी के प्रदूषण को नियंत्रित करना होगा। प्रकृति में संतुलन बनाने से धरती की रक्षा की जा सकती है। संतुलन और शुद्ध पर्यावरण के बिना मानव का जीवन कष्टमय हो जाएगा। अतः पृथ्वी की रक्षा हेतु सभी प्राकृतिक संसाधनों का सीमित मात्रा में प्रयोग किया जाना चाहिए।

उत्तर 13.

परीक्षा भवन,
दिल्ली।
दिनांक 18 अगस्त, 20××
सेवा में,
पोस्टमास्टर महोदय,
हैड पोस्ट ऑफिस,
दिल्ली।

विषय अपने क्षेत्र में डाक वितरण की व्यवस्था ठीक न होने हेतु।

महोदय,

मैं बहुत खेद के साथ अपने क्षेत्र में डाक व्यवस्था में हो रही अनियमितताओं और इससे होने वाली समस्याओं की ओर आपका ध्यान आकर्षित कराना चाहता हूँ। पहले यहाँ की डाक व्यवस्था सुचारु रूप से चल रही थी। सभी को अपने पत्र, पार्सल, मनी ऑर्डर आदि समय से मिल रहे। थे, परंतु दो माह पूर्व इस क्षेत्र के डाकिए का स्थानांतरण हो गया तथा उसके स्थान पर श्रीराम नाम का डाकिया यहाँ आया है। अब डाक सप्ताह में केवल दो दिन ही बाँटी जाती है, जिसे घरों में न देकर आस-पास खेल रहे बच्चों या वहीं बैठे व्यक्तियों को दे दिया जाता है। कई बार तो सारी डाक एक ही बच्चे को दे दी गई और उसने वे डाक वहीं फेंक दी। इसमें अनेक महत्त्वपूर्ण पत्र आदि भी थे। इस प्रकार की घटनाएँ कई बार हो चुकी हैं।

मुझे एक रजिस्टर्ड पत्र डाकिए की लापरवाही के कारण 23 मार्च को मिला। इस डाक में मेरा एसएससी का रोल नंबर था, जिसके अनुसार मुझे भोपाल में होने वाली परीक्षा में 23 तारीख को उपस्थित होना था। मैं इस अति महत्त्वपूर्ण परीक्षा को न दे सका। मैंने इस परीक्षा के लिए पिछले 8 माह से तैयारी की थी। ऐसी ही कई घटनाएँ हमारे क्षेत्र में कई लोगों के साथ घटित हो चुकी हैं।

आपसे विनम्र निवेदन है कि संबंधित व्यक्ति के विरुद्ध विभागीय कार्यवाही कर इस क्षेत्र की डाक वितरण व्यवस्था को सही कराने की कृपा करें।

धन्यवाद सहित!
भवदीय
पुनीत भार्गव

अथवा

परीक्षा भवन
नैनीताल
दिनांक 12 सितंबर, 20××
प्रिय अनुज रमन,
सदा खुश रहो।

आशा है, तुम स्वस्थ एवं प्रसन्नचित्त होंगे तथा तुम्हारी पढ़ाई भी ठीक चल रही होगी। मुझे पता चला है कि तुम्हें स्कूल बस से निकाल दिया गया है। बस में तुमने और तुम्हारे साथियों ने मिलकर जो शरारत की थी, उसे सुनकर मेरा सिर शर्म से झुक गया है।

तुम्हारे इस शरारत का कारण तुम नहीं, तुम्हारी बुरी संगति है। तुमने गलत लोगों के साथ मित्रता की है। उनके पास नए-नए वस्त्र, चमचमाती कारें, मोटर साइकिलें और खर्च करने के लिए अपार धन-संपत्ति है। संभवतः वे मन से आवारा, दुश्चरित्र और बिगड़े हुए हैं। उनसे बचकर रहो, अन्यथा वह दिन दूर नहीं, जब तुम्हारी बुरी आदतें तुम्हें ले डूबेंगी। इससे परिवार की प्रतिष्ठा भी मिट्टी में मिल जाएगी। तुम यह मत समझना कि गलत संगति में रहकर भी तुम बचे रहोगे।।

अतः कुसंगति से बचने का एक ही उपाय है कि उनसे दूर रहो। आशा है कि तुम मेरी बातों पर ध्यान दोगे।

शेष सब कुशल है।
तुम्हारा बड़ा भाई
राकेश पंत

उत्तर 14.

राकेश अरे पुनीत! तुम इतने दिनों से कहाँ थे?
पुनीत मित्र! मैं अपनी बहन की शादी में व्यस्त था।
राकेश अच्छा, तुम्हारी बहन की शादी कब थी?
पुनीत अभी परसों ही तो हुई है शादी। इसलिए मैं पिछले पाँच दिनों से विद्यालय नहीं आ रहा था।
राकेश हाँ, तब तो ठीक है। मुझे शादी की बात तो किसी ने बताई ही नहीं। मैं तो तुम्हारे न आने से चिंतित हो रहा था।
पुनीत क्षमा करना दोस्त, वास्तव में इतनी जल्दी सब कुछ हुआ कि किसी को ठीक से निमंत्रण भी नहीं दे पाया।
राकेश कोई बात नहीं। सब ठीक से संपन्न तो हो गया ना?
पुनीत हाँ, हाँ! सब कुछ ठीक से हो गया।

अथवा

सुरेश महेश, यार, मुझे तो एक बार फिर अपने बचपन में जाने का मन करता है। बचपन एक ऐसी अवस्था है, जिसमें बच्चा स्वतंत्र रहकर, बिना परवाह किए हँसता हुआ, अपना समय व्यतीत करता है।
महेश हाँ यार! बचपन के दिनों का तो अपना अलग ही मजा है, किंतु आज आर्थिक युग होने के कारण बच्चों की स्वतंत्रता एवं उनका बचपन धीरे-धीरे छीना जा रहा है।
सुरेश कम उम्र में ही बच्चों को पढ़ाई के बोझ से जूझना पड़ता है। बच्चों के बस्ते का बोझ, कक्षा-कार्य एवं गृह कार्य के बोझ आदि से उनकी स्वतंत्रता समाप्त होती जा रही है।
महेश हाँ यार! आजकल बच्चे कंप्यूटर और टी.वी. के बिना रह ही नहीं पाते। कंप्यूटर में गेम एवं टीवी पर कार्टून, ये दोनों ही बच्चों के लिए अति प्रभावशाली हैं।
सुरेश टी. वी., कंप्यूटर एवं गृह कार्य में व्यस्त होने के कारण बच्चों के पास खेलने के लिए समय ही नहीं रहता, जबकि बच्चों के लिए खेलना अति आवश्यक है। खेलने से बच्चे स्वस्थ रहते हैं एवं उनका शारीरिक व मानसिक विकास भी होता है।
महेश बिलकुल सही यार! बच्चों के लिए खेलना अति आवश्यक है। अतः हमें उनके बचपन को खोने नहीं देना चाहिए।

We hope the CBSE Sample Papers for Class 9 Hindi A Paper 1 help you. If you have any query regarding CBSE Sample Papers for Class 9 Hindi A Paper 1, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.9
Number of Questions Solved 3
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9

Question 1.
A wooden bookshelf has external dimensions as follows : Height = 110cm, Depth = 25cm, Breadth = 85cm (see figure). The thickness of the plank is 5 cm everywhere. The external faces are to be polished and the inner faces are to be painted. If the rate of polishing-is 20 paise per cm2 and the rate of pointing is 10 paise per cm2, find the total expenses required for palishing and painting the surface of the bookshelf.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 img 1
Solution:
Here, l = 85 cm b = 25 cm and h = 110 cm
Area of the bookshelf of outer surface = 2 lb + 2bh + hl
= [2(85 x 25)+ 2(110 x 25)+ 85×110] cm2 = (4250 + 5500 + 9350) cm2 = 19100 cm2
Cost of polishing of the outer surface of bookshelf
= 19100 x \(\frac { 20 }{ 100 }\) = ₹ 3820
Thickness of the plank = 5 cm
Internal height of bookshelf = (110 – 2 x 5) = 100 cm
Internal depth of bookshelf = (25 – 5) = 20 cm
Internal breadth of bookshelf = 85 – 2 x 5 = 75 cm
Hence, area of the internal surface of bookshelf
= 2(75 x 20)+ 2(100x 20)+ 75×100
= 3000 + 4000 + 7500 = 14500 cm2
So, cost of painting of internal surface of bookshelf
= 14500 x \(\frac { 10 }{ 100 }\) = ₹1450
Hence, total costing of polishing and painting = 3820 + 1450= ₹ 5270

Question 2.
The front compound wall of a house is decorated by wooden spheres of diameter 21 cm, placed on small supports as shown in figure. Eight such spheres are-used for this purpose, and are to be painted silver. Each support is a cylinder of radius 1.5 cm and height 7 cm and is to be painted black. Find the cost of paint required if silver paint costs 25 paise per cm2 and black paint costs 5 paise per cm2.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 img 2
Solution:
It is obvious, we have to subtract the cost of the sphere that is resting on the supports while calculating the cost of silver paint.
Surface area to be silver paint
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 img 3

Question 3.
The diameter of a sphere is decreased by 25%. By what per cent does its curved surface area decrease?
Solution:
Let d be the diameter of the sphere
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 img 4
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 img 5

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.9, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.8
Number of Questions Solved 10
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8

Question 1.
Find the volume of a sphere whose radius is
(i) 7 cm
(ii) 0.63 cm
Solution:
(i) We have, r = 7 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 1

Question 2.
Find the amount of water displaced by a solid spherical ball of diameter
(i) 28 cm
(ii) 0.21 m
Solution:
(i) We have, d = 28 cm
⇒ r = 14 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 2

Question 3.
The diameter of a metallic ball is 4.2 cm. What is the mass of the ball, if the density of the metal is 8.9 g per cm3?
Solution:
We have, d = 4.2 cm ⇒ r = 2.1 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 3
The density of the metal per cm3 = 8.9 g
The density of the metal 38.808 cm3 = 38.808 x 8.9 g = 345.39 g
Hence, the mass of the ball = 345.39 g

Question 4.
The diameter of the Moon is approximately one-fourth of the diameter of the Earth. What fraction of the volume of the Earth is the volume of the Moon?
Solution:
Let diameter of the Earth is d3.
We have, diameter of Moon (d1) = \(\frac { 1 }{ 4 }\) diameter of the Earth
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 4

Question 5.
How many litres of milk can a hemispherical bowl of diameter 10.5 cm hold?
Solution:
Diameter = 10.5 cm
⇒ Radius, r = 5.25 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 5

Question 6.
A hemispherical tank is made up of an iron sheet 1 cm thick. If the inner radius is 1 m, then find the volume of the iron used to make the tank.
Solution:
Inner radius (r1) = 1 m -100 cm
Outer radius (r2) = (100 + 1)cm ( ∵ Inner radius + Thickness)
= 101 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 6

Question 7.
Find the volume of a sphere whose surface area is 154 cm2.
Solution:
We have, surface area of a sphere = 154 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 7

Question 8.
A dome of a building is in the form of a hemisphere. From inside, it was white washed at the cost of ₹498.96. If the cost of white washing is ₹2.00 per square metre, find the
(i) inside surface area of the dome,
(ii) volume of the air inside the dome.
Solution:
Cost of white washed = ₹ 498.96
Cost of white washing per square metre = ₹ 2.00
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 8

Question 9.
Twenty seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S’. Find the
(i) radius r’ of the new sphere,
(ii) ratio of S and S’.
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 9

Question 10.
A capsule of medicine is in the shape of a sphere of diameter 3.5 mm. How much medicine (in mm3) is needed to fill this capsule?
Solution:
We have, diameter = 3.5 mm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 img 10

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.8, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.7
Number of Questions Solved 9
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7

Question 1.
Find the volume of the right circular cone with
(i) radius 6 cm, height 7 cm
(ii) radius 3.5 cm, height 12 cm
Solution:
(i) We have, r = 6 cm and h = 7cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 1

Question 2.
Find the capacity in litres of a conical vessel with
(i) radius 7 cm, slant height 25 cm
(ii) height 12 cm, slant height 13 cm
Solution:
(i) We have, r = 7 cm and l = 25 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 2

Question 3.
The height of a cone is 15 cm. If its volume is 1570 cm3, find the radius of the base. (Use π = 3.14)
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 3

Question 4.
If the volume of a right circular cone of height 9 cm is 48 cm3, find the diameter of its base.
Solution:
We have, volume of a right circular cone = 48 π cm3
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 4

Question 5.
A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?
Solution:
We have, diameter = 3.5 m
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 5

Question 6.
The volume of a right circular cone is 9856 cm3. If the diameter of the base is 28 cm, find
(i) height of the cone
(ii) slant height of the cone
(iii) curved surface area of the cone
Solution:
We have, d = 28cm
⇒ r = 14 cm
∵ Volume of a right circular cone = 9856 cm3
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 6
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 7

Question 7.
A right triangle ABC with sides 5 cm, 12 cm and 13 cm is revolved about the side 12 cm. Find the volume of the solid so obtained.
Solution:
On revolving the right ∆ ABC about the side AB, we get a cone as shown in the adjoining figure.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 8
∴ Volume of the solid so obtained = \(\frac { 1 }{ 3 }\) πr2h
= \(\frac { 1 }{ 3 }\) x π x 5 x 5 x 4 = 100π cm3
Hence, the volume of the solid so obtained is 100π cm3.

Question 8.
If the triangle ABC in the Question 7 above is revolved about the side 5 cm, then find the volume of the solid so obtained. Find also the ratio of the volumes of the two solids obtained in Questions 7 and 8.
Solution:
On revolving the right ∆ ABC about the side BC( = 5 cm),
we get a cone as shown in the adjoining figure.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 9
In above Question 7, the volume V2 obtained by revolving the ∆ ABC about the side 12 cm i.e., V2 = 100π cm3.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 10
Hence, the required ratio =5:12

Question 9.
A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m. Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required.
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 img 11

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.7, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.6
Number of Questions Solved 8
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6

Question 1.
The circumference of the base of a cylindrical vessel is 132 cm and its height is 25 cm. How many litres of water can it hold? (1000cm3 =1 L.)
Solution:
We have, circumference of the base = 132 cm
∴ 2πr = 132
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 1

Question 2.
The inner diameter of a cylindrical wooden pipe is 24 cm and its outer diameter is 28 cm. The length of the pipe is 35 cm. Find the mass of the pipe, if 1 cm3 of wood has a mass of 0.6 g.
Solution:
Given, inner diameter = 24 cm
Inner radius (r1) = 12cm
Outer diameter = 28 cm
Outer radius (r2) = 14cm
h = 35cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 2

Question 3.
A soft drink is available in two packs
(i) a tin can with a rectangular base of length 5 cm and width 4 cm, having a height of 15 cm.
(ii) a plastic cylinder with circular base of diameter 7 cm and height 10 cm. Which container has greater capacity and by how much?
Solution:
(i) We have, h = 15cm
l = 5cm, b = 4cm, h = 15 cm
Volume of cuboidical body =l x b x h= 5 x 4 x 15 = 300cm3 …(i)
(ii) We have, Diameter = 7cm
Radius, r = \(\frac { 7 }{ 2 }\) cm
Height, h = 10cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 3
∴ From Eqs. (i) and (ii), we see that volume of a plastic cylinder has greater capacity and its capacity is 385 – 300 = 85 cm3 is more than the tin can.

Question 4.
If the lateral surface of a cylinder is 94.2 cm2 and its height is 5 cm, then find
(i) radius of its base,
(ii) its volume. (Use π = 3.14)
Solution:
We have, lateral surface of a cylinder = 94.2 cm2 and h = 5 cm
∴ 2πrh = 94.2
⇒ 2 x 3.14 x r x 5 = 94.2
⇒ r = \(\frac { 94.2 }{ 31.4 }\)
⇒ r = 3 cm
(i) Hence, radius of base, r = 3cm
(ii) Volume of a cylinder = πr2h= 3.14(3)2x 5
= 3.14 x 9 x 5
= 141.3 cm3

Question 5.
It costs ₹2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of ₹20 per m2, find
(i) inner curved surface area of the vessel,
(ii) radius of the base,
(iii) capacity of the vessel.
Solution:
We have, cost to paint the inner curved surface = ₹2200
Cost to paint per m2 = ₹20
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 4
(i) Inner curved surface area of the vessel = 110m2
(ii) Hence, radius of the base is 1.75 m.
(iii) Capacity of the vessel = Volume of the vessel
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 5

Question 6.
The capacity of a closed cylindrical vessel of height 1 m is 15.4 litres. How many square metres of metal sheet would be needed to make it?
Solution:
Capacity of a closed cylindrical vessel = 15.4 L
= 15.4 x 1000cm3 (∵ 1L = 1000 cm2)
∴ πr2h = 15400 cm3
πr2 x 100 = 15400
r2 = 154 x \(\frac { 7 }{ 22 }\) (∵ h= 1m= 100cm)
⇒ r2 = 7 x 7
⇒ r = 7 cm
Total surface area of closed cylindrical vessel = 2πr(r + h)
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 6

Question 7.
A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and the diameter of the graphite is 1 mm. If the length of. the pencil is 14 cm, find the volume of the wood and that of the graphite.
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 7

Question 8.
A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm. If the bowl is filled with soup to a height of 4 cm, how much soup the hospital has to prepare daily to serve 250 patients?
Solution:
We have, diameter = 7cm
Radius, r = \(\frac { 7 }{ 22 }\) cm
h= 4 cm
Capacity of the cylindrical bowl = Volume of the cylinder = πr2h
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 img 8

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.6, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.5
Number of Questions Solved 9
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5

Question 1.
A matchbox measures 4 cm x 2.5 cm x 1.5 cm. What will be the volume of a packet containing 12 such boxes?
Solution:
Volume of a match box = 4 cm x 2.5 cm x 1.5 cm= 15 cm3
Volume of a packet = 12 x 15 cm3 = 180 cm3

Question 2.
A cuboidal water tank is 6 m long, 5 m wide and 4.5 m deep. How many litres of water can it hold? ( 1 m3 = 1000L)
Solution:
Volume of a cuboidal water tank = 6 m x 5 m x 4.5 m
= 30 x 4.5 m3 = 135 m3
= 135 x 1000L = 135000L (∵ 1 m3 = 1000L)

Question 3.
A cuboidal vessel is 10 m long and 8 m wide. How high must it be made to hold 380 cubic metres of a liquid?
Solution:
Volume of a cuboidal vessel = hold liquid
∴ l x b x h = 380 m3
⇒ 10 x 8 x h = 380
⇒ h = \(\frac { 380 }{ 80 }\)
⇒ h= 4.75m
Hence, the cuboidal vessel must be made 4.75 m high.

Question 4.
Find the cost of digging a cuboidal pit 8 m long, 6 m broad and 3 m deep at the rate of ₹30 per m3.
Solution:
Volume of a cuboidal pit = l x bx h= (8 x 6 x 3)m3 =144 m3
∵ Cost of digging per m3 = ₹ 30
∴ Cost of digging 144m3 = ₹ 30x 144 = ₹ 4320

Question 5.
The capacity of a cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its length and depth are 2.5 m and 10 m, respectively.
Solution:
Given, l = 2.5 m and h = 10m
Let breadth of tank be b.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5 img 1
Hence, breadth of the cuboidal tank is 2 m.

Question 6.
A village, having a population of 4000, requires 150 litres of water per head per day. It has a tank measuring 20 m x 15 m x 6 m. For how many days will the water of this tank last?
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5 img 2

Question 7.
A go down measures 40 m x 25 m x 10 m. Find the maximum number of wooden crates each measuring 15 m x 125 m x 0.5 m that can be stored in the go down.
Solution:
Dimension for godown, l = 40m b = 25 m and c = 10 m
Volume of the godown = l x b x h= 40 m x 25 m x 10 m
Dimension for wooden gate l = 1.5 m, b = 1.25 m, b = 1.25 m, h = 0.5 m
Volume of wooden gates = l x b x h = 1.5 m x 1.25 m x 0.5m
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5 img 3

Question 8.
A solid cube of side 12 cm is cut into eight cubes of equal volume. What will be the side of the new cube? Also, find the ratio between their surface areas.
Solution:
Volume of a solid cube = 12 cm x 12 cm x 12 cm = 1728 cm3
The solid cube is cut into eight cubes of equal volume.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5 img 4

Question 9.
A river 3 m deep and 40 m wide is flowing at the rate of 2 km per hour. How much water will fall into the sea in a minute?
Solution:
Given, l = 2 km= 2 x 1000 m = 2000m
b = 40 m
and h = 3 m
Since, the water flows at the rate of 2 km h-1,
i.e., the water from 2 km of river flows into the sea in one hour.
The volume of water flowing into the sea in one hour = Volume of the cuboid
= l x b x h
= (2000 x 40 x 3) m3
= 240000 m3
∴ The volume of water flowing into the sea in one minute
= \(\frac { 240000 }{ 60 }\) m3
= 4000 m3

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.5, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.4
Number of Questions Solved 9
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4

Question 1.
Find the surface area of a sphere of radius
(i) 10.5 cm
(ii) 5.6 cm
(iii) 14 cm
Solution:
(i) We have, r = 105 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 1

Question 2.
Find the surface area of a sphere of diameter
(i) 14 cm
(ii) 21 cm
(iii) 3.5 m
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 2

Question 3.
Find the total surface area of a hemisphere of radius 10 cm. (Use π = 3.14)
Solution:
We have, r = 10 cm
Total surface area of a hemisphere = 3πr2
= 3 x 3.14 x (10)2
= 9.42 x 100
= 942 cm2

Question 4.
The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.
Solution:
Let initial radius, r1 = 7 cm
After increases, r2 = 14 cm
Surface area for initial balloon = 4πr12 = 4 x \(\frac { 22 }{ 7 }\) x 7 x 7 = 88 x 7
A1 = 616 cm2
Surface area for increasing balloon = 4πr22 = 4x \(\frac { 22 }{ 7 }\) x 14 x 14 = 88 x 28
A2 = 2464 cm2
∴ Required ratio = A1 : A2 = 616 : 2464 = 1 : 4

Question 5.
A hemispherical bowl made of brass has inner diameter 10.5 cm. Find the cost of tin-plating it on the inside at the rate of ₹16 per 100 cm2.
Solution:
We have, inner diameter = 10.5 cm
Inner radius = \(\frac { 10.5 }{ 2 }\) cm = 5.25 cm
Curved surface area of hemispherical bowl of inner side = 2πr2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 3

Question 6.
Find the radius of a sphere whose surface area is 154 cm2.
Solution:
Surface area of a sphere = 154 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 4
Hence, the radius of the sphere is 3.5 cm.

Question 7.
The diameter of the Moon is approximately one-fourth of the diameter of the Earth. Find the ratio of their surface areas.
Solution:
Let diameter of the Earth = d1
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 5

Question 8.
A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm. Find the outer curved surface area of the bowl.
Solution:
Outer radius of the bowl = (Inner radius + Thickness)
= ( 5 + 0.25) cm = 5.25 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 6

Question 9.
A right circular cylinder just encloses a sphere of radius r (see figure). Find
(i) surface area of the sphere,
(ii) curved surface area of the cylinder,
(iii) ratio of the areas obtained in (i) and (ii).
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 img 7
The radius of the sphere = r
Radius of the cylinder = Radius of the sphere = r
Height of the cylinder = Diameter = 2r
(i) Surface area of the sphere A1 = 4πr2
(ii) Curved surface area of the cylinder = 2πrh
A2 = 2π x r x 2r
A2 = 4πr2
(iii) Required ratio = A1 :A2 = 4πr2 : 4πr2 = 1 : 1

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.4, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.3
Number of Questions Solved 8
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3

Question 1.
Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm. Find its curved surface area.
Solution:
We have, diameter = 10.5 cm
Radius (r) = \(\frac { 10.5 }{ 2 }\) = 5.25 cm
and slant height l= 10 cm
Curved surface area = πrl= \(\frac { 22 }{ 7 }\) x 5.25 x 10 = 165 cm2

Question 2.
Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m.
Solution:
We have, slant height l = 21 m
and diameter = 24 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 1

Question 3.
Curved surface area of a cone is 308 cm2 and its slant height is 14 cm. Find
(i) radius of the base and
(ii) total surface area of the cone.
Solution:
We have, slant height, l= 14cm
Curved surface area of a cone = 308 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 2

Question 4.
A conical tent is 10 m high and the radius of its base is 24 m. Find
(i) slant height of the tent.
(ii) cost of the canvas required to make the tent, if the cost of 1 m2 canvas is ₹70.
Solution:
We have, h = 10 m
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 3
Hence, the slant height of the canvas tent is 26 m.
(ii) Canvas required to make the tent = Curved surface area of tent
= πrl
= π x 24 x 26 = 624π m2
∵ Cost of 1 m2 canvas = ₹ 70
Cost of 624n m2 canvas = ₹ 70 x 624π
= ₹ 70x 624 x \(\frac { 22 }{ 7 }\)
= ₹ 10 x 624 x 22
= ₹ 137280
Hence, the cost of the canvas is ₹ 137280.

Question 5.
What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6m? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm. (Use π = 3.14)
Solution:
Let r, h and l be the radius, height and slant height of the tent, respectively.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 4
The extra material required for stitching margins and cutting = 20 cm = Q2 m Hence, the total length of tarpaulin required = 62.8 + Q2 = 63 m

Question 6.
The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of ₹ 210 per 100 m2.
Solution:
We have, slant height, l = 25m
and diameter = 14m
∴ Radius, r= 7m

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 5
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 6

Question 7.
A joker’s cap is in the form of a right circular cone of base radius 7 cm and height 24 cm. Find the area of the sheet required to make 10 such caps.
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 7
∵ The sheet required to make 1 cap = 550 cm2
∴ The sheet required to make 10 caps = 550 x 10= 5500 cm2

Question 8.
A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m. If the outer side of each of the cones is to be painted and the cost of painting is ₹12 per m2, what will be the cost of painting all these cones? (Use π = 3.14 and take \( \sqrt{104} \) = 102)
Solution:
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 img 8
Curved surface area of a cone = πrl = 3.14 x 0.2 x 1.02 = 0.64056 m2
Cost of painting per m2 = ₹12
Cost of painting 0.64056 m2 = ₹12 x 0.64056= ₹ 7.68672
Cost of painting for 1 cone = ₹ 7.68672
Cost of painting 50 cones = ₹ 7.68672x 50= ₹ 384.336= ₹ 384.34

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.3, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 13
Chapter Name Surface Areas and Volumes
Exercise Ex 13.2
Number of Questions Solved 11
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2

Question 1.
The curved surface area of a right circular cylinder of height 14 cm is 88 cm2. Find the diameter of the base of the cylinder.
Solution:
We have, height = 14 cm
Curved surface area Of a right circular cylinder = 88 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 1
r = 1 cm
Diameter = 2 x Radius = 2 x 1 = 2 cm

Question 2.
It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square metres of the sheet are required for the same?
Solution:
Let r be the radius and h be the height of the cylinder.
Given, r = \(\frac { 140 }{ 2 }\) = 70 cm = 0.70 m
and h = 1 m
Metal sheet required to make a closed cylindrical tank
= Total surface area
= 2πr (h + r)
= 2 x \(\frac { 22 }{ 7 }\) x 0.7(1 + 0.70)
= 2 x 22 x 0.1 x 170 = 7.48m2
Hence, the sheet required to make a closed cylindrical tank = 7.48m2

Question 3.
A metal pipe is 77 cm long. The inner ft diameter of a cross section is 4 cm, the outer diameter being 4.4 cm (see figure). Find its
(i) inner curved surface area.
(ii) outer curved surface area.
(iii) total surface area.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 2
Solution:
We have, h = 77cm
Outer diameter (d1) = 4.4 cm
and inner diameter (d2) = 4 cm
Outer radius (r1) = 2.2 cm
Inner radius (r2) = 2cm
(i) Inner curved surface area = 2πr2h = 2x \(\frac { 22 }{ 7 }\) x 2 x 77 = 88 x 11 = 968 cm2
(ii) Outer curved surface area = 2πr1h
= 2 x \(\frac { 22 }{ 7 }\) x 2.2 x 77
= 44 x 2.2 x 11= 1064.8cm2
(iii) Total surface area = Inner curved surface area + Outer curved surface area + Areas of two bases
= 968 + 1064.8 + 2\(\frac { 22 }{ 7 }\) (r12 – r2)
= 968 + 1064.8 + 2 x \(\frac { 22 }{ 7 }\) [(2.2) – r2]
= [2032.8 + 2 x \(\frac { 22 }{ 7 }\) (4.84 – 4)]
= 2032.8 +\(\frac { 44 }{ 7 }\) x 0.84 = 2032.8+ 44x 0.12
= 2032.8 + 5.28 cm2 = 2038.08 cm2

Question 4.
The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m2.
Solution:
We have, diameter of a roller = 84 cm
r = radius of a roller = 42 cm
h = 120 cm
To cover 1 revolution = Curved surface area of roller
= 2πrh
= 2 x \(\frac { 22 }{ 7 }\) x 42 x 120
= 44 x 720 cm2
= 31680 cm2
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 3
Area of the playground = Takes 500 complete revolutions = 500 x 3.168 m2
= 1584 m2

Question 5.
A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of ₹12.50 per m2.
Solution:
Given, Diameter = 50 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 4
Curved surface area of the pillar = 2πrh = 2 x \(\frac { 22 }{ 7 }\) x 0.25 x 35
= 2 x 22 x 0.25 x 0.5 = 55 m2
Cost of painting per m2 = ₹ 12.50
Cost of painting 5.5 m2 = ₹ 12.50×5.5 = ₹ 68.75

Question 6.
Curved surface area of a right circular cylinder is 4.4 m2. If the radius of the base of the cylinder is 0.7 m, find its height.Curved surface area of a right circular cylinder is 4.4 m2. If the radius of the base of the cylinder is 0.7 m, find its height.
Solution:
We have, curved surface area of a right circular cylinder = 4.4m2
∴ 2πrh = 4.4
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 5
Hence, the height of the right circular cylinder is 1 m

Question 7.
he inner diameter of a circular well is 3.5 m. It is 10 m deep. Find
(i) its inner curved surface area.
(ii) the cost of plastering this curved surface at the rate of ₹40 per m2.
Solution:
We have, inner diameter = 3.5 m
∴ inner radius = \(\frac { 3.5 }{ 2 }\) m
and h= 10m
(i) Inner curved surface area = 2πrh = 2x \(\frac { 22 }{ 7 }\) x \(\frac { 3.5 }{ 2 }\) x10 = 22 x 5 = 110m2
(ii) Cost of plastering perm2 = ₹40
Cost of plastering 110 m2 = ₹40x 110= ₹4400

Question 8.
In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm. Find the total radiating surface in the system.
Solution:
We have, h = 28 m
Diameter = 5 cm
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 6
Total radiating surface in the system = Curved surface area of the cylindrical pipe
= 2πrh =2 x \(\frac { 22 }{ 7 }\) x 0.025 x 28 = 4.4 m2

Question 9.
Find
(i) the lateral or curved surface area of a closed cylindrical petrol storage tank that is 4.2 m in diameter and 4.5 m high.
(ii) how much steel was actually used, if \(\frac { 1 }{ 12 }\) of the steel actually used was wasted in making the tank?
Solution:
(i) We have, diameter = 4.2 m
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 7
Since, \(\frac { 1 }{ 2 }\) of the actual steel used was wasted, therefore the area of the steel which was actually used for making the tank
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 8

Question 10.
In figure, you see the frame of a lampshade. It is to be covered with a decorative cloth. The frame has a base diameter of 20 cm and height of 30 cm. A margin of 2.5 cm is to be given for folding it over the top and bottom of the frame. Find how much cloth is required for covering the lampshade.
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 9
Solution:
Given r = \(\frac { 20 }{ 2 }\) cm = 10cm
h = 30 cm
Since, a margin of 2.5 cm is used for folding it over the top and bottom so the total height of frame,
h1 = 30 + 25 + 25
h1 = 35 cm
∴ Cloth required for covering the lampshade = Its curved surface area
NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 img 10

Question 11.
The students of a Vidyalaya were asked to participate in a competition for making and decorating penholders in the shape of a cylinder with a base, using cardboard. Each penholder was to be of radius 3 cm and height 10.5 cm. The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition?
Solution:
Cardboard required by each competitor
= Base area + Curved surface area of one penholder
= πr2 + 2πrh [Given, h = 10.5 cm, r = 13cm]
= \(\frac { 22 }{ 7 }\) x (3)2 + 2 x \(\frac { 22 }{ 7 }\) x 3 x 105
= (28.28 + 198) cm2
= 22828 cm2
For 35 competitors cardboard required = 35 x 22628 = 7920 cm2
Hence, 7920 cm2 of cardboard was required to be bought for the competition.

We hope the NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2 help you. If you have any query regarding NCERT Solutions for Class 9 Maths Chapter 13 Surface Areas and Volumes Ex 13.2, drop a comment below and we will get back to you at the earliest.

CBSE Sample Papers for Class 9 Maths Paper 4

CBSE Sample Papers for Class 9 Maths Paper 4 is part of CBSE Sample Papers for Class 9 Maths . Here we have given CBSE Sample Papers for Class 9 Maths Paper 4

CBSE Sample Papers for Class 9 Maths Paper 4

Board CBSE
Class IX
Subject Maths
Sample Paper Set Paper 4
Category CBSE Sample Papers

Students who are going to appear for CBSE Class 9 Examinations are advised to practice the CBSE sample papers given here which is designed as per the latest Syllabus and marking scheme as prescribed by the CBSE is given here. Paper 4 of Solved CBSE Sample Papers for Class 9 Maths is given below with free PDF download solutions.

Time: 3 Hours
Maximum Marks: 80

General Instructions:

  • All questions are compulsory.
  • Questions 1-6 in Section-A are Very Short Answer Type Questions carrying 1 mark each.
  • Questions 7-12 in Section-B are Short Answer (SA-I) Type Questions carrying 2 marks each.
  • Questions 13-22 in Section-C are Short Answer (SA-II) Type Questions carrying 3 marks each.
  • Questions 23 -30 in Section-D are Long Answer Type Questions carrying 4 marks each.

SECTION-A

Question 1.
Simplify: 32/3 x 72/3.

Question 2.
When P(x) = x3 – ax2 + x is divided by (x – a). Find the remainder.

Question 3.
On which axis does the point A(0, 4) lie?

Question 4.
Euclid divided his book “Elements” into how many chapters?

Question 5.
A coin is tossed 60 times and the tail appears 35 times. What is the probability of getting head?

Question 6.
What is the total surface area (T.S.A.) of a cone whose radius is \(\frac { r }{ 2 }\) and slant height is 2l?

SECTION-B

Question 7.
Factorize: a(a – 1) – b(b – 1).

Question 8.
The angles of a triangle are in the ratio 2:3:7. Find the measure of each angle of triangle.

Question 9.
Find the angle at which the bisectors of any two adjacent angles of a parallelogram intersect.

Question 10.
Show that a median of a triangle divides it into two triangles of equal area.

Question 11.
Find the area of isosceles triangle each of whose equal sides is 13 cm and whose base is 24 cm.

Question 12.
The mean of 40 numbers was found to be 38. Later on, it was detected that a number 56 was misread as 36. Find the correct mean of the (data) given numbers.
OR
Following data gives a number of children in 40 families.
1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3,4, 2, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2,4, 3, 2, 1, 0, 5, 1, 2,4, 3, 4, 1, 6, 2, 2.
Represent it in the form of frequency distribution taking classes 0-2, 1-4, etc.

SECTION-C

Question 13.
Simplify
CBSE Sample Papers for Class 9 Maths Paper 4 13

Question 14.
Find the product: (a-b-c) (a² + b² + c² + ab + ac – bc).
OR
The polynomial f(x) = x4 – 2x3 + 3x2 – ax + b when divided by (x – 1) and (x + 1) leaves the remainder 5 and 19 respectively. Find the value of a and b. Hence find the remainder when fix) is divided by (x – 2).

Question 15.
Fill in the blanks:
(i) For the line 4x + 3y = 12, x-intercept =___ and y-intercept = ___
(ii) If x = 4, y = 3, is a solution of 2x + ky = 14, then k =___
(iii) If the point P(P, 4) lies on the line 3x + y = 10, then P =___

Question 16.
In the adjoining figure, ABCD is a parallelogram in which E and F are the mid points of the sides AB and CD respectively. Prove that the line segment CE and AF trisect the diagonal BD.

Question 17.
Diagonals AC and BD of a trapezium ABCD with AB || DC intersect each other at O. Prove that
ar(∆AOD) = ar(∆BOC)

Question 18.
Construct an isosceles triangle whose base is 5 cm and whose vertical angle is 72°

Question 19.
Plot the points A(-5, 2), B(3, 2), C(-4, -3) and D(6, 0), E(0, 2), F(4, -4) on the graph paper. Write the name of quadrant also.

Question 20.
The total surface area of a cylinder is 462 cm2. Its curved surface area is one-third of its total surface area. Find the volume of the cylinder.

Question 21.
A tent is in the form of a right circular cylinder, surmounted by a cone. The diameter of a cylinder is 24 m. The height of the cylindrical portion is 11m, while the vertex of the cone is 16 m above the ground. Find the area of the canvas required for the tent.

Question 22.
Three coins are tossed simultaneously 150 times and it is found that 3 tails appeared 24 times; 2 tails appeared 45 times 1 tail appeared 72 times and no tail appear 9 times. If three coins are tossed simultaneously at random, find the probability of getting
(i) 3 tails,
(ii) 2 tails,
(iii) 1 tail.

SECTION-D

Question 23.
CBSE Sample Papers for Class 9 Maths Paper 4 23

Question 24.
If the polynomials (2x3 + ax2 + 3x – 5) and (x3 + x2 – 2x +a) leave the same remainder when divided by (x – 2). Find the value of a. Also, find the remainder in each case.

Question 25.
Two men starts from point A and B respectively, 42 km apart. One walks from A to B at 4 km/hr and another walks from B to A at a certain uniform speed. They meet each other after 6 hours. Find the speed of the second man.

Question 26.
In a ∆ABC, ∠B > ∠C. If AM is the bisector of ∠BAC and AN ⊥ BC, prove that ∠MAN = \(\frac { 1 }{ 2 }\) (∠B – ∠C).

Question 27.
In the given figure, ABCD is a square, M is the mid-point of AB and PQ ⊥ CM meets AD at P and CB produced at Q. Prove that
(i) PA = BQ,
(ii) CP = AB + PA

Question 28.
Prove that the sum of either pair of the opposite angles of a cyclic quadrilateral is 180°.
OR
Prove that the opposite angles of a cyclic quadrilateral are supplementary.

Question 29.
A copper wire of diameter 6 mm is evenly wrapped on a cylinder of length 15 cm and diameter 49 cm to cover its whole surface. Find the length and volume of the wire. If the specific gravity of copper be 9 g per cubic cm, find the weight of the wire.

Question 30.
15 students of Govt. School spend the following number of hours in a month for doing cleaning in their street 25, 15, 20, 20, 9, 20, 25, 15, 7, 13, 20, 12, 10, 15, 8.
(i) Find mean, median and mode from above data.
(ii) Which value is depicted from above data?

Solutions

Solution 1.
32/3 x 72/3 = (3 x 7)2/3 = (21)2/3 

Solution 2.
P(x) = x3 – ax2 + x, x – a = 0 ⇒ x = a
When P(x) is divided by (x – a), we get
Remainder = P(+a) = a3 – a(+a)2 + (+a) = a3 – a3 + a = a
Remainder = P(a) = a
⇒ Remainder = a

Solution 3.
y-axis ⇒ coordinates of y-axis is (0, b).

Solutions 4.
13 chapters.

Solution 5.
CBSE Sample Papers for Class 9 Maths Paper 4 5

Solution 6.
CBSE Sample Papers for Class 9 Maths Paper 4 6

Solution 7.
a(a – 1) – b(b – 1) = a2 – a – b2 + b = a2 – b2 – (a – b) = (a – b)(a + b) – (a – b)
= (a – b) (a + b – 1)

Solution 8.
Let the angles of the given triangles measure (2x)°, (3x)° and (7x)°.
2x + 3x + 7x = 180° [By angle sum property of A]
12x = 180° ⇒ x = 15°
Hence angles are
2x = 30°
3x = 45°
7x =105°

Solution 9.
CBSE Sample Papers for Class 9 Maths Paper 4 9
∠A + ∠B = 180°
⇒ \(\frac { 1 }{ 2 }\)∠A + \(\frac { 1 }{ 2 }\)∠B = 90°
In ∆AOB
\(\frac { 1 }{ 2 }\)∠A + \(\frac { 1 }{ 2 }\)∠B + ∠AOB = 180°
⇒ 90° + ∠AOB = 180°
⇒ ∠AOB = 90°

Solution 10.
CBSE Sample Papers for Class 9 Maths Paper 4 10
Given: A ∆ABC in which AD is median.
To Prove: ar(∆ABD) = ar(∆ADC)
Construction: Draw AL ⊥ BC
Proof: BD = DC
(AD is median so D is midpoint of BC)
CBSE Sample Papers for Class 9 Maths Paper 4 10.1
=> ar(∆ABD) = ar(∆ADC) [∵ ar(∆) = \(\frac { 1 }{ 2 }\) x base x height]
Hence, a median of a triangle divides it into two triangles of equal area.

Solution 11.
a = 13,b = 13,c = 24
CBSE Sample Papers for Class 9 Maths Paper 4 11
Hence, area of the triangle (∆) = 60 cm²

Solution 12.
Calculated mean of 40 numbers = 38
∴ Calculated sum of these numbers = 38 x 40 = 1520
Correct sum of these numbers = [1520 – (wrong item) + correct item]
= 150 – 36 + 56 = 1540
The correct mean = \(\frac { 1540 }{ 40 }\) = 38.5
Hence, correct mean = 38.5
CBSE Sample Papers for Class 9 Maths Paper 4 12
Lowest data = 0, highest data = 6
CBSE Sample Papers for Class 9 Maths Paper 4 12.1

Solution 13.
CBSE Sample Papers for Class 9 Maths Paper 4 13
CBSE Sample Papers for Class 9 Maths Paper 4 13.1

Solution 14.
(a – b – c) (a² + b² + c² + ab + ac – bc)
= [a + (-b) + (-c)] [a² + (-b)² + (-c)² – a(-b) – (-b) (-c) – (-c)a]
= a3 + (-b)3 + (-c)3 – 3a (-b)(-c)
= a3 – b3 – c3 – 3abc (a – b – c) (a² + b² + c² + ab + ac – bc)
= a3 – b3 – c3 – 3abc
CBSE Sample Papers for Class 9 Maths Paper 4 14
OR
f(x) = x4 – 2x3 + 3x2 – ax + b
If f(x), divided by (x – 1), let remainder be R1 = 5.
x – 1 = 0, x = 1
CBSE Sample Papers for Class 9 Maths Paper 4 14.1

Solution 15.
(i) For the line 4x + 3y = 12, x-intercept = 3 and y-intercept = 4, i.e., Ans = 3, 4
(ii) If x = 4, y = 3 is a solution of 2x + ky = 14, then k = 2.
=> Putting x = 4 and y = 3 in eqn. 2x + ky = 14
2 x 4 + k x 3 = 14 =>3k = 14 – 8 = 6
3k = 6 => k = 2
(iii) If the point P(P, 4) lies on the line 3x +y = 10, then P = 2
=> Putting x = P and y = 4 in eqn. 3x + y = 10
3P + 4 = 10 =>3P = 6 => P = 2.

Solution 16.
CBSE Sample Papers for Class 9 Maths Paper 4 16
Let BD be intersected by CE and AF at P and Q respectively. AB || DC and AB = DC [opposite sides of || gm]
=> AE = FC and \(\frac { 1 }{ 2 }\) AB = \(\frac { 1 }{ 2 }\) DC => AE || FC and AE = FC
=> AECF is a || gm => AF || CE => EP || AQ and FQ || CP.
In ∆BAQ, E is the mid point of AB.
and EP || AQ so, P is the mid point of BQ
BP = PQ [By converse of midpoint theorem]
Again in ∆DPC, F is mid point of DC and FQ || CP. So Q is the mid point of DP.
=> PQ = QD [By converse of mid point theorem]
∴ BP = PQ = QD
Hence, CE and AF trisect the diagonal BD.

Solution 17.
CBSE Sample Papers for Class 9 Maths Paper 4 17
∆ACD and ∆BCD being on the same base DC and between the same parallels DC and AB, then
ar(∆ACD) = ar(∆BCD)
Subtracting ar(∆DOC) on both sides
ar (∆ACD) – ar(∆DOC) = ar(∆BCD) – ar(∆DOC)
ar(∆AOD) = ar(∆BOC)

Solution 18.
CBSE Sample Papers for Class 9 Maths Paper 4 18
Steps of Construction:
1. Draw a line segment BC = 5 cm
2. Make ∠CBX = 72°, below the line segment
3. Make ∠XBY = 90°
4. Draw the right bisector PQ of BC, intersecting BY at O.
5. With O as centre and radius OB, draw a circle, intersecting PQ at A.
6. Join AB and AC.
Then ∆ABC is the required isosceles triangle in which AB = AC.

Solution 19.
Point A(-5, 2) lies in => II quadrant
B(3, -2) lies in => I quadrant
C(-4, -3) lies in => III quadrant
D(6, 0) lies in => x-axis (abscissa)
E(0, 2) lies in => y-axis (ordinate)
F(4, -4) lies in => IV quadrant
CBSE Sample Papers for Class 9 Maths Paper 4 19

Solution 20.
C.S.A. of cylinder = \(\frac { 1 }{ 3 }\) x (T.S.A. of cylinder)
= \(\frac { 1 }{ 3 }\) x 462 = 154 cm²
(T.S.A. of cylinder – C.S.A. of cylinder) = 462 – 154 = 308 cm²
2πr(h + r) – 2πrh = 308
CBSE Sample Papers for Class 9 Maths Paper 4 20
CBSE Sample Papers for Class 9 Maths Paper 4 20.1

Solution 21.
CBSE Sample Papers for Class 9 Maths Paper 4 21
Radius of the cylinder = \(\frac { 24 }{ 2 }\) = 12
m = R
Height, H = 11 m
Curved surface area of the cylindrical portion
= 2πRH sq. units
= (2π x 12 x 11) m²
= (264 π) m²
Radius of the cone = r = 12m,
height of the cone = (16 – 11) = 5m
CBSE Sample Papers for Class 9 Maths Paper 4 21.1
Hence, the area of the canvas required for tent = 1320 m².

Solution 22.
Total number of trials = 150
Number of times 3 tails appeared = 24
Number of times 2 tails appeared = 45
Number of times 1 tail appeared = 72
Number of times 0 tail appeared = 9
CBSE Sample Papers for Class 9 Maths Paper 4 22
CBSE Sample Papers for Class 9 Maths Paper 4 22.1

Solution 23.
CBSE Sample Papers for Class 9 Maths Paper 4 23

Solution 24.
Let f(x) = 2x3 + ax2 + 3x – 5 and g(x) = x3 + x2 – 2x + a
When f(x) is divided by (x – 2), then remainder = f(2) [x – 2 = 0 => x = 2]
f(2) = 2(2)3 + a(2)2 + 3(2) – 5 = 16 + 4a – 5 + 6 = 17 + 4a
When g(x) is divided by (x – 2), remainder = g(2) [x – 2 = 0 => x = 2]
g(2) = (2)3 + (2)2 -2 x 2 + a = 8 + a
But f(2) = g(2)
17 + 4a = 8 + a
3a = -9 => a = -3
Remainder in each case = 8 + (-3) = 8 – 3 = 5

Solution 25.
Let the speed of another man be x km/h.
Average speed of both men = (x + 4) km/h.
CBSE Sample Papers for Class 9 Maths Paper 4 25
=> 6x = 18 =>x = \(\frac { 18 }{ 6 }\) = 3
x = 3 km/h

Solution 26.
Given: In ∆ABC, in which ∠B > ∠C, AN ⊥ BC and AM is the bisector of ∠A. Also find the angle MAN if ∠B = 65° and ∠C = 30°.
To Prove: ∠MAN = \(\frac { 1 }{ 2 }\) (∠B – ∠C)
Proof: Since AM is the bisector of ∠A
CBSE Sample Papers for Class 9 Maths Paper 4 26
CBSE Sample Papers for Class 9 Maths Paper 4 26.1

Solution 27.
CBSE Sample Papers for Class 9 Maths Paper 4 27
In ∆PAM and ∆QBM
AM = BM (M is the mid point)
∠PAM = ∠QBM (each 90°)
∠PMA = ∠BMQ (V.O.A)
∴ ∆AMP ≅ ∆BMQ (ASA congruency)
∆AMP ≅ ∠BMQ (CPCT)
PA = BQ …(i)
and MP = MQ
Now join PC. Again in ∆CMP and ∆CMQ
PM = MQ (Proved)
∠CMP = ∠CMQ (each 90°)
CM = CM (Common)
∆CMP = ∆CMQ (RHS congruency)
CP = CQ (CPCT)
CP = CQ = BC + BQ = AB + PA[BC = AB, PA = BQ]
CP = AB + PA

Solution 28.
Given: A cyclic quadrilateral ABCD
To Prove: ∠A + ∠C = 180°
∠B + ∠D = 180°
Construction: Join AC and BD
CBSE Sample Papers for Class 9 Maths Paper 4 28
CBSE Sample Papers for Class 9 Maths Paper 4 28.1

Solution 29.
Length of the cylinder = 15 cm
Radius = 24.5 cm, diameter of the wire = 0.6 cm
CBSE Sample Papers for Class 9 Maths Paper 4 29

Solution 30.
Data in ascending order 7, 8, 9, 10, 12, 13, 15, 15, 15, 20, 20, 20, 20, 25, 25 => n = 15.
CBSE Sample Papers for Class 9 Maths Paper 4 30
Median =15
Mode = Maximum number of observations = 20 (4 times)
(ii) Value => Social work.

We hope the CBSE Sample Papers for Class 9 Maths Paper 4 help you. If you have any query regarding CBSE Sample Papers for Class 9 Maths Paper 4, drop a comment below and we will get back to you at the earliest.

NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2

NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 are part of NCERT Solutions for Class 9 Maths. Here we have given NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2.

Board CBSE
Textbook NCERT
Class Class 9
Subject Maths
Chapter Chapter 12
Chapter Name Constructions
Exercise Ex 12.2
Number of Questions Solved 5
Category NCERT Solutions

NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2

Question 1.
Construct a ∆ ABC in which BC = 7 cm, ∠B = 75° and AB + AC = 13 cm.
Solution:
Given that, in ∆ ABC, BC = 7 cm, ∠B = 75° and AS + AC = 13 cm
Steps of construction

  1. Draw the base BC = 7 cm
    NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 1
  2. At the point 6 make an ∠XBC = 75°.
  3. Cut a line segment BD equal to AB + AC = 13 cm from the ray BX.
  4. Join DC.
  5. Make an ∠DCY = ∠BDC.
  6. Let CY intersect BX at A.
    Then, ABC is the required triangle.

Question 2.
Construct a ∆ ABC in which BC = 8 cm, ∠B = 45° and AB – AC = 35 cm.
Solution:
Given that, in ∆ ABC,
BC = 8 cm, ∠B = 45°and AB – AC = 3.5 cm
NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 2
Steps of construction

  1. Draw the base BC = 8 cm
  2. At the point B make an ∠XBC = 45°.
  3. Cut the line segment BD equal to AB – AC = 3.5 cm from the ray BX.
  4. Join DC.
  5. Draw the perpendicular bisector, say PQ of DC.
  6. Let it intersect BX at a point A
  7. Join AC.

Question 3.
Construct a ∆ ABC in which QR = 6 cm, ∠Q = 60° and PR – PQ = 2 cm.
Solution:
Given that, in ∆ ABC, QR = 6 crn ∠Q = 60° and PR – PQ = 2 cm
Steps of construction

  1. Draw the base QR = 6 cm
  2. At the point Q make an ∠XQR = 60°.
  3. Cut line segment QS = PR- PQ (= 2 cm) from the line QX extended on opposite side of line segment QR.
  4. Join SR.
  5. Draw the perpendicular bisector LM of SR.
  6. Let LM intersect QX at P.
  7. Join PR.
    NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 3

Question 4.
Construct a ∆ XYZ in which ∠Y = 30°, ∠Y = 90° and XY + YZ + ZX = 11 cm.
Solution:
Given that, in ∆XYZ ∠Y = 30°, ∠Z = 90° and XY + YZ + ZX = 11cm
NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 4
Steps of construction

  1. Draw a line segment BC = XY + YZ + ZX = 11 cm
  2. Make ∠LBC = ∠Y = 30° and ∠MCB = ∠Z = 90°.
  3. Bisect ∠LBC and ∠MCB. Let these bisectors meet at a point X.
  4. Draw perpendicular bisectors DE of XB and FG of XC.
  5. Let DE intersect BC at Y and FC intersect BC at Z.
  6. Join XY and XZ.
    Then, XYZ is the required triangle.

Question 5.
Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm.
Solution:
Given that, in A ABC, base BC = 12 cm, ∠B = 90° and AB + BC= 18 cm.
Steps of construction

  1. Draw the base BC = 12 cm
  2. At the point 6, make an ∠XBC = 90°.
  3. Cut a line segment BD = AB+ AC = 18 cm from the ray BX.
  4. Join DC.
  5. Draw the perpendicular bisector PQ of CD to intersect SD at a point A

Join AC.
Then, ABC is the required right triangle.
NCERT Solutions for Class 9 Maths Chapter 12 Constructions Ex 12.2 img 5