RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3B

RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3B

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 3 Squares and Square Roots Ex 3B.

Other Exercises

Question 1.
Solution:
We know that a number ending in 2, 3, 7 or 8 is never a perfect square. So, (i) 5372, (ii) 5963, (iii) 8457, (iv) 9468 cannot be perfect square
Again number ending in an odd number of zeros is also never a perfect square.
Among (v) 360, (vi) 64000, (vii) 2500000 each one has odd zeros at its end. So, there cannot be a perfect square.

Question 2.
Solution:
We know that the square of an even number is also an even number.
(i) 196 (iii) 900, (v) 324 are the squares of even numbers.

Question 3.
Solution:
We know that square.of an odd number is alway is an odd number and square of an even number is always an even number.
Therefore the (ii) 961, (iv) 8649 (v) 4225 are squares of odd numbers.

Question 4.
Solution:
We know that sum of the first n odd natural numbers = n² Therefore.
(i) ∵ It ends with 13
and 1 + 3 + 5 + 7 + 9 + 11 + 13 is the sum of first 7 odd numbers
∵Its sum = (7)² = 49
(ii) 1 + 3 + 5 + 7 + 9+ 11 + 13 + 15 + 17 + 19
Here, n = 10
∵Sum = n² = (10)² = 100
(iii) (1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23)
Here, n = 12
Sum = n² = (12)² = 144 Ans.

Question 5.
Solution:
(i) 81 = (9)² = 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 (Sum of first 9 odd numbers)
(ii) 100 = (10)² =1 + 3 + 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 (Sum of first 10 odd numbers)

Question 6.
Solution:
We know that 2m, m² – 1 and m² + 1 is a Pythagorean triplet where m > 1
(i) One number = 6
∵ 2m = 6 => m = 3
∵ Other members of triplet will be
m² – 1 = (3)² – 1 = 9 – 1 = 8
and m² + 1 = (3)² + 1 = 9 + 1 = 10
∵ Pythagorean triplet is 6, 8, 10
(ii) Let 2m = 14 = m = \(\\ \frac { 14 }{ 2 } \) = 7
m² – 1 = (7)² – 1 = 49 – 1 = 48
and m² + 1 = (7)² + 1 = 49 + 1 = 50
∵Pythagorean triplet = 14, 48, 50
(iii) Let 2m = 16 => m = 8
m² – 1 = (8)² – 1 = 64 – 1 = 63
and m² + 1 = (8)² + 1 = 64 + 1 = 65
∵Pythagorean triplet =16, 63, 65
(iv) Let 2m = 20 => m = 10
∵m² – 1 = (10)² – 1 = 100 – 1 = 99
and m² + 1 = (10)² + 1 = 100 + 1 = 101
∵Pythagorean triplet = 20, 99, 101 Ans.

Question 7.
Solution:
We know that :
(n + 1)² – n² = {(n + 1) + n}
Therefore :
(i) (38)² – (37)² = 38 + 37 = 75
(ii) (75)² – (74)² = 75 + 74 = 149
(iii) (92)² – (91)² = 92 + 91 = 183
(iv) (105)² – (104)² = 105 + 104 = 209
(v) (141)² – (140)² = 141 + 140 = 281
(vi) (218)² – (217)² = 218 + 217 = 435

Question 8.
Solution:
We know that (a + b)² = a² + 2ab + b²
(i) (310)² = (300 + 10)²
= (300)² + 2 x 300 x 10 + (10)²
= 90000 + 6000 + 100 = 96100
(ii) (508)² = (500 + 8)²
= (500)² + 2 x 500 x 8 + (8)²
= 250000 + 8000 + 64 = 258064
(iii) (630)² = (600 + 30)²
= (600)² + 2 x 600 x 30 + (30)²
= 360000 + 36000 + 900 = 396900

Question 9.
Solution:
We know that (a – b)² = a² – 2ab + b²
(i) (196)² = (200 – 4)²
= (200)² – 2 x 200 x 4 + (4)²
= 40000 – 1600 + 16
= 40016 – 1600 = 38416
(ii) (689)² = (700 – 11)²
= (700)² – 2 x 700 x 11 +(11)²
= 490000 – 15400 + 121
= 490121 – 15400 = 474721
(iii) (891)² = (900 – 9)²
= (900)² – 2 x 900 x 9 + (9)²
= 810000 – 16200 + 81
= 810081 – 16200 = 793881

Question 10.
Solution:
Using (a – b) (a + b) = a² – b²
(i) 69 x 71 = (70 – 1) (70 + 1)
= (70)² – (1)² = 4900 – 1
= 4899
(ii) 94 x 106 = (100 – 6) (100 + 6)
= (100)² – (6)²
= 10000 – 36 = 9964

Question 11.
Solution:
Using (a – b) (a + b) – a² – b²
(i) 88 x 92 = (90 – 2) (90 + 2)
= (90)² – (2)²
= 8100 – 4 = 8096
(ii) 78 x 82 = (80 – 2) (80 + 2)
= (80)² – (2)²
= 6400 – 4 = 6396

Question 12.
Solution:
(i) The square of an even number is even
(ii) The square of an odd number is odd
(iii) The square of a proper fraction is less than the given fraction.
(iv) n² = the sum of first n odd natural numbers. Ans.

Question 13.
Solution:
(i) False: No. of digits of a perfect square can be even or odd.
(ii) False: Square of a prime number is not a prime number.
(iii) False: It is not always possible.
(iv) False: It is not always possible.
(v) True: The product of two squares is always a perfect square.

Hope given RS Aggarwal Solutions Class 8 Chapter 3 Squares and Square Roots Ex 3B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4

RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4

Other Exercises

Question 1.
In the figure, it is given that AB = CD and AD = BC. Prove that ∆ADC ≅ ∆CBA.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4 Q1.1
Solution:
Given : In the figure, AB = CD, AD = BC
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4 Q1.2
To prove : ∆ADC = ∆CBA
Proof : In ∆ADC and ∆CBA
CD = AB (Given)
AD = BC (Given)
CA = CA (Common)
∴ ∆ADC ≅ ∆CBA (SSS axiom)

Question 2.
In a APQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN.
Solution:
Given : In ∆PQR, PQ = QR
L, M and N are the mid-points of sides PQ, QR and RP respectively. Join LM, MN and LN
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4 Q2.1
To prove : ∠PNM = ∠PLM
Proof : In ∆PQR,
∵ M and N are the mid points of sides PR and QR respectively
∴ MN || PQ and MN = \(\frac { 1 }{ 2 }\) PQ …(i)
∴ MN = PL
Similarly, we can prove that
LM = PN
Now in ∆NML and ∆LPN
MN = PL (Proved)
LM = PN (Proved)
LN = LN (Common)
∴ ∆NML = ∆LPN (SSS axiom)
∴ ∠MNL = ∠PLN (c.p.c.t.)
and ∠MLN = ∠LNP (c.p.c.t.)
⇒ ∠MNL = ∠LNP = ∠PLM = ∠MLN
⇒ ∠PNM = ∠PLM

Hope given RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms

HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms

Question 1.
(a) Identify figures A to F.
HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 1
(b) Which one of them is unicellular and eukaryotic organism ?
(c) Which one of them shows

  1. Heterotrophic nutrition
  2. Mixotrophic nutrition ?

(d) Which one of them is non-vascular embryophyte ?
(e) In which of them, xylem lacks vessels while phloem is devoid of companion cells ?
(f) In which of them endosperm is halpoid ?
(g) Which of them is commonly called

  1. Bread Mould
  2. Male Shield Fern ?

Answer:
(a) Identification.
A-Fern (Male Shield Fern, Dryopteris)
B-Moss (Funaria).
C—Pinus.
D—Spirogyra.
E—Euglena.
F-Rhizopus.
(b) Unicellular Eukaryotic Organism. Euglena.
(c)

  1. Heterotrophic Nutrition. Rhizopus.
  2. Mixotrophic Nutrition. Euglena.

(d) Non-vascular Embryophyte. Moss (Funaria)
(e) Xylem without Vessels and Phloem without Companion Cells. Pinus.
(f) Haploid Endosperm. Pinus
(g)

  1. Bread Mould._Rhizopus.
  2. Male Shield Fern. Dryopteris.

More Resources

Question 2.
(a) Identify figure A to D.
HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 2
(b) Which one belongs to

  1. Platyhelminthes
  2. Arthropoda
  3. Annelida ?

(c) Which one of them has

  1. Tissue level organisation
  2. Primitive organ level organisation ?

(d) Which one of them has

  1. Flame cells as exretory organs
  2. Nephridia as excretory organs ?

(e) Which one of them has poison claw ?
(f) Which one of them is

  1. Diploblastic
  2. Triploblastic ?

Answer:
(a) Identification.
A-Centipede.
B-Hydra.
C-Liverfluke {Fasciola).
D- Earthworm {Pheretima posthuma).
(b)

  1. Plathyhelminthes—Liverfluke (Fasciola)
  2. Arthropoda-Centipede (Scolopendra).
  3. Annelida-Earthworm {Pheretima posthuma).

(c)

  1. Tissue Level Organisation. Hydra.
  2. Primitive Organ Level Organisation. Liverfluke (Fasciola)

(d)

  1. Flame Cells. Liverfluke (Fasciola)
  2. Nephridia. Earthworm {Pheretima posthuma)

(e) Poison Claw. Centipede {Scolopendra)
(f)

  1. Diploblastic. Hydra.
  2. Triploblastic. Liverfluke {Fasciola), Centipede (Scolopendra), Earthworm {Pheretima posthuma).

Question 3.
(a) Identify the figure and write down the phylum to which it belongs.
(b) Which type of
HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 3

  1. Locomotory organ is present in it.

Circulatory system is present in it.
(c) Which type of symmetry is present ?
Answer:
(a) Identification. Pila (Apple Snail). Phylum. Mollusca.
(b)

  1. Locomotory Organ. Foot,
  2. Circulatory System. Open (Haemocoel).

(c) Symmetry. Asymmetry due to torsion (spirally coiled).

Question 4.
(a) Label W, X, Y and Z.
HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms image - 4
(b) Identify the above diagram.
(c) Name the phylum in which notochord is present.
(d) Name the subphylum in which notochord is present throughout life.
Answer:
(a) W-Anus.
X-Gill slits.
Y-Notochord.
Z-Nerve cord.
(b) Identification. Basic characteristics of chordates.
(c) Phylum with Notochord. Chordata.
(d) Subphylum with Notochord throughout Life. Cephalochordata.

Hope given HOTS Questions for Class 9 Science Chapter 7 Diversity in Living Organisms are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D

RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1D.

Other Exercises

Question 1.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 1.2
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 1.3
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 1.4

Question 2.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 2.1
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 2.2
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 2.3

Question 3.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 3.2
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 3.3
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 3.4
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 3.5

Question 4.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 4.1

Question 5.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 5.1
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 5.2

Question 6.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 6.1

Question 7.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 7.2
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 7.3
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 7.4
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 7.5

Question 8.
Solution:
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 8.2
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1D 8.3

Question 9.
Solution:
(i) The product of a rational number and its reciprocal is 1.
(ii) Zero has no reciprocal.
(iii) The numbers 1 and -1 are their own reciprocal.
(iv) Zero is not the reciprocal of any number.
(v) The reciprocal of a, where a≠0, is \(\\ \frac { 1 }{ a } \)
(vi) The reciprocal of \(\\ \frac { 1 }{ a } \) where a≠0 is a
(vii) The reciprocal of a positive rational number is positive.
(viii) The reciprocal of a negative rational number is negative.

Hope given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1D are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS

RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS

Other Exercises

Mark the correct alternative in each of the following:
Question 1.
If all the three angles of a triangle are equal, then each one of them is equal to
(a) 90°
(b) 45°
(c) 60°
(d) 30°
Solution:
∵ Sum of three angles of a triangle = 180°
∴ Each angle = \(\frac { { 180 }^{ \circ } }{ 3 }\)  = 60° (c)

Question 2.
If two acute angles of a right triangle are equal, then each acute is equal to
(a) 30°
(b) 45°
(c) 60°
(d) 90°
Solution:
In a right triangle, one angle = 90°
∴ Sum of other two acute angles = 180° – 90° = 90°
∵ Both angles are equal
∴ Each angle will be = \(\frac { { 90 }^{ \circ } }{ 2 }\)  = 45° (b)

Question 3.
An exterior angle of a triangle is equal to 100° and two interior opposite angles are equal. Each of these angles is equal to
(a) 75°
(b) 80°
(c) 40°
(d) 50°
Solution:
In a triangle, exterior angles is equal to the sum of its interior opposite angles
∴ Sum of interior opposite angles = 100°
∵ Both angles are equal
∴ Each angle will be = \(\frac { { 100 }^{ \circ } }{ 2 }\)  = 50° (d)

Question 4.
If one angle of a triangle is equal to the sum of the other two angles, then the triangle is
(a) an isosceles triangle
(b) an obtuse triangle
(c) an equilateral triangle
(d) a right triangle
Solution:
Let ∠A, ∠B, ∠C be the angles of a ∆ABC and let ∠A = ∠B + ∠C
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q4.1
But ∠A + ∠B + ∠C = 180°
( Sum of angles of a triangle)
∴ ∠A + ∠A = 180° ⇒ 2∠A = 180°
⇒ ∠A = \(\frac { { 180 }^{ \circ } }{ 2 }\)  = 90°
∴ ∆ is a right triangle (d)

Question 5.
Side BC of a triangle ABC has been produced to a point D such that ∠ACD = 120°. If ∠B = \(\frac { 1 }{ 2 }\)∠A, then ∠A is equal to
(a) 80°
(b) 75°
(c) 60°
(d) 90°
Solution:
Side BC of ∆ABC is produced to D, then
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q5.1
Ext. ∠ACB = ∠A + ∠B
(Exterior angle of a triangle is equal to the sum of its interior opposite angles)
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q5.2

Question 6.
In ∆ABC, ∠B = ∠C and ray AX bisects the exterior angle ∠DAC. If ∠DAX = 70°, then ∠ACB =
(a) 35°
(b) 90°
(c) 70°
(d) 55°
Solution:
In ∆ABC, ∠B = ∠C
AX is the bisector of ext. ∠CAD
∠DAX = 70°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q6.1
∴ ∠DAC = 70° x 2 = 140°
But Ext. ∠DAC = ∠B + ∠C
= ∠C + ∠C (∵ ∠B = ∠C)
= 2∠C
∴ 2∠C = 140° ⇒ ∠C = \(\frac { { 140 }^{ \circ } }{ 2 }\) = 70°
∴ ∠ACB = 70° (c)

Question 7.
In a triangle, an exterior angle at a vertex is 95° and its one of the interior opposite angle is 55°, then the measure of the other interior angle is
(a) 55°
(b) 85°
(c) 40°
(d) 9.0°
Solution:
In ∆ABC, BA is produced to D such that ∠CAD = 95°
and let ∠C = 55° and ∠B = x°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q7.1
∵ Exterior angle of a triangle is equal to the sum of its opposite interior angle
∴ ∠CAD = ∠B + ∠C ⇒ 95° = x + 55°
⇒ x = 95° – 55° = 40°
∴ Other interior angle = 40° (c)

Question 8.
If the sides of a triangle are produced in order, then the sum of the three exterior angles so formed is
(a) 90°
(b) 180°
(c) 270°
(d) 360°
Solution:
In ∆ABC, sides AB, BC and CA are produced in order, then exterior ∠FAB, ∠DBC and ∠ACE are formed
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q8.1
We know an exterior angles of a triangle is equal to the sum of its interior opposite angles
∴ ∠FAB = ∠B + ∠C
∠DBC = ∠C + ∠A and
∠ACE = ∠A + ∠B Adding we get,
∠FAB + ∠DBC + ∠ACE = ∠B + ∠C + ∠C + ∠A + ∠A + ∠B
= 2(∠A + ∠B + ∠C)
= 2 x 180° (Sum of angles of a triangle)
= 360° (d)

Question 9.
In ∆ABC, if ∠A = 100°, AD bisects ∠A and AD⊥ BC. Then, ∠B =
(a) 50°
(b) 90°
(c) 40°
(d) 100°
Solution:
In ∆ABC, ∠A = 100°
AD is bisector of ∠A and AD ⊥ BC
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q9.1
Now, ∠BAD = \(\frac { { 100 }^{ \circ } }{ 2 }\) = 50°
In ∆ABD,
∠BAD + ∠B + ∠D= 180°
(Sum of angles of a triangle)
⇒ ∠50° + ∠B + 90° = 180°
∠B + 140° = 180°
⇒ ∠B = 180° – 140° ∠B = 40° (c)

Question 10.
An exterior angle of a triangle is 108° and its interior opposite angles are in the ratio 4:5. The angles of the triangle are
(a) 48°, 60°, 72°
(b) 50°, 60°, 70°
(c) 52°, 56°, 72°
(d) 42°, 60°, 76°
Solution:
In ∆ABC, BC is produced to D and ∠ACD = 108°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q10.1
Ratio in ∠A : ∠B = 4:5
∵ Exterior angle of a triangle is equal to the sum of its opposite interior angles
∴ ∠ACD = ∠A + ∠B = 108°
Ratio in ∠A : ∠B = 4:5
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q10.2

Question 11.
In a ∆ABC, if ∠A = 60°, ∠B = 80° and the bisectors of ∠B and ∠C meet at O, then ∠BOC =
(a) 60°
(b) 120°
(c) 150°
(d) 30°
Solution:
In ∆ABC, ∠A = 60°, ∠B = 80°
∴ ∠C = 180° – (∠A + ∠B)
= 180° – (60° + 80°)
= 180° – 140° = 40°
Bisectors of ∠B and ∠C meet at O

RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q11.1

Question 12.
Line segments AB and CD intersect at O such that AC || DB. If ∠CAB = 45° and ∠CDB = 55°, then ∠BOD =
(a) 100°
(b) 80°
(c) 90°
(d) 135°
Solution:
In the figure,
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q12.1
AB and CD intersect at O
and AC || DB, ∠CAB = 45°
and ∠CDB = 55°
∵ AC || DB
∴ ∠CAB = ∠ABD (Alternate angles)
In ∆OBD,
∠BOD = 180° – (∠CDB + ∠ABD)
= 180° – (55° + 45°)
= 180° – 100° = 80° (b)

Question 13.
In the figure, if EC || AB, ∠ECD = 70° and ∠BDO = 20°, then ∠OBD is
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q13.1
(a) 20°
(b) 50°
(c) 60°
(d) 70°
Solution:
In the figure, EC || AB
∠ECD = 70°, ∠BDO = 20°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q13.2
∵ EC || AB
∠AOD = ∠ECD (Corresponding angles)
⇒ ∠AOD = 70°
In ∆OBD,
Ext. ∠AOD = ∠OBD + ∠BDO
70° = ∠OBD + 20°
⇒ ∠OBD = 70° – 20° = 50° (b)

Question 14.
In the figure, x + y =
(a) 270
(b) 230
(c) 210
(d) 190°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q14.1
Solution:
In the figure
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q14.2
Ext. ∠OAE = ∠AOC + ∠ACO
⇒ x = 40° + 80° = 120°
Similarly,
Ext. ∠DBF = ∠ODB + ∠DOB
y = 70° + ∠DOB
[(∵ ∠AOC = ∠DOB) (vertically opp. angles)]
= 70° + 40° = 110°
∴ x+y= 120°+ 110° = 230° (b)

Question 15.
If the measures of angles of a triangle are in the ratio of 3 : 4 : 5, what is the measure of the smallest angle of the triangle?
(a) 25°
(b) 30°
(c) 45°
(d) 60°
Solution:
Ratio in the measures of the triangle =3:4:5
Sum of angles of a triangle = 180°
Let angles be 3x, 4x, 5x
Sum of angles = 3x + 4x + 5x = 12x
∴ Smallest angle = \(\frac { 180 x 3x }{ 12x }\) = 45° (c)

Question 16.
In the figure, if AB ⊥ BC, then x =
(a) 18
(b) 22
(c) 25
(d) 32
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q16.1
Solution:
In the figure, AB ⊥ BC
∠AGF = 32°
∴ ∠CGB = ∠AGF (Vertically opposite angles)
= 32°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q16.2
In ∆GCB, ∠B = 90°
∴ ∠CGB + ∠GCB = 90°
⇒ 32° + ∠GCB = 90°
⇒ ∠GCB = 90° – 32° = 58°
Now in ∆GDC,
Ext. ∠GCB = ∠CDG + ∠DGC
⇒ 58° = x + 14° + x
⇒ 2x + 14° = 58°
⇒ 2x = 58 – 14° = 44
⇒ x = \(\frac { 44 }{ 2 }\) = 22°
∴ x = 22° (b)

Question 17.
In the figure, what is ∠ in terms of x and y?
(a) x + y + 180
(b) x + y – 180
(c) 180° -(x+y)
(d) x+y + 360°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q17.1
Solution:
In the figure, BC is produced both sides CA and BA are also produced
In ∆ABC,
∠B = 180° -y
and ∠C 180° – x
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q17.2
∴ z = ∠A = 180° – (B + C)
= 180° – (180 – y + 180 -x)
= 180° – (360° – x – y)
= 180° – 360° + x + y = x + y – 180° (b)

Question 18.
In the figure, for which value of x is l1 || l2?
(a) 37
(b) 43
(c) 45
(d) 47
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q18.1
Solution:
In the figure, l1 || l2
∴ ∠EBA = ∠BAH (Alternate angles)
∴ ∠BAH = 78°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q18.2
⇒ ∠BAC + ∠CAH = 78°
⇒ ∠BAC + 35° = 78°
⇒ ∠BAC = 78° – 35° = 43°
In ∆ABC, ∠C = 90°
∴ ∠ABC + ∠BAC = 90°
⇒ x + 43° = 90° ⇒ x = 90° – 43°
∴ x = 47° (d)

Question 19.
In the figure, what is y in terms of x?
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q19.1
Solution:
In ∆ABC,
∠ACB = 180° – (x + 2x)
= 180° – 3x …(i)
and in ∆BDG,
∠BED = 180° – (2x + y) …(ii)
∠EGC = ∠AGD (Vertically opposite angles)
= 3y
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q19.2
In quad. BCGE,
∠B + ∠ACB + ∠CGE + ∠BED = 360° (Sum of angles of a quadrilateral)
⇒ 2x+ 180° – 3x + 3y + 180°- 2x-y = 360°
⇒ -3x + 2y = 0
⇒ 3x = 2y ⇒ y = \(\frac { 3 }{ 2 }\)x (a)

Question 20.
In the figure, what is the value of x?
(a) 35
(b) 45
(c) 50
(d) 60
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q20.1
Solution:
In the figure, side AB is produced to D
∴ ∠CBA + ∠CBD = 180° (Linear pair)
⇒ 7y + 5y = 180°
⇒ 12y = 180°
⇒ y = \(\frac { 180 }{ 12 }\) = 15
and Ext. ∠CBD = ∠A + ∠C
⇒ 7y = 3y + x
⇒ 7y -3y = x
⇒ 4y = x
∴ x = 4 x 15 = 60 (d)

Question 21.
In the figure, the value of x is
(a) 65°
(b) 80°
(c) 95°
(d) 120°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q21.1
Solution:
In the figure, ∠A = 55°, ∠D = 25° and ∠C = 40°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q21.2
Now in ∆ABD,
Ext. ∠DBC = ∠A + ∠D
= 55° + 25° = 80°
Similarly, in ∆BCE,
Ext. ∠DEC = ∠EBC + ∠ECB
= 80° + 40° = 120° (d)

Question 22.
In the figure, if BP || CQ and AC = BC, then the measure of x is
(a) 20°
(b) 25°
(c) 30°
(d) 35°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q22.1
Solution:
In the figure, AC = BC, BP || CQ
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q22.2
∵ BP || CQ
∴ ∠PBC – ∠QCD
⇒ 20° + ∠ABC = 70°
⇒ ∠ABC = 70° – 20° = 50°
∵ BC = AC
∴ ∠ACB = ∠ABC (Angles opposite to equal sides)
= 50°
Now in ∆ABC,
Ext. ∠ACD = ∠B + ∠A
⇒ x + 70° = 50° + 50°
⇒ x + 70° = 100°
∴ x = 100° – 70° = 30° (c)

Question 23.
In the figure, AB and CD are parallel lines and transversal EF intersects them at P and Q respectively. If ∠APR = 25°, ∠RQC = 30° and ∠CQF = 65°, then
(a) x = 55°, y = 40°
(b) x = 50°, y = 45°
(c) x = 60°, y = 35°
(d) x = 35°, y = 60°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q23.1
Solution:
In the figure,
∵ AB || CD, EF intersects them at P and Q respectively,
∠APR = 25°, ∠RQC = 30°, ∠CQF = 65°
∵ AB || CD
∴ ∠APQ = ∠CQF (Corresponding anlges)
⇒ y + 25° = 65°
⇒ y = 65° – 25° = 40°
and APQ + PQC = 180° (Co-interior angles)
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q23.2
y + 25° + ∠1 +30°= 180°
40° + 25° + ∠1 + 30° = 180°
⇒ ∠1 + 95° = 180°
∴ ∠1 = 180° – 95° = 85°
Now, ∆PQR,
∠RPQ + ∠PQR + ∠PRQ = 180° (Sum of angles of a triangle)
⇒ 40° + x + 85° = 180°
⇒ 125° + x = 180°
⇒ x = 180° – 125° = 55°
∴ x = 55°, y = 40° (a)

Question 24.
The base BC of triangle ABC is produced both ways and the measure of exterior angles formed are 94° and 126°. Then, ∠BAC = ?
(a) 94°
(b) 54°
(c) 40°
(d) 44°
Solution:
In ∆ABC, base BC is produced both ways and ∠ACD = 94°, ∠ABE = 126°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q24.1
Ext. ∠ACD = ∠BAC + ∠ABC
⇒ 94° = ∠BAC + ∠ABC
Similarly, ∠ABE = ∠BAC + ∠ACB
⇒ 126° = ∠BAC + ∠ACB
Adding,
94° + 126° = ∠BAC + ∠ABC + ∠ACB + ∠BAC
220° = 180° + ∠BAC
∴ ∠BAC = 220° -180° = 40° (c)

Question 25.
If the bisectors of the acute angles of a right triangle meet at O, then the angle at O between the two bisectors is
(a) 45°
(b) 95°
(c) 135°
(d) 90°
Solution:
In right ∆ABC, ∠A = 90°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q25.1
Bisectors of ∠B and ∠C meet at O, then 1
∠BOC = 90° + \(\frac { 1 }{ 2 }\) ∠A
= 90°+ \(\frac { 1 }{ 2 }\) x 90° = 90° + 45°= 135° (c)

Question 26.
The bisects of exterior angles at B and C of ∆ABC, meet at O. If ∠A = .x°, then ∠BOC=
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q26.1
Solution:
In ∆ABC, ∠A = x°
and bisectors of ∠B and ∠C meet at O.
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q26.2

Question 27.
In a ∆ABC, ∠A = 50° and BC is produced to a point D. If the bisectors of ∠ABC and ∠ACD meet at E, then ∠E =
(a) 25°
(b) 50°
(c) 100°
(d) 75°
Solution:
In ∆ABC, ∠A = 50°
BC is produced
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q27.1
Bisectors of ∠ABC and ∠ACD meet at ∠E
∴ ∠E = \(\frac { 1 }{ 2 }\) ∠A = \(\frac { 1 }{ 2 }\) x 50° = 25° (a)

Question 28.
The side BC of AABC is produced to a point D. The bisector of ∠A meets side BC in L. If ∠ABC = 30° and ∠ACD =115°,then ∠ALC =
(a) 85°
(b) 72\(\frac { 1 }{ 2 }\) °
(c) 145°
(d) none of these
Solution:
In ∆ABC, BC is produced to D
∠B = 30°, ∠ACD = 115°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q28.1
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q28.2

Question 29.
In the figure , if l1 || l2, the value of x is
(a) 22 \(\frac { 1 }{ 2 }\)
(b) 30
(c) 45
(d) 60
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q29.1
Solution:
In the figure, l1 || l2
EC, EB are the bisectors of ∠DCB and ∠CBA respectively EF is the bisector of ∠GEB
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q29.2
∵ EC and EB are the bisectors of ∠DCB and ∠CBA respectively
∴ ∠CEB = 90°
∴ a + b = 90° ,
and ∠GEB = 90° (∵ ∠CEB = 90°)
2x = 90° ⇒ x = \(\frac { 90 }{ 2 }\) = 45 (c)

Question 30.
In ∆RST (in the figure), what is the value of x?
(a) 40°
(b) 90°
(c) 80°
(d) 100°
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q30.1
Solution:
RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS Q30.2

Hope given RD Sharma Class 9 Solutions Chapter 11 Co-ordinate Geometry MCQS are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A

RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 3 Squares and Square Roots Ex 3A.

Other Exercises

Question 1.
Solution:
(i) 441
= 3 x 3 x 7 x 7
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q1.1
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q1.2
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q1.3
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q1.4
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q1.5

Question 2.
Solution:
(i) 1225
= 5 x 5 x 7 x 7
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q2.1
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q2.2
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q2.3
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q2.4

Question 3.
Solution:
(i) Factors of 3675
3 x 5 x 5 x 7 x 7
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q3.1
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q3.2
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q3.3
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q3.4
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q3.5
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q3.6

Question 4.
Solution:
(i) 1575
= 3 x 3 x 5 x 5 x 7
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q4.1
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q4.2
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q4.3
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q4.4
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q4.5
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q4.6

Question 5.
Solution:
The largest two digit number = 99
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q5.1
Finding the square root of 99, we get remainder = 18
∴The greatest two digit number which is a perfect square will be = 99 – 18 = 81

Question 6.
Solution:
The largest 3 digit number = 999
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3A Q6.1
Finding the square root of 999, we get remainder = 38
∴The greatest 3 digit number which is a perfect square = 999 – 38 = 961

Hope given RS Aggarwal Solutions Class 8 Chapter 3 Squares and Square Roots Ex 3A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1

RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1

These Solutions are part of RD Sharma Class 9 Solutions. Here we have given RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1

Other Exercises

Question 1.
In the figure, the sides BA and CA have been produced such that BA = AD and CA = AE. Prove the segment DE || BC.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q1.1
Solution:
Given : Sides BA and CA of ∆ABC are produced such that BA = AD are CA = AE. ED is joined.
To prove : DE || BC
Proof: In ∆ABC and ∆DAE AB=AD (Given)
AC = AE (Given)
∠BAC = ∠DAE (Vertically opposite angles)
∴ ∆ABC ≅ ∆DAE (SAS axiom)
∴ ∠ABC = ∠ADE (c.p.c.t.)
But there are alternate angles
∴ DE || BC

Question 2.
In a ∆PQR, if PQ = QR and L, M and N are the mid-points of the sides PQ, QR and RP respectively. Prove that LN = MN.
Solution:
Given : In ∆PQR, PQ = QR
L, M and N are the mid points of the sides PQ, QR and PR respectively
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q2.1
To prove : LM = MN
Proof : In ∆LPN and ∆MRH
PN = RN (∵ M is mid point of PR)
LP = MR (Half of equal sides)
∠P = ∠R (Angles opposite to equal sides)
∴ ALPN ≅ AMRH (SAS axiom)
∴ LN = MN (c.p.c.t.)

Question 3.
Prove that the medians of an equilateral triangle are equal.
Solution:
Given : In ∆ABC, AD, BE and CF are the medians of triangle and AB = BC = CA
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q3.1
To prove : AD = BE = CF
Proof : In ∆BCE and ∆BCF,
BC = BC (Common side)
CE = BF (Half of equal sides)
∠C = ∠B (Angles opposite to equal sides)
∴ ABCE ≅ ABCF (SAS axiom)
∴ BE = CF (c.p.c.t.) …(i)
Similarly, we can prove that
∴ ∆CAD ≅ ∆CAF
∴ AD = CF …(ii)
From (i) and (ii)
BE = CF = AD
⇒ AD = BE = CF

Question 4.
In a ∆ABC, if ∠A = 120° and AB = AC. Find ∠B and ∠C.
Solution:
In ∆ABC, ∠A = 120° and AB = AC
∴ ∠B = ∠C (Angles opposite to equal sides)
But ∠A + ∠B + ∠C = 180° (Sum of angles of a triangle)
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q4.1
⇒ 120° + ∠B + ∠B = 180°
⇒ 2∠B = 180° – 120° = 60°
∴ ∠B = \(\frac { { 60 }^{ \circ } }{ 2 }\) = 30°
and ∠C = ∠B = 30°
Hence ∠B = 30° and ∠C = 30°

Question 5.
In a ∆ABC, if AB = AC and ∠B = 70°, find ∠A.
Solution:
In ∆ABC, ∠B = 70°
AB =AC
∴ ∠B = ∠C (Angles opposite to equal sides)
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q5.1
But ∠B = 70°
∴ ∠C = 70°
But ∠A + ∠B + ∠C = 180° (Sum of angles of a triangle)
⇒ ∠A + 70° + 70° = 180°
⇒ ∠A + 140°= 180°
∴∠A = 180°- 140° = 40°

Question 6.
The vertical angle of an isosceles triangle is 100°. Find its base angles.
Solution:
In ∆ABC, AB = AC and ∠A = 100°
But AB = AC (In isosceles triangle)
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q6.1
∴ ∠C = ∠B (Angles opposite to equal sides)
∠A + ∠B + ∠C = 180° (Sum of angles of a triangle)
⇒ 100° + ∠B + ∠B = 180° (∵ ∠C = ∠B)
⇒ 2∠B = 180° – 100° = 80°
∴ ∠C = ∠B = 40°
Hence ∠B = 40°, ∠C = 40°

Question 7.
In the figure, AB = AC and ∠ACD = 105°, find ∠BAC.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q7.1 Solution:
In ∆ABC, AB = AC
∴ ∠B = ∠C (Angles opposite to equal sides)
But ∠ACB + ∠ACD = 180° (Linear pair)
⇒ ∠ACB + 105°= 180°
⇒ ∠ACB = 180°-105° = 75°
∴ ∠ABC = ∠ACB = 75°
But ∠A + ∠B + ∠C = 180° (Sum of angles of a triangle)
⇒ ∠A + 75° + 75° = 180°
⇒ ∠A + 150°= 180°
⇒ ∠A= 180°- 150° = 30°
∴ ∠BAC = 30°

Question 8.
Find the measure of each exterior angle of an equilateral triangle.
Solution:
In an equilateral triangle, each interior angle is 60°
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q8.1
But interior angle + exterior angle at each vertex = 180°
∴ Each exterior angle = 180° – 60° = 120°

Question 9.
If the base of an isosceles triangle is produced on both sides, prove that the exterior angles so formed are equal to each other.
Solution:
Given : In an isosceles ∆ABC, AB = AC
and base BC is produced both ways
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q9.1
To prove : ∠ACD = ∠ABE
Proof: In ∆ABC,
∵ AB = AC
∴∠C = ∠B (Angles opposite to equal sides)
⇒ ∠ACB = ∠ABC
But ∠ACD + ∠ACB = 180° (Linear pair)
and ∠ABE + ∠ABC = 180°
∴ ∠ACD + ∠ACB = ∠ABE + ∠ABC
But ∠ACB = ∠ABC (Proved)
∴ ∠ACD = ∠ABE
Hence proved.

Question 10.
In the figure, AB = AC and DB = DC, find the ratio ∠ABD : ∠ACD.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q10.1
Solution:
In the given figure,
In ∆ABC,
AB = AC and DB = DC
In ∆ABC,
∵ AB = AC
∴ ∠ACD = ∠ABE …(i) (Angles opposite to equal sides)
Similarly, in ∆DBC,
DB = DC
∴ ∠DCB = ∠DBC .. (ii)
Subtracting (ii) from (i)
∠ACB – ∠DCB = ∠ABC – ∠DBC
⇒ ∠ACD = ∠ABD
∴ Ratio ∠ABD : ∠ACD = 1 : 1

Question 11.
Determine the measure of each of the equal angles of a rightangled isosceles triangle.
OR
ABC is a rightangled triangle in which ∠A = 90° and AB = AC. Find ∠B and ∠C.
Solution:
Given : In a right angled isosceles ∆ABC, ∠A = 90° and AB = AC
To determine, each equal angle of the triangle

RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q11.1
∵ ∠A = 90°
∴ ∠B + ∠C = 90°
But ∠B = ∠C
∴ ∠B + ∠B = 90°
⇒ 2∠B = 90°
90°
⇒ ∠B = \(\frac { { 90 }^{ \circ } }{ 2 }\)  = 45°
and ∠C = ∠B = 45°
Hence ∠B = ∠C = 45°

Question 12.
In the figure, PQRS is a square and SRT is an equilateral triangle. Prove that
(i) PT = QT
(ii) ∠TQR = 15°
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q12.1
Solution:
Given : PQRS is a square and SRT is an equilateral triangle. PT and QT are joined.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q12.2
To prove : (i) PT = QT; (ii) ∠TQR = 15°
Proof : In ∆TSP and ∆TQR
ST = RT (Sides of equilateral triangle)
SP = PQ (Sides of square)
and ∠TSP = ∠TRQ (Each = 60° + 90°)
∴ ∆TSP ≅ ∆TQR (SAS axiom)
∴ PT = QT (c.p.c.t.)
In ∆TQR,
∵ RT = RQ (Square sides)
∠RTQ = ∠RQT
But ∠TRQ = 60° + 90° = 150°
∴ ∠RTQ + ∠RQT = 180° – 150° = 30°
∵ ∠PTQ = ∠RQT (Proved)
∠RQT = \(\frac { { 30 }^{ \circ } }{ 2 }\)  = 15°
⇒ ∠TQR = 15°

Question 13.
AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the ponits A and B (see figure). Show that the line PQ is perpendicular bisector of AB.
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q13.1
Solution:
Given : AB is a line segment.
P and Q are points such that they are equidistant from A and B
i.e. PA = PB and QA = QB AP, PB, QA, QB, PQ are joined
To prove : PQ is perpendicular bisector of AB
RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 Q13.2
Proof : In ∆PAQ and ∆PBQ,
PA = PB (Given)
QA = QB (Given)
PQ = PQ (Common)
∴ ∆PAQ ≅ ∆PBQ (SSS axiom)
∴ ∠APQ = ∠BPQ (c.p.c.t.)
Now in ∆APC = ∆BPC
PA = PB (Given)
∆APC ≅ ∆BPC (Proved)
PC = PC (Common)
∴ ∆APC = ∆BPC (SAS axiom)
∴ AC = BC (c.p.c.t.)
and ∠PCA = ∠PCB (c.p.c.t.)
But ∠PCA + ∠PCB = 180° (Linear pair)
∴ ∠PCA = ∠PCB = 90°
∴ PC or PQ is perpendicular bisector of AB

 

Hope given RD Sharma Class 9 Solutions Chapter 12 Heron’s Formula Ex 12.1 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C

RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 2 Exponents Ex 2C.

Other Exercises

Objective Questions :
Tick the correct answer in each of the following:

Question 1.
Solution:
Answer = (c)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q1.1

Question 2.
Solution:
Answer = (d)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q2.1

Question 3.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q3.1

Question 4.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q4.1

Question 5.
Solution:
Answer = (b)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q5.1

Question 6.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q6.1

Question 7.
Solution:
Answer = (a)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q7.1

Question 8.
Solution:
Answer = (a)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q8.1

Question 9.
Solution:
Answer = (d)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q9.1

Question 10.
Solution:
Answer = (d)
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q10.1

Question 11.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q11.1

Question 12.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q12.1

Question 13.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q13.1

Question 14.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q14.1

Question 15.
Solution:
3670000 = 3.670000 x 1000000
= 3.67 x 106 (c)

Question 16.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q16.1

Question 17.
Solution:
RS Aggarwal Class 8 Solutions Chapter 2 Exponents Ex 2C Q17.1

Hope given RS Aggarwal Solutions Class 8 Chapter 2 Exponents Ex 2C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

HOTS Questions for Class 9 Science Chapter 15 Improvement in Food Resources

HOTS Questions for Class 9 Science Chapter 15 Improvement in Food Resources

These Solutions are part of HOTS Questions for Class 9 Science. Here we have given HOTS Questions for Class 9 Science Chapter 15 Improvement in Food Resources

Question 1.
Identify the plants and animals shown in the figures.
HOTS Questions for Class 9 Science Chapter 15 Improvement in Food Resources image - 2
To which category each one belongs ?
Answer:
A. White Leghorn …………….. exotic bread of poultry, acclimatised to India, very good layer and moderately good broiler.
B. jersey ……………… exotic cattle, very high milk yielding
C. Gundhi Bug …………….. Insect pest of Paddy.
D. Wild Oat ………………. Rabi season narrow leaved monocot weed.

More Resources

Question 2.
Name (a) A milch animal with maximum fat content in its milk.
HOTS Questions for Class 9 Science Chapter 15 Improvement in Food Resources image - 1
(b) Kharif season narrow leaved and broad leaved weeds.
(c) Cattle disease transferable to human beings.
(d) Bird used in cock fighting.
Answer:
(a) Surti breed of buffalo with fat content of 8-12% in its milk.
(b)

  1. Narrow Leaved Monocot Weed ……………….. Nutgrass (Cyperus/ Cyperinus rotundus).
  2. Broad Leaved Dicot Weed ………………… Amaranthus.

(c) Anthrax, amoebiasis, tuberculosis.
(d) Aseel ……………… local (indigenous) breed of poultry.

Question 3.
What is royal jelly ? How does it differ from bee bread ?
Answer:
Royal jelly is a protein rich food secreted by hypophyseal glands of young workers for feeding the queen.
Bee bread is prepared by adult workers for all other members of the colony. Bee bread is a mixture of honey and pollen.

Hope given HOTS Questions for Class 9 Science Chapter 15 Improvement in Food Resources are helpful to complete your science homework.

If you have any doubts, please comment below. Learn Insta try to provide online science tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C

RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 3 Squares and Square Roots Ex 3C.

Other Exercises

Question 1.
Solution:
(23)² = 529
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q1.1

Question 2.
Solution:
(35)² = 1225
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q2.1

Question 3.
Solution:
(52)² = 2704
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q3.1

Question 4.
Solution:
(96)² = 9216
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q4.1

Find the value of each of the following using the diagonal method :

Question 5.
Solution:
(67)² = 4489 Ans.
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q5.1

Question 6.
Solution:
(86)² = 7396 Ans
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q6.1

Question 7.
Solution:
(137)² = 18769 Ans
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q7.1

Question 8.
Solution:
(256)² = 65536 Ans.
RS Aggarwal Class 8 Solutions Chapter 3 Squares and Square Roots Ex 3C Q8.1

Hope given RS Aggarwal Solutions Class 8 Chapter 3 Squares and Square Roots Ex 3C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G

RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G

These Solutions are part of RS Aggarwal Solutions Class 8. Here we have given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1G.

Other Exercises

Question 1.
Solution:
Total length of rope = 11 m.
Sum of lengths of two parts
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q1.1

Question 2.
Solution:
Total weight of rice and drum
= \(40\frac { 1 }{ 6 } \) kg
= \(13\frac { 3 }{ 4 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q2.1

Question 3.
Solution:
Total weight of three types of fruits
= \(19\frac { 1 }{ 3 } \) kg
= \(\\ \frac { 58 }{ 3 } \) kg
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q3.1

Question 4.
Solution:
Total earnings = Rs 160
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q4.1
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q4.2

Question 5.
Solution:
Cost of 1m cloth = Rs \(63\frac { 3 }{ 4 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q5.1

Question 6.
Solution:
Distance covered in 1 hour
= \(60\frac { 2 }{ 5 } \)
= \(\\ \frac { 302 }{ 5 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q6.1

Question 7.
Solution:
Length of rectangular park
= \(36\frac { 3 }{ 5 } \) m
= \(\\ \frac { 183 }{ 5 } \)
and breadth = \(16\frac { 2 }{ 3 } \) = \(\\ \frac { 50 }{ 3 } \) m
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q7.1

Question 8.
Solution:
Side of a square plot = \(8\frac { 1 }{ 2 } \) m
= \(\\ \frac { 17 }{ 2 } \) m
Area = (Side)² = Side x Side
= \(\\ \frac { 17 }{ 2 } \) x \(\\ \frac { 17 }{ 2 } \) m²
= \(\\ \frac { 289 }{ 4 } \) m²
= \(72\frac { 1 }{ 4 } \) m²

Question 9.
Solution:
Cost of 1 litre petrol = Rs \(63\frac { 3 }{ 4 } \)
= Rs \(\\ \frac { 255 }{ 4 } \)
Cost of 34 litres of petrol
= \(\\ \frac { 255 }{ 4 } \) x 34
= \(\\ \frac { 255X17 }{ 2 } \)
= \(\\ \frac { 4335 }{ 2 } \)
= Rs \(2167\frac { 1 }{ 2 } \)

Question 10.
Solution:
Distance covered in 1 hour = 1020 km.
Distance covered in \(4\frac { 1 }{ 6 } \) hours
= 1020 x \(4\frac { 1 }{ 6 } \)
= 1020 x \(\\ \frac { 25 }{ 6 } \) km
= \(\\ \frac { 25500 }{ 6 } \)
= 4250 km. Ans.

Question 11.
Solution:
Cost of \(3\frac { 1 }{ 2 }\) metres cloth
= Rs \(166\frac { 1 }{ 4 }\)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q11.1

Question 12.
Solution:
Total length of piece of chord
= \(71\frac { 1 }{ 2 }\)
No. of pieces = 26
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q12.1

Question 13.
Solution:
Area of a room = \(65\frac { 1 }{ 4 }\) m²
Breadth = \(5\frac { 7 }{ 16 }\) m
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q13.1

Question 14.
Solution:
Product of two fractions = \(9\frac { 3 }{ 5 }\)
= \(\\ \frac { 48 }{ 5 } \)
One fraction = \(9\frac { 3 }{ 7 }\) = \(\\ \frac { 66 }{ 7 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q14.1

Question 15.
Solution:
Let total number of students =1
and no.of boys = \(\\ \frac { 5 }{ 8 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q15.1

Question 16.
Solution:
Let no of pages = 1
Then no. of pages read = \(\\ \frac { 7 }{ 9 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q16.1

Question 17.
Solution:
Total amount, Rita has = Rs 300
Amount spent on notebooks = \(\\ \frac { 1 }{ 3 } \) of 300
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q17.1

Question 18.
Solution:
Total amount earned by Amit = Rs 32000
Amount spent on food = \(\\ \frac { 1 }{ 4 } \) of Rs 32000
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q18.1

Question 19.
Solution:
Let number = 1
Then difference between \(\\ \frac { 3 }{ 5 } \) and \(\\ \frac { 2 }{ 7 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q19.1

Question 20.
Solution:
Let total number of spectators = 1
No. of spectators in covered place = \(\\ \frac { 2 }{ 7 } \) of
1 = \(\\ \frac { 2 }{ 7 } \)
RS Aggarwal Class 8 Solutions Chapter 1 Rational Numbers Ex 1G Q20.1

Hope given RS Aggarwal Solutions Class 8 Chapter 1 Rational Numbers Ex 1G are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.