NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues

NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues

These Solutions are part of NCERT Exemplar Solutions for Class 9 Science . Here we have given NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues

Question 1.
Animals of colder region and fishes of cold water have thicker layer of subcutaneous fat. Describe why ?
Answer:
Subcutaneous fat functions as insulating layer that prevents heat loss from the body in colder environment. Therefore, animals of colder areas and fishes of colder water possess thicker layer of subcutaneous fat. Fat also functions as reserve food during periods of scarcity.

More Resources

Question 2.
Match the items of columns A and B.
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 1
Answer:
a—v,
b—iv,
c—iii,
d—i,
e—ii,
f—vi.

Question 3.
Malch lhe column A witli column B.
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 2
Answer:
a—i,
b—ii,
c—iv,
d—iii,
e—v.

Question 4.
If a potted plant is covered with a glass jar, water vapours appear on the wall of galss jar. Explan why ?
Answer:
Plants lose water vapours in transpiration from their leaves and young stems. When a potted plant is placed inside a glass jar, the water vapours cannot escape but remain inside. The wall of the glass jar being cool, water vaours condense there.

Question 5.
Name the different components of xylem and draw a living component.
Answer:
Xylem is made of four components — tracheids, vessels (tracheae), xylem fibres and xylem parenchyma. Only xylem parenchyma is the living component.
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 3

Question 6.
Draw and identify different elements of phloem.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 4
The various components are phloem fibres, phloem parenchyma, sieve tubes and companion cells.

Question 7.
Write true (T) and false (F).
(a) Epithelial tissue is protective tissue in animal body.
(b) The lining of blood vessels, lung alveoli and kidney tubules are all made up of epithelial tissue.
(c) Epithelial cells have a lot of intercellular spaces.
(d) Epithelial layer is permeable layer.
(e) Epithelial layer does not allow regulation of materials between body and external environment.
Answer:
a—T,
b—T,
c—F,
d—T,
e—F.

Question 8.
Differentiate between voluntary and involuntary muscles. Given an example of each type.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 5

Question 9.
Differentiate the following activities on the basis of voluntary (V) or involuntary (IV) muscles.
(a) Jumping of frog,
(b) Pumping of heart
(c) Writing with hand
(d) Movement of chocolate in your intestine.
Answer:
a—V,
b—IV,
c—V,
d—IV.

Question 10.
Fill in the blanks :

  1. Lining of blood vessels is made up of ……………… .
  2. Lining of small intestine is made up of ………….. .
  3. Lining of kidney tubules is made up of ……………. .
  4. Epithelial cells with cilia are found in ……………… of our body.

Answer:

  1. squamous epithelium
  2. columuar epithelium
  3. cuboidal epithelium
  4. respiratory tract.

Question 11.
Water Hyacinth floats on water surface. Explain. (CCE 2012)
Answer:
Water Hyacinth has spongy petioles which enclose a lot of air in its aerenchyma. Air makes the plant lighter than water so that it is able to float on surface of water.

Question 12.
Which structure protects the plant body against the invasion of parasites ?
Answer:
Epidermis is the outer protective layer of plant body which does not allow the parasites to gain entry into the internal tissues due to

  1. Absence of intercellular spaces
  2. Thick outer walls
  3. Deposition of cutin and wax in the cuticle covering the epidermis
  4. Silica and other deposidons.

Question 13.
Fill in the blanks :
(a) Cork cells possess on …………….. their walls that makes them impervious to gases and water.
(b) ……………. have tubular cells with perforated walls and are living in nature.
(c) Bone possesses a hard matrix composed of …………….. and ……………
Answer:
a —suberin,
b —sieve tubes,
c—calcium, phosphorus.

Question 14.
Why is epidermis important for the plants ?
Answer:

  1. Strength: Collenchyma is a living mechanical tissue which provides both mechanical strength as well as flexibility. Because of collenchyma, plant organs can bend without breaking.
  2. Growth: Collenchyma allows growth and elongation of organs.
  3. Storage: Being living tissue, collenchyma stores food.
  4. Photosynthesis: Collenchyma cells may contain chloroplasts and take part in photosynthesis.

Question 15.
Fill in the blanks :

  1. …………….. are forms of complex tissue.
  2. …………….. have guard cells.
  3. Cells of cork contain a chemical called ……………..
  4. Husk of coconut is made of ……………. tissue.
  5. …………… and …………….. are both conducting tissues.
  6. …………….. gives flexibility in plants.
  7. Xylem transports …………….. and ……………. from soil.
  8. Phloem transports ……………… from …………….. to other parts of the plant.

Answer:

  1. Xylem and phloem
  2. Stomata
  3. Suberin
  4. sclerenchyma
  5. Xylem, phloem,
  6. Collenchyma
  7. water, minerals
  8. food, leaves.

Question 16.
Differentiate between sclerenchyma and parenchyma tissue. Draw diagram as well.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 6
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 7
Differences between Sclerenchyma and Parenchyma
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 8

Question 17.
Describe the structure and function of different types of epithelial tissues. Draw well labelled diagrams.
Answer:

  1. Protection: Surface epithelium lying over the skin protects the body from drying up, microbes, chemicals and injury. A similar function of protection is carried out by epithelium lining mouth, nasal tract and alimentary canal.
  2. Absorption: Some epithelia have become specialised for absorption, e.g., intestinal mucosa.
  3. Epithelium lining the different parts of uriniferous tubules takes part in ultrafiltration, secretion and reabsorption to produce urine.

NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 9

Question 18.
Draw well albelled diagrams of various types of muscles found in human body.
Answer:
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 10
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 11
NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues image - 12

Question 19.
Give reasons for
(a) Meristematic cells have a prominent nucleus and dense cytoplasm but they lack vacuole.
(b) Intercellular spaces are absent in sclerencymatous tissue.
(c) We get a crunchy and granular feeling when we chew pear fruit.
(d) Branches of a tree move and bend freely in high wind velocity.
(e) It is difficult to pull out the husk of coconut.
Answer:
{a) They are undergoing divisions and do not store food.
(b) They have lignified walls and form bundles for mechanical function.
(c) It has stone cells or sclereids.
(d) Collenchyma provides them flexibility.
(e) Sderenchyma fibres are closely packed.

Question 20.
List the characteristics of cork. How is it formed ? (CCE 2014) Mention its role.
Answer:
(a) Characteristics:

  1. Outer Tissue: Cork is outer protective tissue of older stems and roots.
  2. Dead cells: The mature cork cells become dead and filled with tannins, resins and air.
  3. Compact Tissue: Intercellular spaces are absent. Cork is a compact tissue.
  4. Suberin: Cork cells are impermeable due to deposition of suberin in their walls.
  5. Multilayered: Cork consists of several layers of cells.
  6. Shape: Cork cells are rectangular in outline.
  7. Lenticels: At places cork bears aerating pores called lenticels.

(b) Formation: Cork is formed from a secondary lateral meristem called phellogen or cork cambium. It develops subepidermally in older stems and roots. Cells cut out on the outer side by cork cambium form cork or phellem while cells cut out on the inner side give rise to secondary cortex or phelloderm. The whole tissue (cork, cork cambium and secondary cortex) is called periderm.
(c) Functions:

  1. Protection: Epidermis is the outer protective layer of the plant that prevents entry of pathogens and pests,
  2. Water Loss: By presence of cuticle, it checks the rate of water loss from aerial parts,
  3. Hair: Occurrence of epidermal hair produces an insulating stationary layer of air. (iv) Stomata. They regulate exchange of gases. Stomata are also the seat of major loss of water in transpiration. Transpiration keeps the aerial parts cool.
  4. Epiblema or epidermis of the root alongwith its root hairs takes part in absorption of water and minerals.

Question 21.
Why are xylem and phloem called complex tissues ? How are they different from one another ?
Answer:
Xylem and phloem are called complex tissues because each of them is made of more than one type of cells which coordinate their activities to perform a common function.
Differences between Xylem and Phloem

Xylem Phloem
I. Conduction. It conducts water and minerals. Phloem conducts organic solutes or food materials.
2. Direction. Conduction is mostly unidirectional. Conduction can be bidirectional.
3. Channels. Conducting channels or tracheary elements are tracheids and vessels. Conducting channels are sieve tubes.
4. Components. Xylem consists of tracheids, vessels, xylem parenchyma and xylem fibres. Phloem consists of sieve tubes, companion cells, phloem parenchyma and phloem fibres.
5. Dead/Living Parts. Three of the four elements of xylem are dead (viz., tracheids, vessels and fibres). Only xylem parenchyma is living. Three of the four elements are living (viz., sieve tubes, companion cells and phloem parenchyma). Only phloem/fibres are dead.
6. Mechanical Strength. In addition to conduction, xylem provides mechanical strength to the plant. There is little mechanical function of phloem.

Question 22.
(a) Differentiate between meristematic and permanent tissues in plants
(b) Define the process of differentiation.
(c) Name any two simple and two complex permanent tissues in plants.
Answer:
(a) Differences between Meristematic and Permanent Tissues

Meristematic Tissue Permanent Tissue
1. Nature. The cells are small, isodiametric and undifferentiated. The cells are large, differentiated with different shapes.
2. Spaces. Intercellular spaces are absent. Intercellular spaces are often present.
3. Vacuoles. They are nearly absent. Large central vacuole occurs in living permanent cells.
4. Nucleus. It is large and prominent. Nucleus is less conspicuous.
5. Wall. Cell wall is thin. Cell wall is thin or thick.
6. Divisions. The cells undergo regular divisions. The cells do not normally divide.
7. Metabolism. Rate of metabolism is high. Metabolic rate is comparatively slower.
8. Life. The cells are living. The cells may be living or dead.
9. Function. It takes part in growth. It provides protection, support, conduction,photosynthesis, storage, etc.

(b) Differentiation : The process of loss of ability to divide and taking up a permanent shape, size, structure and fucntion by newly formed cells is called differentiation.
(c)

  1. Simple Permanent Tissues : Parenchyma, Collenchyma, Sderenchyma.
  2. Complex Permanent Tissues : Xylem, phloem.

Hope given NCERT Exemplar Solutions for Class 9 Science Chapter 6 Tissues are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14E

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14E

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14E.

Other Exercises

Question 1.
Solution:
Mean marks of 7 students = 226
∴Total marks of 7 students = 226 x 1 = 1582
Marks obtained by 6 of them are 340, 180, 260, 56, 275 and 307
∴ Sum of marks of these 6 students = 340 + 180 + 260 + 56 + 275 + 307 = 1418
∴ Marks obtained by seventh student = 1582 – 1418 = 164 Ans.

Question 2.
Solution:
Mean weight of 34 students = 46.5 kg.
∴ Total weight of 34 students = 46.5 x 34 kg = 1581 kg
By including the weight of teacher, the mean weight of 35 persons = 500 g + 46.5 kg
= 46.5 + 0.5 = 47.0 kg
∴ Total weight = 47.0 x 35 = 1645 kg
∴ Weight of the teacher = (1645 – 1581) kg = 64 kg Ans.

Question 3.
Solution:
Mean weight of 36 students = 41 kg
∴ Total weight of 36 students = 41 x 36 kg = 1476 kg
After leaving one student, number of students = 36 – 1 =35
Their new mean = 41.0 – 200g = (41.0 – 0.2) kg = 40.8 kg.
∴ Total weight of 35 students = 40.8 x 35 = 1428 kg
∴ Weight of leaving student = (1476 – 1428) kg = 48 kg Ans.

Question 4.
Solution:
Average weight of 39 students = 40 kg
∴ Total weight of 39 students = 40 x 39 = 1560 kg
By admitting of a new student, no. of students = 39 + 1 =40
and new mean = 40 kg – 200 g = 40 kg – 0.2 kg = 39.8 kg
∴Weight of 40 students = 39.8 x 40 kg = 1592 kg
∴Weight of new student = 1592 – 1560 kg = 32 kg Ans.

Question 5.
Solution:
Average salary of 20 workers = Rs. 7650
∴Their total salary = Rs. 7650 x 20 = Rs. 153000
By adding the salary of the manager, their mean salary = Rs. 8200
∴Their total salary = Rs. 8200 x 21 = Rs. 172200
∴Salary of the manager = Rs. 172200 – Rs. 153000 = Rs. 19200 Ans.

Question 6.
Solution:
Average wage of 10 persons = Rs. 9000
Their total wage = Rs. 9000 x 10 = Rs. 90000
Wage of one person among them = Rs. 8100
and wage of new member = Rs. 7200
∴ New total wage = Rs. (90000 – 8100 + 7200) = Rs. 89100
Their new mean wage = Rs.\(\frac { 89100 }{ 10 } \) = Rs. 8910

Question 7.
Solution:
Mean consumption of petrol for 7 months of a year = 330 litres
Mean consumption of petrol for next 5 months = 270 litres
∴Total consumption for first 7 months = 7 x 330 = 2320 l
and total consumption for next 5 months = 5 x 270 = 1350 l
Total consumption for 7 + 5 = 12 months = 2310 + 1350 = 3660 l
Average consumption = \(\frac { 3660 }{ 12 } \) = 305 liters per month.

Question 8.
Solution:
Total numbers of numbers = 25
Mean of 15 numbers = 18
∴Total of 15 numbers = 18 x 15 = 270
Mean of remaining 10 numbers = 13
∴Total = 13 x 10 = 130
and total of 25 numbers = 270 + 130 = 400
∴Mean = \(\frac { 400 }{ 25 } \) = 16 Ans.

Question 9.
Solution:
Mean weight of 60 students = 52.75 kg.
Total weight = 52.75 x 60 = 3165 kg
Mean of 25 out of them = 51 kg.
∴Their total weight = 51 x 25 = 1275 kg
∴ Total weight of remaining 60 – 25 = 35 students = 3165 – 1275 = 1890 kg 1890
Mean weight = \(\frac { 1890 }{ 35 } \) = 54 kg Ans.

Question 10.
Solution:
Average increase of 10 oarsman = 1.5 kg.
∴ Total increased weight =1.5 x 10 = 15kg
Weight of out going oarsman = 58 kg .
∴ Weight of new oarsman = 58 + 15 = 73 kg Ans.

Question 11.
Solution:
Mean of 8 numbers = 35
∴Total of 8 numbers = 35 x 8 = 280
After excluding one number, mean of 7 numbers = 35 – 3 = 32
Total of 7 numbers = 32 x 7 = 224
Hence excluded number = 280 – 224 = 56 Ans.

Question 12.
Solution:
Mean of 150 items = 60
Total of 150 items = 60 x 150 = 9000
New total = 9000 + 152 + 88 – 52 – 8 = 9000 + 240 – 60 = 9180
∴New mean = \(\frac { 9180 }{ 150 } \) = 61.2 Ans.

Question 13.
Solution:
Mean of 31 results = 60
∴Total of 31 results = 60 x 31 = 1860
Mean of first 16 results = 58
∴Total of first 16 results = 58 x 16 = 928
and mean of last 16 results = 62
∴Total of last 16 results = 62 x 16 = 992
∴16th result = (928 + 992) – 1860 = 1920 – 1860 = 60 Ans.

Question 14.
Solution:
Mean of 11 numbers = 42
∴Total of 11 numbers = 42 x 11 = 462
Mean of first 6 numbers = 37
∴Total of first 6 numbers = 37 x 6 = 222
Mean of last 6 numbers = 46
∴Total of last 6 numbers = 46 x 6 = 276
∴6th number = (222 + 276) – 462 = 498 – 462 = 36 Ans.

Question 15.
Solution:
Mean weight of 25 students = 52 kg
∴ Total weight of 25 students = 52 x 25 = 1300 kg
Mean weight of first 13 students = 48 kg
∴ Total weight of first 13 students = 48 x 13 kg = 624 kg
Mean of last 13 students = 55 kg
∴Total of last 13 students = 55 x 13 kg = 715 kg
∴Weight of 13th student = (624 + 715) – 1300 = 1339 – 1300 = 39 kg Ans.

Question 16.
Solution:
Mean of 25 observations = 80
Total of 25 observations = 80 x 25 = 2000
Mean of another 55 observations = 60
∴ Total of these 55 observations = 60 x 55 = 3300
Total number of observations = 25 + 55 = 80
and total of 80 numbers = 2000 + 3300 = 5300
Mean of 80 observations = \(\frac { 5300 }{ 80 } \) = 66.25 Ans.

Question 17.
Solution:
Marks in English = 36
Marks in Hindi = 44
Marks in Mathematics = 75
Marks in Science = x
∴Total number of marks in 4 subjects = 36 + 44 + 75 + x = 155 + x
Average marks in 4 subjects = 50
∴Total marks = 50 x 4 = 200
∴155 + x = 200
=> x = 200 – 155
=> x = 45
Hence, marks in Science = 45 Ans.

Question 18.
Solution:
Mean of monthly salary of 75 workers = Rs. 5680
Total salary of 75 workers = Rs. 5680 x 75 = Rs. 426000
Mean salary of 25 among them = Rs. 5400
Total of 25 workers = Rs. 5400 x 25 = Rs. 135000
Mean salary of 30 among them = Rs. 5700
∴Total of 30 among them = Rs. 5700 x 30 = Rs. 171000
∴ Total salary of 25 + 30 = 55 workers = Rs. 135000 + 171000 = Rs. 306000
∴Total salary of remaining 75 – 55 = 20 workers = Rs. 426000 – 306000 = Rs. 120000
∴ Mean of remaining 20 workers = Rs. \(\frac { 120000 }{ 20 } \) = Rs. 6000 Ans.

Question 19.
Solution:
Let distance between two places = 60 km
∴Time taken at the speed of 15 km/h = \(\frac { 60 }{ 15 } \) = 4 hours
and time taken at speed of 10 km/h for coming back = \(\frac { 60 }{ 10 } \) = 6 hours
Total the taken = 4 + 6 = 10
hours and distance covered = 60 + 60 = 120 km
∴Average speed = \(\frac { 120 }{ 10 } \) =12 km/hr.

Question 20.
Solution:
No. of total students = 50
No. of boys = 40
∴ No. of girls = 50 – 40 = 10
Average weight of class = 44kg
∴Total weight of 50 students = 44 x 50 = 2200 kg
Average weight of 10 girls = 40 kg
∴Total weight = 40 x 10 = 400 kg
Total weight of 40 boys = 2200 – 400 = 1800 kg
∴Average weight of 40 boys = \(\frac { 1800 }{ 40 } \)kg = 45 kg Ans.

Hope given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14E are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Value Based Questions in Science for Class 9 Chapter 6 Tissues

Value Based Questions in Science for Class 9 Chapter 6 Tissues

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 6 Tissues

Question 1.
Name four economically important plant fibres derived from sclerenchyma. Why they differ in their softness and durability ?
Answer:
Four fibres : Flax, Hemp, Jute, Coconut. In Coconut, the fibres are obtained from husk (mesocarp) of fruit. In others they are obtained from stems, being bast or phloem fibres.
The fibres differ in their hardness and strength. Hardness is due to excessive deposition of lignin as in Coconut and Jute. Because of it, they are prone to deterioration on wetting. Coconut fibres are used in preparation of mats while Jute fibres are used in preparing sacks. Flax and Hemp yield high quality durable clothing. They have smaller amounts of lignin.

More Resources

Question 2.
What is bark ? Give its importance. Why are certain barks used in medicines ?
Answer:
Bark is the outer protective covering of stems and roots of woody plants. It is mostly made up of cork that consists of several layers of compactly arranged dead rectangular cells. The cells are impermeable due to deposition of suberin. They contain air, tannins, resins and alkaloids.
Importance:

  1. Protection against water loss due to impermeable nature of cell walls.
  2. Protection against microbes due to impervious nature.
  3. Insulation from extremes of temperature, mechanical injury and browsing by animals.
  4. Cork is used commercially in stoppers for bottles, insulation boards, shock absorbers, linoleum and sports goods.
  5. Tannin rich bark is used in dyes.
  6. Inner bark of Cinnamon is a common spice.

Bark in Medicines: 

  1. Quinine is obtained from the bark of Cinchona,
  2. Taxol is got from bark of Taxus. Medicinal barks possess alkaloids.

Question 3.
What is cartilage ? What is its importance to bones ?
Answer:
Cartilage is flexible soft supportive connective tissue having non-vascularised solid matrix of chondrin with fluid filled lacunae containing 1-4 living cells called chondrocytes.
Importance to Bones :

  1. Cartilage occurs over articular surfaces of bones where it protects them from frictional damage during movement against one another.
  2. It lies at sternal ends of ribs to give them flexibility in movement during breathing,
  3. It occurs as intervertebral discs to function as cushions in the vertebral column.

Question 4.
Why are medullated nerve fibres more efficient than non-medullated nerve fibres ?
Answer:
Medullated nerve fibres are those axons which have a covering of fat rich medullary sheath below the neurilemma. They are more efficient than non-medullated nerve fibres due to two reasons.

  1. Being well insulated, the fibres do not meet any interference in impulse conduction from other nearby nerve fibres.
  2. Medullated nerve fibres have nodes of Ranvier. An impulse does not travel all along the axon but jumps from one node of Ranvier to the next. By this saltation medullated nerve fibres are some fifty times (50 X) more efficient in impulse transmission as compared to non-medullated nerve fibres.

Hope given Value Based Questions in Science for Class 9 Chapter 6 Tissues are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

Value Based Questions in Science for Class 9 Chapter 5 The Fundamental Unit of Life

Value Based Questions in Science for Class 9 Chapter 5 The Fundamental Unit of Life

These Solutions are part of Value Based Questions in Science for Class 9. Here we have given Value Based Questions in Science for Class 9 Chapter 5 The Fundamental Unit of Life

Question 1.

  1. A fruit is green when unripe but become beautifully coloured when ripe. How does this change occur ?
  2. What is the importance of this change ?
  3. What is mutualism involved ?
  4. Give an example of such a mutualism in our society.

Answer:

  1. An unripe fruit is green because it contains chloroplasts in its skin. Towards ripening of the fruit, the chloroplasts are changed into chromoplasts which give the fruit an attractive non-green (reddish, pink, purple, brownish) colour.
  2. The colour of ripe fruits attracts animals. The coloured fruits are often sweet and fleshy. Animals, like birds, come to feed over the fruits.
  3. While eating the flesh of fruits, the animals pick up the seeds and take them to different places visited by them. This helps in the dispersal of seeds. Therefore, both the animals and the plants are benefitted. It is mutualism.
  4. Mutualism or mutual dependence is the law of human society. No body can live and work alone. Every body is dependent on somebody else for most of one’s activities. For example, household helper, municipal worker, transport staff etc. work for you for which you pay so that the worker is able to run his/her family.

More Resources

Question 2.
How does a cell show division of labour ? Is there any parallelism between the working of the cell and our society ?
Answer:
A cell has a number of organelles, viz., chloroplasts, mitochondria, Golgi apparatus, lysosomes, ribosomes, endoplasmic reticulum, nucleus, etc. Every organelle performs its specific function like food manufacture by chloroplasts, energy liberation by mitochondria, protein synthesis by ribosomes, transport by endoplasmic reticulum, control by nucleus. All the organelles coordinate their activities for the smooth functioning of the cell.
Human society has also a number of specialised activities being performed by different groups of persons, e.g., electricians, carpenters, plumbers, masons, transporters, scavengers, traffic controllers, teachers, doctors, agriculturists, engineers, manufactures, shopkeepers, managers, security persons, etc. All of them are however, coordinating with one another towards the smooth running of the society.

Question 3.
What are the functions of cell membrane ? How is the cell membrane able to perform diverse functions ? Give an example of diversity in functioning in any segment of human society.
Answer:
Cell membrane has a number of functions like providing shape to cell, acting as mechanical barrier between cell contents and environment, selective permeability, endocytosis, recognition, flow of information, passage of water, flow of external fluids by cilia or absorption of nutrients by its microvilli.
The diverse functions of cell membrane are possible due to adaptation of proteins to form channels, enzymes, carriers, receptors, etc. and their attachment to small carbohydrates.
Every human being is performing diverse functions. Seema is daughter of her parents, sister of her brother, student of her school, a badminton player, a friend to several classfellows, a companion of her pet, a gardener in home garden, a helper to her mother, a caretaker of her grand parents, an active social worker, etc.

Question 4.
What is the basis of long life of pickles and jams ? What lesson one gets from this fact ?
Answer:
Pickles and jams possess high concentration of osmotically active substances (salt in pickles, sugar in jams). They do not allow the microbial spores to germinate over them. Even on contamination, a microbe cannot survive in them as it will undergo exosmosis and die. Because of being microbe/germ free, pickles and jams do not get easily spoiled.
An active and long life can also occur in humans if they live in hygienic environment, avoid coming in contact with contaminated articles and visiting crowded places.

Hope given Value Based Questions in Science for Class 9 Chapter 5 The Fundamental Unit of Life are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

HOTS Questions for Class 9 Science Chapter 6 Tissues

HOTS Questions for Class 9 Science Chapter 6 Tissues

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 6 Tissues

Question 1.
What will happen if

  1. Apical meristem is damaged or cut ?
  2. Cork is not formed in older stems and roots ?
  3. Cells of epithelial tissue are not compactly packed.
  4. Lymph is not returned to blood ?

Answer.

  1. Apical Meristem Removed: Growth in length will stop.
  2. Cork is Not Formed: If cork is not formed in older stems and roots, the outer tissues will rupture with the increase in girth and expose the interior to desiccation and infection.
  3. Epithelial tissue will not be effective as protective impermeable layer.
  4. Lymph is Not Returned to Blood: Blood volume will decrease while passage of materials from tissues to blood and vice versa would be dislocated.

More Resources

Question 2.

  1. Identify figures : A,B and C.
    HOTS Questions for Class 9 Science Chapter 6 Tissues image - 1
  2. Which one of them provides both mechanical strength as well as flexibility ?
  3. Which one of them is commercially exploited to obtain Hemp and Jute ?
  4. Which one of them can be modified to form air cavities in aquatic plants ?
  5. Which one of them has heavy deposition of lignin ?

Answer:

  1. A- T.S sclerenchyma fibres.
    B- T.S parenchyma cells.
    C- T. S collenchyma.
  2. Mechanical strength and flexibility: Collenchyma.
  3. Hemp and Jute: Sclerenchyma fibres.
  4. Aerenchyma: Modification of parenchyma.
  5. Deposition of Lignin: Sclerenchyma.

Question 3.

  1. Identify the figure. What is its function ?
    HOTS Questions for Class 9 Science Chapter 6 Tissues image - 2
  2. Label X, Y and Z .
  3. Which ones of them develop from the same mother cell ?
  4. X loses its nucleus in mature state. Still it remains alive. How ?

Answer:

  1. Identification: Phloem tissue.
    Function: Conduction of organic food.
  2. X – Sieve tube cell.
    Y – Sieve plate
    Z – Companion cell.
  3. From Same Mother Cell: Sieve tube cell and companion cell.
  4. Living of Sieve Tube Cells: It is controlled by nucleated companion cells with which they are connected by plasmodesmata.

Question 4.

  1. Identify figures A and B.
    HOTS Questions for Class 9 Science Chapter 6 Tissues image - 3
  2. Which is called tesselated and pavement epithelium ?
  3. Which one lines gastro-intestinal tract and epiglottis ?
  4. Which one allows diffusion of substances ?

Answer:

  1. Identification:
    A- Squamous epithelium
    B- Ciliated columnar epithelium.
  2. Pavement Epithelium: Squamous epithelium.
    Tesselated Epithelium: Squamous epithelium.
  3. Gastro-intesinal Tract: Simple columnar epithelium.
    Epiglottis: Stratified columnar epithelium.
  4. Diffusion of Substances: Simple epithelium, especially squamous one.

Question 5.

  1. Identify the figure.
    HOTS Questions for Class 9 Science Chapter 6 Tissues image - 4
  2. Label X, Y and Z.
  3. What is the chemical composition of material of the figure ?
  4. What is the function of Y

Answer:

  1. Identification: Section of bone.
  2. X- Periosteum.
    Y- Haversian canal
    Z- Canaliculus (plural canaliculi)
  3. Composition,
    1. Ossein (30-40%)
    2. Mineral matter
      (60-70%) of calcium and magnesium carbonate and phosphate.
  4. Function of Haversian Canal: To carry nutrients to the interior of the bone.

Question 6.
What will happen if

  1. Bone is dipped in HCl
  2. Bone is dried ?

Answer:

  1. Bone Dipped in HCl. Mineral matter dissolves. Only organic matter is left.
  2. Dried Bone. Organic matter destroyed. Only mineral matter is left.

Question 7.
What will happen if

  1. Ligament gets overstretched ?
  2. Heparin is absent in blood ?
  3. Striated muscles contract rapidly for longer duration ?

Answer:

  1. Oversretching of Ligament: Sprain.
  2. Absence of Heparin in Blood: Blood coagulation occurs inside the blood vessels.
  3. Striated Muscle Contraction: Fatigue due to accumulation of lactic acid.

Question 8.

  1. Identify figures A and B .
    HOTS Questions for Class 9 Science Chapter 6 Tissues image - 5
  2. Label X, Y and Z.
  3. Which one acts as impulse booster ?
  4. Which one is under control of our will ?

Answer:

  1. Identification:
    A – Cardiac muscle fibres.
    B – Striated muscle fibre.
  2. X- Intercalated disc.
    Y- Dark band.
    Z- Light band.
  3. Impulse Booster: Intercalated disc.
  4. Control of Will: Striated or skeletal muscle.

Hope given HOTS Questions for Class 9 Science Chapter 6 Tissues are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2

RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2

Other Exercises

Question 1.
The exterior angles obtained on producing the base of a triangle both ways are 104° and 136°. Find all the angles of the triangle.
Solution:
In ∆ABC, base BC is produced both ways to D and E respectivley forming ∠ABE = 104° and ∠ACD = 136°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q1.1
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q1.2

Question 2.
In the figure, the sides BC, CA and AB of a ∆ABC have been produced to D, E and F respectively. If ∠ACD = 105° and ∠EAF = 45°, find all the angles of the ∆ABC.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q2.1
Solution:
In ∆ABC, sides BC, CA and BA are produced to D, E and F respectively.
∠ACD = 105° and ∠EAF = 45°
∠ACD + ∠ACB = 180° (Linear pair)
⇒ 105° + ∠ACB = 180°
⇒ ∠ACB = 180°- 105° = 75°
∠BAC = ∠EAF (Vertically opposite angles)
= 45°
But ∠BAC + ∠ABC + ∠ACB = 180°
⇒ 45° + ∠ABC + 75° = 180°
⇒ 120° +∠ABC = 180°
⇒ ∠ABC = 180°- 120°
∴ ∠ABC = 60°
Hence ∠ABC = 60°, ∠BCA = 75°
and ∠BAC = 45°

Question 3.
Compute the value of x in each of the following figures:
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.1

RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.2
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.3
Solution:
(i) In ∆ABC, sides BC and CA are produced to D and E respectively
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.4
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.5
(ii) In ∆ABC, side BC is produced to either side to D and E respectively
∠ABE = 120° and ∠ACD =110°
∵ ∠ABE + ∠ABC = 180° (Linear pair)
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.6
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.7

(iii) In the figure, BA || DC
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q3.8

Question 4.
In the figure, AC ⊥ CE and ∠A: ∠B : ∠C = 3:2:1, find the value of ∠ECD.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q4.1
Solution:
In ∆ABC, ∠A : ∠B : ∠C = 3 : 2 : 1
BC is produced to D and CE ⊥ AC
∵ ∠A + ∠B + ∠C = 180° (Sum of angles of a triangles)
Let∠A = 3x, then ∠B = 2x and ∠C = x
∴ 3x + 2x + x = 180° ⇒ 6x = 180°
⇒ x = \(\frac { { 180 }^{ \circ } }{ 6 }\)  = 30°
∴ ∠A = 3x = 3 x 30° = 90°
∠B = 2x = 2 x 30° = 60°
∠C = x = 30°
In ∆ABC,
Ext. ∠ACD = ∠A + ∠B
⇒ 90° + ∠ECD = 90° + 60° = 150°
∴ ∠ECD = 150°-90° = 60°

Question 5.
In the figure, AB || DE, find ∠ACD.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q5.1
Solution:
In the figure, AB || DE
AE and BD intersect each other at C ∠BAC = 30° and ∠CDE = 40°
∵ AB || DE
∴ ∠ABC = ∠CDE (Alternate angles)
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q5.2
⇒ ∠ABC = 40°
In ∆ABC, BC is produced
Ext. ∠ACD = Int. ∠A + ∠B
= 30° + 40° = 70°

Question 6.
Which of the following statements are true (T) and which are false (F):
(i) Sum of the three angles of a triangle is 180°.
(ii) A triangle can have two right angles.
(iii) All the angles of a triangle can be less than 60°.
(iv) All the angles of a triangle can be greater than 60°.
(v) All the angles of a triangle can be equal to 60°.
(vi) A triangle can have two obtuse angles.
(vii) A triangle can have at most one obtuse angles.
(viii) If one angle of a triangle is obtuse, then it cannot be a right angled triangle.
(ix) An exterior angle of a triangle is less than either of its interior opposite angles.
(x) An exterior angle of a triangle is equal to the sum of the two interior opposite angles.
(xi) An exterior angle of a triangle is greater than the opposite interior angles.
Solution:
(i) True.
(ii) False. A right triangle has only one right angle.
(iii) False. In this, the sum of three angles will be less than 180° which is not true.
(iv) False. In this, the sum of three angles will be more than 180° which is not true.
(v) True. As sum of three angles will be 180° which is true.
(vi) False. A triangle has only one obtuse angle.
(vii) True.
(viii)True.
(ix) False. Exterior angle of a triangle is always greater than its each interior opposite angles.
(x) True.
(xi) True.

Question 7.
Fill in the blanks to make the following statements true:
(i) Sum of the angles of a triangle is ………
(ii) An exterior angle of a triangle is equal to the two …….. opposite angles.
(iii) An exterior angle of a triangle is always …….. than either of the interior opposite angles.
(iv) A triangle cannot have more than ………. right angles.
(v) A triangles cannot have more than ……… obtuse angles.
Solution:
(i) Sum of the angles of a triangle is 180°.
(ii) An exterior angle of a triangle is equal to the two interior opposite angles.
(iii) An exterior angle of a triangle is always greater than either of the interior opposite angles.
(iv) A triangle cannot have more than one right angles.
(v) A triangles cannot have more than one obtuse angles.

Question 8.
In a ∆ABC, the internal bisectors of ∠B and ∠C meet at P and the external bisectors of ∠B and ∠C meet at Q. Prove that ∠BPC + ∠BQC = 180°.
Solution:
Given : In ∆ABC, sides AB and AC are produced to D and E respectively. Bisectors of interior ∠B and ∠C meet at P and bisectors of exterior angles B and C meet at Q.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q8.1
To prove : ∠BPC + ∠BQC = 180°
Proof : ∵ PB and PC are the internal bisectors of ∠B and ∠C
∠BPC = 90°+ \(\frac { 1 }{ 2 }\) ∠A …(i)
Similarly, QB and QC are the bisectors of exterior angles B and C
∴ ∠BQC = 90° + \(\frac { 1 }{ 2 }\) ∠A …(ii)
Adding (i) and (ii),
∠BPC + ∠BQC = 90° + \(\frac { 1 }{ 2 }\) ∠A + 90° – \(\frac { 1 }{ 2 }\) ∠A
= 90° + 90° = 180°
Hence ∠BPC + ∠BQC = 180°

Question 9.
In the figure, compute the value of x.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q9.1
Solution:
In the figure,
∠ABC = 45°, ∠BAD = 35° and ∠BCD = 50° Join BD and produce it E
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q9.2

Question 10.
In the figure, AB divides ∠D AC in the ratio 1 : 3 and AB = DB. Determine the value of x.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q10.1
Solution:
In the figure AB = DB
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q10.2
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q10.3

Question 11.
ABC is a triangle. The bisector of the exterior angle at B and the bisector of ∠C intersect each other at D. Prove that ∠D = \(\frac { 1 }{ 2 }\) ∠A.
Solution:
Given : In ∠ABC, CB is produced to E bisectors of ext. ∠ABE and into ∠ACB meet at D.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q11.1
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q11.2

Question 12.
In the figure, AM ⊥ BC and AN is the bisector of ∠A. If ∠B = 65° and ∠C = 33°, find ∠MAN.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q12.1
Solution:
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q12.2
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q12.3

Question 13.
In a AABC, AD bisects ∠A and ∠C > ∠B. Prove that ∠ADB > ∠ADC.
Solution:
Given : In ∆ABC,
∠C > ∠B and AD is the bisector of ∠A
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q13.1
To prove : ∠ADB > ∠ADC
Proof: In ∆ABC, AD is the bisector of ∠A
∴ ∠1 = ∠2
In ∆ADC,
Ext. ∠ADB = ∠l+ ∠C
⇒ ∠C = ∠ADB – ∠1 …(i)
Similarly, in ∆ABD,
Ext. ∠ADC = ∠2 + ∠B
⇒ ∠B = ∠ADC – ∠2 …(ii)
From (i) and (ii)
∵ ∠C > ∠B (Given)
∴ (∠ADB – ∠1) > (∠ADC – ∠2)
But ∠1 = ∠2
∴ ∠ADB > ∠ADC

Question 14.
In ∆ABC, BD ⊥ AC and CE ⊥ AB. If BD and CE intersect at O, prove that ∠BOC = 180°-∠A.
Solution:
Given : In ∆ABC, BD ⊥ AC and CE⊥ AB BD and CE intersect each other at O
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q14.1
To prove : ∠BOC = 180° – ∠A
Proof: In quadrilateral ADOE
∠A + ∠D + ∠DOE + ∠E = 360° (Sum of angles of quadrilateral)
⇒ ∠A + 90° + ∠DOE + 90° = 360°
∠A + ∠DOE = 360° – 90° – 90° = 180°
But ∠BOC = ∠DOE (Vertically opposite angles)
⇒ ∠A + ∠BOC = 180°
∴ ∠BOC = 180° – ∠A

Question 15.
In the figure, AE bisects ∠CAD and ∠B = ∠C. Prove that AE || BC.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q15.1
Solution:
Given : In AABC, BA is produced and AE is the bisector of ∠CAD
∠B = ∠C
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 Q15.2
To prove : AE || BC
Proof: In ∆ABC, BA is produced
∴ Ext. ∠CAD = ∠B + ∠C
⇒ 2∠EAC = ∠C + ∠C (∵ AE is the bisector of ∠CAE) (∵ ∠B = ∠C)
⇒ 2∠EAC = 2∠C
⇒ ∠EAC = ∠C
But there are alternate angles
∴ AE || BC

Hope given RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry Ex 11.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1

RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1

Other Exercises

Question 1.
A coin is tossed 1000 times with the following frequencies
Head : 455, Tail : 545.
Compute the probability for each event.
Solution:
Total number of events (m) 1000
(i) Possible events (m) 455
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 455 }{ 1000 } \)
= \(\frac { 91 }{ 200 } \) = 0.455
(ii) Possible events (m) = 545
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 545 }{ 1000 } \) = \(\frac { 109 }{ 200 } \) = 0.545

Question 2.
Two coins are tossed simultaneously 500 times with the following frequencies of different
outcomes:
Two heads : 95 times
One tail : 290 times
No head: 115 times
Find the probability of occurrence of each of these events.
Solution:
Two coins are tossed together simultaneously 500 times
∴ Total outcomes (n) 500
(i) 2 heads coming (m) = 95 times
∴Probability P(A) = \(\frac { m }{ n } \)
= \(\frac { No. of possible events }{ Total number of events } \)
= \(\frac { 95 }{ 500 } \) = \(\frac { 19 }{ 100 } \) = 0.19
(ii) One tail (m) = 290 times
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 290 }{ 500 } \) = \(\frac { 580 }{ 1000 } \) = \(\frac { 58 }{ 100 } \) = 0.58
(iii) No head (m) = 115 times
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 115 }{ 500 } \) = \(\frac { 23 }{ 100 } \) = 0.23

Question 3.
Three coins are tossed simultaneously 1oo times with the following frequencies of different outcomes:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 3.1
If the three coins are simultaneously tossed again, compute the probability of:
(i) 2 heads coming up.
(ii) 3 heads coming up.
(iii) at least one head coming up.
(iv) getting more heads than tails.
(v) getting more tails than heads.
Solution:
Three coins are tossed simultaneously 100 times
Total out comes (n) = 100
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 3.2
(i) Probability of 2 heads coming up (m) = 36
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 36 }{ 100 } \) = 0.36
(ii) Probability of 3 heads (m) = 12
ProbabilityP(A)= \(\frac { m }{ n } \) = \(\frac { 12 }{ 100 } \) = 0.12
(iii) Probability of at least one head coming up (m) = 38 + 36 + 12 = 86
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 86 }{ 100 } \) = 0.86
(iv) Probability of getting more heads than tails (m) = 36 + 12 = 48
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 48 }{ 100 } \) = 0.48
(v) Getting more tails than heads (m) = 14 + 38 = 52
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 52 }{ 100 } \) = 0.52

Question 4.
1500 families with 2 children were selected randomly and the following data were recorded:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 4.1
If a family is chosen at random, compute the probability that it has:
(i) No girl
(ii) 1 girl
(iii) 2 girls
(iv) at most one girl
(v) more girls than boys
Solution:
Total number of families (n) = 1500
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 4.2
(i) Probability of a family having no girls (m) = 211
∴Probability P(A)= \(\frac { m }{ n } \) = \(\frac { 211 }{ 1500 } \) = 0.1406
(ii) Probability of a family having one girl (in) = 814
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 814 }{ 1500 } \) = 0.5426
(iii) Probability of a family having 2 girls (m) = 475
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 475 }{ 1500 } \) = 0.3166
(iv) Probability of a family having at the most one girls
∴m = 814 + 211 = 1025
∴Probability P(A) =\(\frac { m }{ n } \) = \(\frac { 1025 }{ 1500 } \) = 0.6833
(v) Probability of a family having more girls than boys (m) = 475
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 475 }{ 1500 } \) = 0.3166

Question 5.
In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays. Find the probability that on a ball played:
(i) he hits boundary
(ii) he does not hit a boundary.
Solution:
Total balls played (n) 30
No. of boundaries = 6
(i) When the batsman hits the boundary = 6
∴m = 6
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 6 }{ 30 } \) = \(\frac { 1 }{ 5 } \) = 0.2
(ii) When the batsman does not hit the boundary (m) = 30 – 6 = 24
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 24 }{ 30 } \) = \(\frac { 4 }{ 5 } \) = 0.8

Question 6.
The percentage of marks obtained by a student in monthly unit tests are given below:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 6.1
Find the probability that the student gets:
(i) more than 70% marks
(ii) less than 70% marks
(iii) a distinction.
Solution:
Percentage of marks obtain in
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 6.2
(i) Probability of getting more than 70% marks (m) = In unit test II, III, V = 3
Total unit test (n) = 5
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 3 }{ 5 } \) = 0.6
(ii) Getting less then 70% marks = units test I and IV
∴m = 2
Total unit test (n) = 5
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 2 }{ 5 } \) = 0.4
(iii) Getting a distinction = In test V (76 of marks)
∴m = 1
Total unit test (n) = 5
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 1 }{ 5 } \) = 0.2

Question 7.
To know the opinion of the students about Mathematics, a survey of 200 students was conducted. The data is recorded in the following table:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 7.1
Find the probability that a student chosen at random
(i) likes Mathematics
(ii) does not like it.
Solution:
Total number of students (n) = 200
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 7.2
(i) Probability of students who like mathematics (m) = 135
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 135 }{ 200 } \) = 0.675
(ii) Probability of students who dislike mathematics (m) = 65
∴Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 65 }{ 200 } \) = 0.325

Question 8.
The blood groups of 30 students of class IX are recorded as follows:
A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O,
A, AB, O, A, A, O, O, AB, B, A, O, B, A, B, O,
A student is selected at random from the class from blood donation. Find the probability that the blood group of the student chosen is:
(i) A (ii) B (iii) AB (iv) O
Solution:
Total number of students of IX class = 30
No. of students of different blood groups
A AB B O
9 3 6 12
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 8.1

Question 9.
Eleven bags of wheat flour, each marked 5 kg, actually contained the following weights of flour
(in kg):
4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Solution:
Number of total bags (n) = 11
No. of bags having weight more than 5 kg (m) = 7
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 7 }{ 11 } \)

Question 10.
Following table shows the birth month of 40 students of class IX.
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 10.1
Find the probability that a student was born in August.
Solution:
Total number of students (n) = 40
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 10.2
Number of students who born in Aug. (m) = 6
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 6 }{ 40 } \) = \(\frac { 3 }{ 20 } \)

Question 11.
Given below is the frequency distribution table regarding the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days.
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 11.1
Find the probability of concentration of sulphur dioxide in the interval 0.12 – 0.16 on any of these days.
Solution:
Total number of days (n) = 30
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 11.2
Probability of cone, of S02 of the interval 0.12-0.16 (m) = 2
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 2 }{ 30 } \) = \(\frac { 1 }{ 15 } \)

Question 12.
A company selected 2400 families at random and survey them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed in the table below:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 12.1
If a family is chosen, find the probability that the family is:
(i)earning Rs 10000-13000 per month and owning exactly 2 vehicles.
(ii)earning Rs 16000 or more per month and owning exactly I vehicle.
(iii)earning less than Rs 7000 per month and does not own any vehicle.
(iv)earning Rs 13000-16000 per month and owning more than 2 vehicle.
(v)owning not more than 1 vehicle.
(vi)owning at least one vehicle.
Solution:
Total number of families (n) = 2400
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 12.2
(i) Number of families earning income Rs 10000-13000 and owning exactly 2 vehicles (m) = 29
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 29 }{ 2400 } \)
(ii) Number of families earning income Rs 16000 or more having one vehicle (m) = 579
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 579 }{ 2400 } \)
(iii) Number of families earning income less than Rs 7000 having no own vehicle (m) = 10
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 10 }{ 2400 } \) = \(\frac { 1 }{ 240 } \)
(iv) Number of families having X13000 to X16000 having more than two vehicles (m) = 25
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 25 }{ 2400 } \) = \(\frac { 1 }{ 96 } \)
(v) Number of families owning not more than one vehicle (m)
= 10 + 1 + 2 + 1 + 160 + 305 + 533 + 469 + 579 = 2062
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 2062 }{ 2400 } \) = \(\frac { 1031 }{ 1200 } \)
(vi) Number of families owning at least one vechile (m) = 2048 + 192 + 110 = 2356
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 2356 }{ 2400 } \) = \(\frac { 589 }{ 600 } \)

Question 13.
The following table gives the life time of 400 neon lamps:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 13.1
A bulb is selected at random. Find the probability that the life time of the selected bulb is: (i) less than 400 (ii) between 300 to 800 hours (iii) at least 700 hours.
Solution:
Total number of neon lamps (n) = 400
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 13.2
A bulb is chosen:
(i)No. of bulbs having life time less than 400 hours (m) = 14
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 14 }{ 400 } \) = \(\frac { 7 }{ 200 } \)
(ii)No. of bulbs having life time between 300 to 800 hours (m) = 14 + 56 + 60 + 86 + 74 = 290
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 290 }{ 400 } \) = \(\frac { 29 }{ 40 } \)
(iii)No. of bulbs having life time at least 700 hours (m) = 74 + 62 + 48 = 184
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 184 }{ 400 } \) = \(\frac { 23 }{ 50 } \)

Question 14.
Given below is the frequency distribution of wages (in Rs) of 30 workers in a certain factory:
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 14.1
A worker is selected at random. Find the probability that his wages are:
(i) less than Rs 150
(ii) at least Rs 210
(iii) more than or equal to 150 but less than Rs 210.
Solution:
Number of total workers (n) = 30
RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 14.2
A worker is selected.
(i)No. of workers having less than Rs 150 (m) = 3 + 4 = 7
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 7 }{ 30 } \)
(ii)No. of workers having at least Rs 210 (m) = 4 + 3 = 7
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 7 }{ 30 } \)
(iii)No. of workers having more than or equal to Rs 150 but less than Rs 210 = 5 + 6 + 5 = 16
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 16 }{ 30 } \) = \(\frac { 8 }{ 15 } \)

 

Hope given RD Sharma Class 9 Solutions Chapter 25 Probability Ex 25.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4

Other Exercises

Question 1.
In the figure, AB || CD and ∠1 and ∠2 are in the ratio 3 : 2. Determine all angles from 1 to 8.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q1.1
Solution:
AB || CD and l is transversal ∠1 : ∠2 = 3 : 2
Let ∠1 = 3x
Then ∠2 = 2x
But ∠1 + ∠2 = 180° (Linear pair)
∴ 3x + 2x = 180° ⇒ 5x = 180°
⇒ x = \(\frac { { 180 }^{ \circ } }{ 5 }\)  = 36°
∴ ∠1 = 3x = 3 x 36° = 108°
∠2 = 2x = 2 x 36° = 72°
Now ∠1 = ∠3 and ∠2 = ∠4 (Vertically opposite angles)
∴ ∠3 = 108° and ∠4 = 72°
∠1 = ∠5 and ∠2 = ∠6 (Corresponding angles)
∴ ∠5 = 108°, ∠6 = 72°
Similarly, ∠4 = ∠8 and
∠3 = ∠7
∴ ∠8 = 72° and ∠7 = 108°
Hence, ∠1 = 108°, ∠2= 72°
∠3 = 108°, ∠4 = 72°
∠5 = 108°, ∠6 = 72°
∠7 = 108°, ∠8 = 12°

Question 2.
In the figure, l, m and n are parallel lines intersected by transversal p at X, Y and Z respectively. Find ∠l, ∠2 and ∠3.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q2.1
Solution:
l || m || n and p is then transversal which intersects then at X, Y and Z respectively ∠4 = 120°
∠2 = ∠4 (Alternate angles)
∴ ∠2 = 120°
But ∠3 + ∠4 = 180° (Linear pair)
⇒ ∠3 + 120° = 180°
⇒ ∠3 = 180° – 120°
∴ ∠3 = 60°
But ∠l = ∠3 (Corresponding angles)
∴ ∠l = 60°
Hence ∠l = 60°, ∠2 = 120°, ∠3 = 60°

Question 3.
In the figure, if AB || CD and CD || EF, find ∠ACE.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q3.1
Solution:
Given : In the figure, AB || CD and CD || EF
∠BAC = 70°, ∠CEF = 130°
∵ EF || CD
∴ ∠ECD + ∠CEF = 180° (Co-interior angles)
⇒ ∠ECD + 130° = 180°
∴ ∠ECD = 180° – 130° = 50°
∵ BA || CD
∴ ∠BAC = ∠ACD (Alternate angles)
∴ ∠ACD = 70° (∵ ∠BAC = 70°)
∵ ∠ACE = ∠ACD – ∠ECD = 70° – 50° = 20°

Question 4.
In the figure, state which lines are parallel and why.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q4.1
Solution:
In the figure,
∵ ∠ACD = ∠CDE = 100°
But they are alternate angles
∴ AC || DE

Question 5.
In the figure, if l || m,n|| p and ∠1 = 85°, find ∠2.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q5.1
Solution:
In the figure, l || m, n|| p and ∠1 = 85°
∵ n || p
∴ ∠1 = ∠3 (Corresponding anlges)
But ∠1 = 85°
∴ ∠3 = 85°
∵ m || 1
∠3 + ∠2 = 180° (Sum of co-interior angles)
⇒ 85° + ∠2 = 180°
⇒ ∠2 = 180° – 85° = 95°

Question 6.
If two straight lines are perpendicular to the same line, prove that they are parallel to each other.
Solution:
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q6.1

Question 7.
Two unequal angles of a parallelogram are in the ratio 2:3. Find all its angles in degrees.
Solution:
In ||gm ABCD,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q7.1
∠A and ∠B are unequal
and ∠A : ∠B = 2 : 3
Let ∠A = 2x, then
∠B = 3x
But ∠A + ∠B = 180° (Co-interior angles)
∴ 2x + 3x = 180°
⇒ 5x = 180°
⇒ x = \(\frac { { 180 }^{ \circ } }{ 5 }\)  = 36°
∴ ∠A = 2x = 2 x 36° = 72°
∠B = 3x = 3 x 36° = 108°
But ∠A = ∠C and ∠B = ∠D (Opposite angles of a ||gm)
∴ ∠C = 72° and ∠D = 108°
Hence ∠A = 72°, ∠B = 108°, ∠C = 72°, ∠D = 108°

Question 8.
In each of the two lines is perpendicular to the same line, what kind of lines are they to each other?
Solution:
AB ⊥ line l and CD ⊥ line l
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q8.1
∴ ∠B = 90° and ∠D = 90°
∴ ∠B = ∠D
But there are corresponding angles
∴ AB || CD

Question 9.
In the figure, ∠1 = 60° and ∠2 = (\(\frac { 2 }{ 3 }\))3 a right angle. Prove that l || m.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q9.1
Solution:
In the figure, a transversal n intersects two lines l and m
∠1 = 60° and
∠2 = \(\frac { 2 }{ 3 }\) rd of a right angle 2
= \(\frac { 2 }{ 3 }\) x 90° = 60°
∴ ∠1 = ∠2
But there are corresponding angles
∴ l || m

Question 10.
In the figure, if l || m || n and ∠1 = 60°, find ∠2.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q10.1
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q10.2
l || m || n and a transversal p, intersects them at P, Q and R respectively
∠1 = 60°
∴ ∠1 = ∠3 (Corresponding angles)
∴ ∠3 = 60°
But ∠3 + ∠4 = 180° (Linear pair)
60° + ∠4 = 180° ⇒ ∠4 = 180° – 60°
∴ ∠4 = 120°
But ∠2 = ∠4 (Alternate angles)
∴ ∠2 = 120°

Question 11.
Prove that the straight lines perpendicular to the same straight line are parallel to one another.
Solution:
Given : l is a line, AB ⊥ l and CD ⊥ l
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q11.1
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q11.2

Question 12.
The opposite sides of a quadrilateral are parallel. If one angle of the quadrilateral is 60°, find the other angles.
Solution:
In quadrilateral ABCD, AB || DC and AD || BC and ∠A = 60°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q12.1
∵ AD || BC and AB || DC
∴ ABCD is a parallelogram
∴ ∠A + ∠B = 180° (Co-interior angles)
60° + ∠B = 180°
⇒ ∠B = 180°-60°= 120°
But ∠A = ∠C and ∠B = ∠D (Opposite angles of a ||gm)
∴ ∠C = 60° and ∠D = 120°
Hence ∠B = 120°, ∠C = 60° and ∠D = 120°

Question 13.
Two lines AB and CD intersect at O. If ∠AOC + ∠COB + ∠BOD = 270°, find the measure of ∠AOC, ∠COB, ∠BOD and ∠DOA.
Solution:
Two lines AB and CD intersect at O
and ∠AOC + ∠COB + ∠BOD = 270°
But ∠AOC + ∠COB + ∠BOD + ∠DOA = 360° (Angles at a point)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q13.1
∴ 270° + ∠DOA = 360°
⇒ ∠DOA = 360° – 270° = 90°
But ∠DOA = ∠BOC (Vertically opposite angles)
∴ ∠BOC = 90°
But ∠DOA + ∠BOD = 180° (Linear pair)
⇒ 90° + ∠BOD = 180°
∴ ∠BOD= 180°-90° = 90° ,
But ∠BOD = ∠AOC (Vertically opposite angles)
∴ ∠AOC = 90°
Hence ∠AOC = 90°,
∠COB = 90°,
∠BOD = 90° and ∠DOA = 90°

Question 14.
In the figure, p is a transversal to lines m and n, ∠2 = 120° and ∠5 = 60°. Prove that m || n.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q14.1
Solution:
Given : p is a transversal to the lines m and n
Forming ∠l, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7 and ∠8
∠2 = 120°, and ∠5 = 60°
To prove : m || n
Proof : ∠2 + ∠3 = 180° (Linear pair)
⇒ 120°+ ∠3 = 180°
⇒ ∠3 = 180°- 120° = 60°
But ∠5 = 60°
∴ ∠3 = ∠5
But there are alternate angles
∴ m || n

Question 15.
In the figure, transversal l, intersects two lines m and n, ∠4 = 110° and ∠7 = 65°. Is m || n?
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q15.1
Solution:
A transversal l, intersects two lines m and n, forming ∠1, ∠2, ∠3, ∠4, ∠5, ∠6, ∠7 and ∠8
∠4 = 110° and ∠7 = 65°
To prove : Whether m || n or not
Proof : ∠4 = 110° and ∠7 = 65°
∠7 = ∠5 (Vertically opposite angles)
∴ ∠5 = 65°
Now ∠4 + ∠5 = 110° + 65° = 175°
∵ Sum of co-interior angles ∠4 and ∠5 is not 180°.
∴ m is not parallel to n

Question 16.
Which pair of lines in the figure are parallel? Give reasons.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q16.1
Solution:
Given : In the figure, ∠A = 115°, ∠B = 65°, ∠C = 115° and ∠D = 65°
∵ ∠A + ∠B = 115°+ 65°= 180°
But these are co-interior angles,
∴ AD || BC
Similarly, ∠A + ∠D = 115° + 65° = 180°
∴ AB || DC

Question 17.
If l, m, n are three lines such that l ||m and n ⊥ l, prove that n ⊥ m.
Solution:
Given : l, m, n are three lines such that l || m and n ⊥ l
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q17.1
To prove : n ⊥ m
Proof : ∵ l || m and n is the transversal.
∴ ∠l = ∠2 (Corresponding angles)
But ∠1 = 90° (∵ n⊥l)
∴ ∠2 = 90°
∴ n ⊥ m

Question 18.
Which of the following statements are true (T) and which are false (F)? Give reasons.
(i) If two lines are intersected by a transversal, then corresponding angles are equal.
(ii) If two parallel lines are intersected by a transversal, then alternate interior angles are equal.
(iii) Two lines perpendicular to the same line are perpendicular to each other.
(iv) Two lines parallel to the same line are parallel to each other.
(v) If two parallel lines are intersected by a transversal, then the interior angles on the same side of the transversal are equal.
Solution:
(i) False. Because if lines are parallel, then it is possible.
(ii) True.
(iii) False. Not perpendicular but parallel to each other.
(iv) True.
(v) False. Sum of interior angles on the same side is 180° not are equal.

Question 19.
Fill in the blanks in each of the following to make the statement true:
(i) If two parallel lines are intersected by a transversal then each pair of corresponding angles are ……..
(ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are …….
(iii) Two lines perpendicular to the same line are ……… to each other.
(iv) Two lines parallel to the same line are ……… to each other.
(v) If a transversal intersects a pair of lines in such away that a pair of alternate angles are equal, then the lines are …….
(vi) If a transversal intersects a pair of lines in such away that the sum of interior angles on the same side of transversal is 180°, then the lines are …….
Solution:
(i) If two parallel lines are intersected by a transversal, then each pair of corresponding angles are equal.
(ii) If two parallel lines are intersected by a transversal, then interior angles on the same side of the transversal are supplementary.
(iii) Two lines perpendicular to the same line are parallel to each other.
(iv) Two lines parallel to the same line are parallel to each other.
(v) If a transversal intersects a pair of lines in such away that a pair of alternate angles are equal, then the lines are parallel.
(vi) If a transversal intersects a pair of lines in such away that the sum of interior angles on the same side of transversal is 180°, then the lines are parallel.

Question 20.
In the figure, AB || CD || EF and GH || KL. Find ∠HKL.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q20.1
Solution:
In the figure, AB || CD || EF and KL || HG Produce LK and GH
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q20.2
∵ AB || CD and HK is transversal
∴ ∠1 = 25° (Alternate angles)
∠3 = 60° (Corresponding angles)
and ∠3 = ∠4 (Corresponding angles)
= 60°
But ∠4 + ∠5 = 180° (Linear pair)
⇒ 60° + ∠5 = 180°
⇒ ∠5 = 180° – 60° = 120°
∴ ∠HKL = ∠1 + ∠5 = 25° + 120° = 145°

Question 21.
In the figure, show that AB || EF.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q21.1
Solution:
Given : In the figure, AB || EF
∠BAC = 57°, ∠ACE = 22°
∠ECD = 35° and ∠CEF =145°
To prove : AB || EF,
Proof : ∠ECD + ∠CEF = 35° + 145°
= 180°
But these are co-interior angles
∴ EF || CD
But AB || CD
∴ AB || EF

Question 22.
In the figure, PQ || AB and PR || BC. If ∠QPR = 102°. Determine ∠ABC. Give reasons.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q22.1
Solution:
In the figure, PQ || AB and PR || BC
∠QPR = 102°
Produce BA to meet PR at D
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q22.2
∵ PQ || AB or DB
∴ ∠QPR = ∠ADR (Corresponding angles)
∴∠ADR = 102° or ∠BDR = 102°
∵ PR || BC
∴ ∠BDR + ∠DBC = 180°
(Sum of co-interior angles) ⇒ 102° + ∠DBC = 180°
⇒ ∠DBC = 180° – 102° = 78°
⇒ ∠ABC = 78°

Question 23.
Prove that if the two arms of an angle are perpendicular to the two arms of another angle, then the angles are either equal or supplementary.
Solution:
Given : In two angles ∠ABC and ∠DEF AB ⊥ DE and BC ⊥ EF
To prove: ∠ABC + ∠DEF = 180° or ∠ABC = ∠DEF
Construction : Produce the sides DE and EF of ∠DEF, to meet the sides of ∠ABC at H and G.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q23.1
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q23.2
Proof: In figure (i) BGEH is a quadrilateral
∠BHE = 90° and ∠BGE = 90°
But sum of angles of a quadrilateral is 360°
∴ ∠HBG + ∠HEG = 360° – (90° + 90°)
= 360° – 180°= 180°
∴ ∠ABC and ∠DEF are supplementary
In figure (if) in quadrilateral BGEH,
∠BHE = 90° and ∠HEG = 90°
∴ ∠HBG + ∠HEG = 360° – (90° + 90°)
= 360°- 180° = 180° …(i)
But ∠HEF + ∠HEG = 180° …(ii) (Linear pair)
From (i) and (ii)
∴ ∠HEF = ∠HBG
⇒ ∠DEF = ∠ABC
Hence ∠ABC and ∠DEF are equal or supplementary

Question 24.
In the figure, lines AB and CD are parallel and P is any point as shown in the figure. Show that ∠ABP + ∠CDP = ∠DPB.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q24.1
Solution:
Given : In the figure, AB || CD
P is a point between AB and CD PD
and PB are joined
To prove : ∠APB + ∠CDP = ∠DPB
Construction : Through P, draw PQ || AB or CD
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q24.2
Proof: ∵ AB || PQ
∴ ∠ABP = BPQ …(i) (Alternate angles)
Similarly,
CD || PQ
∴ ∠CDP = ∠DPQ …(ii)
(Alternate angles)
Adding (i) and (ii)
∠ABP + ∠CDP = ∠BPQ + ∠DPQ
Hence ∠ABP + ∠CDP = ∠DPB

Question 25.
In the figure, AB || CD and P is any point shown in the figure. Prove that:
∠ABP + ∠BPD + ∠CDP = 360°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q25.1
Solution:
Given : AB || CD and P is any point as shown in the figure
To prove : ∠ABP + ∠BPD + ∠CDP = 360°
Construction : Through P, draw PQ || AB and CD
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q25.2
Proof : ∵ AB || PQ
∴ ∠ABP+ ∠BPQ= 180° ……(i) (Sum of co-interior angles)
Similarly, CD || PQ
∴ ∠QPD + ∠CDP = 180° …(ii)
Adding (i) and (ii)
∠ABP + ∠BPQ + ∠QPD + ∠CDP
= 180°+ 180° = 360°
⇒ ∠ABP + ∠BPD + ∠CDP = 360°

Question 26.
In the figure, arms BA and BC of ∠ABC are respectively parallel to arms ED and EF of ∠DEF. Prove that ∠ABC = ∠DEF.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q26.1
Solution:
Given : In ∠ABC and ∠DEF. Their arms are parallel such that BA || ED and BC || EF
To prove : ∠ABC = ∠DEF
Construction : Produce BC to meet DE at G
Proof: AB || DE
∴ ∠ABC = ∠DGH…(i) (Corresponding angles)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q26.2
BC or BH || EF
∴ ∠DGH = ∠DEF (ii) (Corresponding angles)
From (i) and (ii)
∠ABC = ∠DEF

Question 27.
In the figure, arms BA and BC of ∠ABC are respectively parallel to arms ED and EF of ∠DEF. Prove that ∠ABC + ∠DEF = 180°.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q27.1
Solution:
Given: In ∠ABC = ∠DEF
BA || ED and BC || EF
To prove: ∠ABC = ∠DEF = 180°
Construction : Produce BC to H intersecting ED at G
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 Q27.2
Proof: ∵ AB || ED
∴ ∠ABC = ∠EGH …(i) (Corresponding angles)
∵ BC or BH || EF
∠EGH || ∠DEF = 180° (Sum of co-interior angles)
⇒ ∠ABC + ∠DEF = 180° [From (i)]
Hence proved.

Hope given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles Ex 10.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H

RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H

These Solutions are part of RS Aggarwal Solutions Class 9. Here we have given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14H.

Other Exercises

Question 1.
Solution:
Arranging the given data in ascending order :
0, 0, 1, 2, 3, 4, 5, 5, 6, 6, 6, 6
We see that 6 occurs in maximum times.
Mode = 6 Ans.

Question 2.
Solution:
Arranging in ascending order, we get:
15, 20, 22, 23, 25, 25, 25, 27, 40
We see that 25 occurs in maximum times.
Mode = 25 Ans.

Question 3.
Solution:
Arranging in ascending order we get:
1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8, 9, 9, 9, 9, 9
Here, we see that 9 occurs in maximum times.
Mode = 9 Ans.

Question 4.
Solution:
Arranging in ascending order, we get:
9, 19, 27, 28, 30, 32, 35, 50, 50, 50, 50, 60
Here, we see that 50 occurs in maximum times.
Modal score = 50 scores Ans.

Question 5.
Solution:
Arranging in ascending order, we get:
10, 10, 11, 11, 12, 12, 13, 14,15, 17
Here, number of terms is 10, which is even
∴ Median = \(\frac { 1 }{ 2 } \left[ \frac { 10 }{ 2 } th\quad term+\left( \frac { 10 }{ 2 } +1 \right) th\quad term \right]\)
= \(\frac { 1 }{ 2 } \) (5th term + 6th term)
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q5.1

Question 6.
Solution:
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q6.1
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q6.2

Question 7.
Solution:
Writing its cumulative frequency table
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q7.1
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q7.2

Question 8.
Solution:
Writing its cumulative frequency table
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q8.1
Here, number of items is 40 which is even.
∴ Median = \(\frac { 1 }{ 2 } \left[ \frac { 40 }{ 2 } th\quad term+\left( \frac { 40 }{ 2 } +1 \right) th\quad term \right]\)
= \(\frac { 1 }{ 2 } \) (20th term + 21th term)
= \(\frac { 1 }{ 2 } \) (30 + 30) = \(\frac { 1 }{ 2 } \) x 60 = 30
Mean= \(\frac { \sum { { f }_{ i }{ x }_{ i } } }{ \sum { { f }_{ i } } } \) = \(\frac { 1161 }{ 40 } \) = 29.025
∴Mode = 3 median – 2 mean = 3 x 30 – 2 x 29.025 = 90 – 58.05 = 31.95

Question 9.
Solution:
Preparing its cumulative frequency table we get:
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q9.1
Here number of terms is 50, which is even
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q9.2

Question 10.
Solution:
Preparing its cumulative frequency table :
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q10.1
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q10.2

Question 11.
Solution:
Preparing its cumulative frequency table we have,
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q11.1
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q11.2

Question 12.
Solution:
Preparing its cumulative frequency table we have,
RS Aggarwal Class 9 Solutions Chapter 14 Statistics Ex 14H Q12.1
Hope given RS Aggarwal Solutions Class 9 Chapter 14 Statistics Ex 14H are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS

RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS

Other Exercises

Question 1.
Define a trial.
Solution:
When we perform an experiment, it is called a trial of the experiment.

Question 2.
Define an elementary event.
Solution:
An outcome of a trial of an experiment is called an elementary event.

Question 3.
Define an event.
Solution:
An event association to a random experiment is said to occur in a trial.

Question 4.
Define probability of an event.
Solution:
In n trials of a random experiment if an event A happens m times, then probability of happening
of A is given by P(A) = \(\frac { m }{ n } \)

Question 5.
A bag contains 4 white balls and some red balls. If the probability of drawing a white ball from the bag is \(\frac { 2 }{ 5 } \), find the number of red balls in the bag
Solution:
No. of white balls = 4
Let number of red balls = x
Then total number of balls (n) = 4 white + x red = (4 + x) balls
RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS 5.1

Question 6.
A die is thrown 100 times. If the probability of getting an even number is \(\frac { 2 }{ 5 } \). How many times an odd number is obtained?
Solution:
Total number of a die is thrown = 100
Let an even number comes x times, then probability of an even number = \(\frac { x }{ 100 } \)
RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS 6.1

Question 7.
Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes
RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS 7.1
Find the probability of getting at most two heads.
Solution:
Total number of three coins are tossed (n) = 200
Getting at the most 2 heads (m) = 72 + 77 + 28 = 177
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 177 }{ 200 } \)

Question 8.
In the Q. No. 7, what is the probability of getting at least two heads?
Solution:
Total number of possible events = 200
No. of events getting at the least = 2 heads (m) = 23 + 72 = 95
Probability P(A) = \(\frac { m }{ n } \) = \(\frac { 95 }{ 200 } \) = \(\frac { 19 }{ 40 } \)

Hope given RD Sharma Class 9 Solutions Chapter 25 Probability VSAQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS

RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS

Other Exercises

Mark the correct alternative in each of the following:
Question 1.
One angle is equal to three times its supplement. The measure of the angle is
(a) 130°
(b) 135°
(c) 90°
(d) 120°
Solution:
Let required angle = x
Then its supplement = (180° – x)
x = 3(180° – x) = 540° – 3x
⇒ x + 3x = 540°
⇒ 4x = 540°
⇒ x = \(\frac { { 540 }^{ \circ } }{ 4 }\)  = 135°
∴ Required angle = 135° (b)

Question 2.
Two straight lines AB and CD intersect one another at the point O. If ∠AOC + ∠COB + ∠BOD = 274°, then ∠AOD =
(a) 86°
(b) 90°
(c) 94°
(d) 137°
Solution:
Sum of angles at a point O = 360°
Sum of three angles ∠AOC + ∠COB + ∠BOD = 274°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q2.1
∴ Fourth angle ∠AOD = 360° – 274°
= 86° (a)

Question 3.
Two straight lines AB and CD cut each other at O. If ∠BOD = 63°, then ∠BOC =
(a) 63°
(b) 117°
(c) 17°
(d) 153°
Solution:
CD is a line
∴ ∠BOD + ∠BOC = 180° (Linear pair)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q3.1
⇒ 63° + ∠BOC = 180°
⇒ ∠BOC = 180° – 63°
∴ ∠BOC =117° (b)

Question 4.
Consider the following statements:
When two straight lines intersect:
(i) adjacent angles are complementary
(ii) adjacent angles are supplementary
(iii) opposite angles are equal
(iv) opposite angles are supplementary Of these statements
(a) (i) and (iii) are correct
(b) (ii) and (iii) are correct
(c) (i) and (iv) are correct
(d) (ii) and (iv) are correct
Solution:
Only (ii) and (iii) arc true. (b)

Question 5.
Given ∠POR = 3x and ∠QOR = 2x + 10°. If POQ is a striaght line, then the value of x is
(a) 30°
(b) 34°
(c) 36°
(d) none of these
Solution:
∵ POQ is a straight line
∴ ∠POR + ∠QOR = 180° (Linear pair)
⇒ 3x + 2x + 10° = 180°
⇒ 5x = 180 – 10° = 170°
∴ x = \(\frac { { 170 }^{ \circ } }{ 5 }\)  = 34° (b)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q5.1

Question 6.
In the figure, AOB is a straight line. If ∠AOC + ∠BOD = 85°, then ∠COD =
(a) 85°
(b) 90°
(c) 95°
(d) 100°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q6.1
Solution:
AOB is a straight line,
OC and OD are rays on it
and ∠AOC + ∠BOD = 85°
But ∠AOC + ∠BOD + ∠COD = 180°
⇒ 85° + ∠COD = 180°
∠COD = 180° – 85° = 95° (c)

Question 7.
In the figure, the value of y is
(a) 20°
(b) 30°
(c) 45°
(d) 60°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q7.1
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q7.2
y = x (Vertically opposite angles)
∠1 = 3x
∠2 = 3x
∴ 2(x + 3x + 2x) = 360° (Angles at a point)
2x + 6x + 4x = 360°
12x = 360° ⇒ x = \(\frac { { 360 }^{ \circ } }{ 12 }\)  = 30°
∴ y = x = 30° (b)

Question 8.
In the figure, the value of x is
(a) 12
(b) 15
(c) 20
(d) 30
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q8.1
Solution:
∠1 = 3x+ 10 (Vertically opposite angles)
But x + ∠1 + ∠2 = 180°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q8.2
⇒ x + 3x + 10° + 90° = 180°
⇒ 4x = 180° – 10° – 90° = 80°
x = \(\frac { { 80 }^{ \circ } }{ 4 }\) = 20   (c)

Question 9.
In the figure, which of the following statements must be true?
(i) a + b = d + c
(ii) a + c + e = 180°
(iii) b + f= c + e
(a) (i) only
(b) (ii) only
(c) (iii) only
(d) (ii) and (iii) only
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q9.1
Solution:
In the figure,
(i) a + b = d + c
a° = d°
b° = e°
c°= f°
(ii) a + b + e = 180°
a + e + c = 180°
⇒ a + c + e = 180°
(iii) b + f= e + c
∴ (ii) and (iii) are true statements (d)

Question 10.
If two interior angles on the same side of a transversal intersecting two parallel lines are in the ratio 2:3, then the measure of the larger angle is
(a) 54°
(b) 120°
(c) 108°
(d) 136°
Solution:
In figure, l || m and p is transversal
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q10.1
= \(\frac { 3 }{ 5 }\) x 180° = 108° (c)

Question 11.
In the figure, if AB || CD, then the value of x is
(a) 20°
(b) 30°
(c) 45°
(d) 60°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q11.1
Solution:
In the figure, AB || CD,
and / is transversal
∠1 = x (Vertically opposite angles)
and 120° + x + ∠1 = 180° (Co-interior angles)
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q11.2

Question 12.
Two lines AB and CD intersect at O. If ∠AOC + ∠COB + ∠BOD = 270°, then ∠AOC =
(a) 70°
(b) 80°
(c) 90°
(d) 180°
Solution:
Two lines AB and CD intersect at O
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q12.1
∠AOC + ∠COB + ∠BOD = 270° …(i)
But ∠AOC + ∠COB + ∠BOD + ∠DOA = 360° …(ii)
Subtracting (i) from (ii),
∠DOA = 360° – 270° = 90°
But ∠DOA + ∠AOC = 180°
∴ ∠AOC = 180° – 90° = 90° (c)

Question 13.
In the figure, PQ || RS, ∠AEF = 95°, ∠BHS = 110° and ∠ABC = x°. Then the value of x is
(a) 15°
(b) 25°
(c) 70°
(d) 35°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q13.1
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q13.2
PQ || RS, ∠AEF = 95°
∠BHS = 110°, ∠ABC = x
∵ PQ || RS,
∴ ∠AEF = ∠1 = 95° (Corresponding anlges)
But ∠1 + ∠2 = 180° (Linear pair)
⇒ ∠2 = 180° – ∠1 = 180° – 95° = 85°
In ∆AGH,
Ext. ∠BHS = ∠2 +x
⇒ 110° = 85° + x
⇒ x= 110°-85° = 25° (b)

Question 14.
In the figure, if l1 || l2, what is the value of x?
(a) 90°
(b) 85°
(c) 75°
(d) 70°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q14.1
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q14.2
∠1 = 58° (Vertically opposite angles)
Similarly, ∠2 = 37°
∵ l1 || l2, EF is transversal
∠GEF + EFD = 180° (Co-interior angles)
⇒ ∠2 + ∠l +x = 180°
⇒ 37° + 58° + x = 180°
⇒ 95° + x= 180°
x = 180°-95° = 85° (b)

Question 15.
In the figure, if l1 || l2, what is x + y in terms of w and z?
(a) 180-w + z
(b) 180° + w- z
(c) 180 -w- z
(d) 180 + w + z
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q15.1
Solution:
In the figure, l1 || l2
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q15.2
p and q are transversals
∴ w + x = 180° ⇒ x = 180° – w (Co-interior angle)
z = y (Alternate angles)
∴ x + y = 180° – w + z (a)

Question 16.
In the figure, if l1 || l2, what is the value of y?
(a) 100
(b) 120
(c) 135
(d) 150
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q16.1
Solution:
In the figure, l1 || l2 and l3 is the transversal
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q16.2

Question 17.
In the figure, if l1 || l2 and l3 || l4 what is y in terms of x?
(a) 90 + x
(b) 90 + 2x
(c) 90 – \(\frac { x }{ 2 }\)
(d) 90 – 2x
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q17.1
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q17.2
l1 || l2 and l3 || l4 and m is the angle bisector
∴ ∠2 = ∠3 = y
∵ l1 || l2
∠1 = x (Corresponding angles)
∵ l3 || l4
∴ ∠1 + (∠2 + ∠3) = 180° (Co-interior angles)
⇒ x + 2y= 180°
⇒ 2y= 180°-x
⇒ y = \(\frac { { 540 }^{ \circ }-x }{ 4 }\)
= 90° – \(\frac { x }{ 2 }\) (c)

Question 18.
In the figure, if 11| m, what is the value of x?
(a) 60
(b) 50
(c) 45
d) 30
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q18.1
Solution:
In the figure, l || m and n is the transversal
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q18.2
⇒ y = 25°
But 2y + 25° = x+ 15°
(Vertically opposite angles) ⇒ x = 2y + 25° – 15° = 2y+ 10°
= 2 x 25°+10° = 50°+10° = 60° (a)

Question 19.
In the figure, if AB || HF and DE || FG, then the measure of ∠FDE is
(a) 108°
(b) 80°
(c) 100°
(d) 90°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q19.1
Solution:
In the figure,
AB || HF, DE || FG
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q19.2
∴ HF || AB
∠1 =28° (Corresponding angles)
But ∠1 + ∠FDE + 72° – 180° (Angles of a straight line)
⇒ 28° + ∠FDE + 72° = 180°
⇒ ∠FDE + 100° = 180°
⇒ ∠FDE = 180° – 100 = 80° (b)

Question 20.
In the figure, if lines l and m are parallel, then x =
(a) 20°
(b) 45°
(c) 65°
(d) 85°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q20.1
Solution:
In the figure, l || m
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q20.2
∴ ∠1 =65° (Corresponding angles)
In ∆BCD,
Ext. ∠1 = x + 20°
⇒ 65° = x + 20°
⇒ x = 65° – 20°
⇒ x = 45° (b)

Question 21.
In the figure, if AB || CD, then x =
(a) 100°
(b) 105°
(c) 110°
(d) 115°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q21.1
Solution:
In the figure, AB || CD
Through P, draw PQ || AB or CD
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q21.2
∠A + ∠1 = 180° (Co-interior angles)
⇒ 132° + ∠1 = 180°
⇒ ∠1 = 180°- 132° = 48°
∴ ∠2 = 148° – ∠1 = 148° – 48° = 100°
∵ DQ || CP
∴ ∠2 = x (Corresponding angles)
∴ x = 100° (a)

Question 22.
In tlie figure, if lines l and in are parallel lines, then x =
(a) 70°
(b) 100°
(c) 40°
(d) 30°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q22.1
Solution:
In the figure, l || m
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q22.2
∠l =70° (Corresponding angles)
In ∆DEF,
Ext. ∠l = x + 30°
⇒ 70° = x + 30°
⇒ x = 70° – 30° = 40° (c)

Question 23.
In the figure, if l || m, then x =
(a) 105°
(b) 65°
(c) 40°
(d) 25°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q23.1
Solution:
In the figure,
l || m and n is the transversal
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q23.2
∠1 = 65° (Alternate angles)
In ∆GHF,
Ext. x = ∠1 + 40° = 65° + 40°
⇒ x = 105°
∴ x = 105° (a)

Question 24.
In the figure, if lines l and m are parallel, then the value of x is
(a) 35°
(b) 55°
(c) 65°
(d) 75°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q24.1
Solution:
In the figure, l || m
and PQ is the transversal
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q24.2
∠1 = 90°
In ∆EFG,
Ext. ∠G = ∠E + ∠F
⇒ 125° = x + ∠1 = x + 90°
⇒ x = 125° – 90° = 35° (a)

Question 25.
Two complementary angles are such that two times the measure of one is equal to three times the measure of the other. The measure of the smaller angle is
(a) 45°
(b) 30°
(c) 36°
(d) none of these
Solution:
Let first angle = x
Then its complementary angle = 90° – x
∴ 2x = 3(90° – x)
⇒ 2x = 270° – 3x
⇒ 2x + 3x = 270°
⇒ 5x = 270°
⇒ x = \(\frac { { 270 }^{ \circ } }{ 5 }\)  = 54°
∴ second angle = 90° – 54° = 36°
∴ smaller angle = 36° (c)

Question 26.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q26.1
Solution:
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q26.2

Question 27.
In the figure, AB || CD || EF and GH || KL.
The measure of ∠HKL is
(a) 85°
(b) 135°
(c) 145°
(d) 215°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q27.1
Solution:
In the figure, AB || CD || EF and GH || KL and GH is product to meet AB in L.
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q27.2
∵ AB || CD
∴ ∠1 = 25° (Alternate angle)
and GH || KL
∴ ∠4 = 60° (Corresponding angles)
∠5 = ∠4 = 60° (Vertically opposite angle)
∠5 + ∠2 = 180° (Co-interior anlges)
∴ ⇒ 60° + ∠2 = 180°
∠2 = 180° – 60° = 120°
Now ∠HKL = ∠1 + ∠2 = 25° + 120°
= 145° (c)

Question 28.
AB and CD are two parallel lines. PQ cuts AB and CD at E and F respectively. EL is the bisector of ∠FEB. If ∠LEB = 35°, then ∠CFQ will be
(a) 55°
(b) 70°
(c) 110°
(d) 130°
Solution:
AB || CD and PQ is the transversal EL is the bisector of ∠FEB and ∠LEB = 35°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q28.1
∴ ∠FEB = 2 x 35° = 70°
∵ AB || CD
∴ ∠FEB + ∠EFD = 180°
(Co-interior angles)
70° + ∠EFD = 180°
∴ ∠EFD = 180°-70°= 110°
But ∠CFQ = ∠EFD
(Vertically opposite angles)
∴ ∠CFQ =110° (c)

Question 29.
In the figure, if line segment AB is parallel to the line segment CD, what is the value of y?
(a) 12
(b) 15
(c) 18
(d) 20
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q29.1
Solution:
In the figure, AB || CD
BD is transversal
∴ ∠ABD + ∠BDC = 180° (Co-interior angles)
⇒y + 2y+y + 5y = 180°
⇒ 9y = 180° ⇒ y = \(\frac { { 180 }^{ \circ } }{ 9 }\)  = 20° (d)

Question 30.
In the figure, if CP || DQ, then the measure of x is
(a) 130°
(b) 105°
(c) 175°
(d) 125°
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q30.1
Solution:
In the figure, CP || DQ
BA is transversal
Produce PC to meet BA at D
RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS Q30.2
∵ QB || PD
∴ ∠D = 105° (Corresponding angles)
In ∆ADC,
Ext. ∠ACP = ∠CDA + ∠DAC
⇒ x = ∠1 + 25°
= 105° + 25° = 130° (a)

Hope given RD Sharma Class 9 Solutions Chapter 10 Congruent Triangles MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.