Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B

Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B

Other Exercises

Question 1.
In an A.P., ten times of its tenth term is equal to thirty times of its 30th term. Find its 40th term.
Solution:
In an A.P.
10T10 = 30T30
We know that,
If m times of mth term = n times of nth term
Then its (m + n)th term = 0
∴ 10T10 = 30T30
Then T10+30 = 0 or T40 = 0

Question 2.
How many two-digit numbers are divisible by 3 ?
Solution:
Two digits numbers are 10 to 99
and two digits numbers which are divisible
by 3 are 12, 15, 18, 21,….99
Here a = 12, d = 3 and l = 99
Now, Tn = l = a + (n – 1 )d
99 = 12 + (n – 1) x 3
=> 99 – 12 = 3(n – 1)
=> 87 = 3(n – 1)
=> \(\\ \frac { 87 }{ 3 } \) = n – 1
=> n – 1 = 29
n = 29 + 1 = 30
Number of two digit number divisible by 3 = 30

Question 3.
Which term of A.P. 5, 15, 25, will be 130 more than its 31st term?
Solution:
A.P. is 5, 15, 25,….
Let Tn = T31 + 130
In A.P. a = 5, d = 15 – 5 = 10
∴ Tn = a + 30d + 130 = 5 + 30 x 10 +130
= 5 + 300 + 130 = 435
∴ n + (n – 1)d = 435
=> 5 + (n – 1) x 10 = 435
=> (n – 1) x 10 = 435 – 5 = 430
n – 1 = \(\\ \frac { 430 }{ 10 } \) = 43
n = 43 + 1 = 44
∴ The required term is 44th.

Question 4.
Find the value of p, if x, 2x + p and 3x + 6 are in A.P.
Solution:
A.P. is x, 2x + p, 3x + 6
2x + p – x = 3x + 6 – 2x + p
x + p = x – p + 6
=>2p = 6
=>p = \(\\ \frac { 6 }{ 2 } \) = 3
Hence p = 3

Question 5.
If the 3rd and the 9th terms of an arithmetic progression are 4 and – 8 respectively, which term of it is zero?
Solution:
In an A.P.
T3 = 4 and T9 = – 8
Let a be the first term and d be the common difference, then
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q5.1

Question 6.
How many three-digit numbers ate divisible by 87 ?
Solution:
Three digits numbers are 100 to 999
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q6.1
999 – 42 = 957
Numbers divisible by 87 will be 174,….., 957
Let n be the number of required three digit number.
Here, a = 174 and d = 87
l = 957 = a + (n – l)d
= 174 + (n – 1) x 87
=> (n – 1) x 87 = 957 – 174 = 783
n – 1 = \(\\ \frac { 783 }{ 87 } \) = 9
n = 9 + 1 = 10
There are 10 such numbers.

Question 7.
For what value of n, the nth term of A.P. 63, 65, 67,….. and nth term of A.P. 3, 10, 17,…… are equal to each other?
Solution:
We are given,
nth term of 63, 65, 67, …….
=> nth term of 3, 10, 17,…….
=> In first A.P., a1 = 63, d1 = 2
and in second A.P., a2 = 3, d2 = 1
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q7.1
∴ Required nth term will be 13th

Question 8.
Determine the A.P. whose 3rd term is 16 and the 7th term exceeds the 5th term by 12.
Solution:
T3 = 16, and T7 = T5 + 12
Let a be the first term and d be the common difference
T3 = a + 2d – 16 …(i)
T7 = T5 + 12
a + 6d = a + 4d + 12
=> 6d – 4d = 12 => 2d – 12
=> d = \(\\ \frac { 12 }{ 2 } \) = 6
and in (i),
a + 6 x 2 = 16
=> a + 12 = 16
=>a = 16 – 12 = 4
A.P. will be 4, 10, 16, 22,……

Question 9.
If numbers n – 2, 4n – 1 and 5n + 2 are in A.P., find the value of n and its next two terms.
Solution:
n – 2, 4n – 1 and 5n + 2 are in A.P.
(4n – 1) – (n – 2) = (5n + 2) – (4n – 1)
=> 4n – 1 – n + 2 = 5n + 2 – 4n + 1
=> 4n – n – 5n + 4n = 2 + 1 + 1 – 2
=>2n = 2 =>n = \(\\ \frac { 2 }{ 2 } \) = 1
4n – 1 = 4 x 1 – 1 = 4 – 1 = 3
n – 2 = 1 – 2 = – 1
and 5n + 2 = 5 x 1 + 2 = 5 + 2 = 7
A.P. is – 1, 3, 7, ……
and next 2 terms will 11, 15

Question 10.
Determine the value of k for which k2 + 4k + 8, 2k2 + 3k + 6 and 3k2 + 4k + 4 are in A.P.
Solution:
k2 + 4k+ 8, 2k2 + 3k + 6 and 3k2 + 4k + 4 are in A.P.
(2k2 + 3k + 6) – (k2 + 4k + 8)
= (3k2 + 4k + 4) – (2k2 + 3k + 6)
=> 2k2 + 3k + 6 – k2 – 4k – 8
= 3k2 + 4k + 4 – 2k2 – 3k – 6
=> k2 – k – 2 = k2 + k – 2
=> k2 – k – k2 – k = – 2 + 2
=> – 2k = 0
=> k = 0
Hence k = 0

Question 11.
If a, b and c are in A.P. show that :
(i) 4a, 4b and 4c are in A.P.
(ii) a + 4, b + 4 and c + 4 are in A.P.
Solution:
a, b, c are in A.P.
2b = a + c
(i) 4a, 4b and 4c are in A.P.
If 2(4b) = 4a + 4c
If 8b = 4a + 4c
If 2b = a + c which is given
(ii) a + 4, b + 4 and c + 4 are in A.P.
If 2(b + 4) = a + 4 + c + 4
If 2b + 8 = a + c + 8
If 2b = a + c which is given

Question 12.
An A.P. consists of 57 terms of which 7th term is 13 and the last term is 108. Find the 45th term of this A.P.
Solution:
Number of terms in an A.P. = 57
T7 = 13, l= 108
To find T45
Let a be the first term and d be the common difference
=> a + 6d = 13 …(i)
a + (n – 1 )d= 108
=> a + (57 – 1 )d= 108
=> a + 56d = 108
Subtracting,
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q12.1

Question 13.
4th term of an A.P. is equal to 3 times its term and 7th term exceeds twice the 3rd term by 1. Find the first term and the common difference.
Solution:
In A.P
T4 = 3 x T1
T7 = 2 x T3 + 1
Let a be the first term and d be the common
difference
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q13.1

Question 14.
The sum of the 2nd term and the 7th term of an A.P. is 30. If its 15th term is 1 less than twice of its 8th term, find the A.P.
Solution:
In an A.P.
T2 + T7 = 30
T15 = 2T8 – 1
Let a be the first term and d be the common difference
a + d + a + 6d = 30
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q14.1

Question 15.
In an A.P., if mth term is n and nth term is m, show that its rth term is (m + n – r)
Solution:
In an A.P.
Tm = n and Tn = m
Let a be the first term and d be the common difference, then
Tm = a + (m – 1 )d = n
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q15.1

Question 16.
Which term of the A.P. 3, 10, 17,…..will be 84 more than its 13th term?
Solution:
A.P. is 3, 10, 17,….
Here, a = 2, d = 10 – 3 = 7
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B Q16.1

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A

Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency (Mean, Median, Quartiles and Mode) Ex 24A

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Chapter 24 Measures of Central Tendency (Mean, Median, Quartiles and Mode) Ex 24A.

Other Exercises

Question 1.
Find the mean of following set of numbers:
(i) 6, 9, 11, 12 and 7
(ii) 11, 14, 23, 26, 10, 12, 18 and 6.
Solution:
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q1.1

Question 2.
Marks obtained (in mathematics) by a students are given below :
60, 67, 52, 76, 50, 51, 74, 45 and 56
(a) Find the arithmetic mean
(b) If marks of each student be increased by 4;
what will be the new value of arithmetic mean.
Solution:
(a) Hence x = 9
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q2.1
(b) If marks of each students be increased by 4 then new mean will be = 59 + 4 = 63

Question 3.
Find the mean of natural numbers from 3 to 12.
Solution:
Numbers betweeen 3 to 12 are 3, 4, 5, 6, 7, 8, 9, 10, 11, 12.
Here n = 10
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q3.1

Question 4.
(a) Find the means of 7, 11, 6, 5 and 6. (b) If each number given in (a) is diminished by 2; find the new value of mean.
Solution:
(a) The mean of 7, 11, 6, 5 and 6.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q4.1
(b) If we subtract 2 from each number, then the mean will be 7 – 2 = 5

Question 5.
If the mean of 6, 4, 7, a and 10 is 8. Find the value of ‘a’.
Solution:
No. of terms = 5
Mean = 8
∴ Sum of number (Σxi) = 5 x 8 = 40 …(i)
But Σxi = 6 + 4 + 7 + a+10 = 27 + a ….(ii)
From (i) and (ii)
27 + a = 40 ⇒ a = 40 – 27
∴ a = 13

Question 6.
The mean of the number 6, y, 7, x and 14 is 8. Express y in terms of x.
Solution:
No. of terms = 5 and
mean = 8
∴ Sum of numbers (Σxi) = 5 x 8 = 40 ….(i)
But sum of numbers given = 6 + y + 7 + x + 14
= 21 + y + x + ….(ii)
From (i) and (ii)
27 + y + x = 40
⇒ y = 40 – 27 – x
⇒ y= 13 – x

Question 7.
The ages of 40 students are given in the following table :
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q7.1
Find the arithmetic mean.
Solution:
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q7.2

Question 8.
If 69.5 is the mean of 72, 70, x, 62, 50, 71, 90, 64, 58 and 82, find the value of x.
Solution:
No. of terms = 10
Mean = 69.5
∴ Sum of numbers = 69,5 x 10 = 695 ….(i)
But sum of given number = 72 + 70 + x + 62 + 50 + 71 + 90 + 64 + 58 + 82 = 619+x ….(ii)
From (i) and (ii)
619 + x = 695
⇒ x = 695 – 619 = 76

Question 9.
The following table gives the heights of plants in centimeter. If the mean height of plants is 60.95 cm; find the value of ‘f’.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q9.1
Solution:
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q9.2
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q9.3

Question 10.
From the data given below, calculate the mean wage, correct to the nearest rupee.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q10.1
(i) If the number of workers in each category is doubled, what would be the new mean wage? [1995]
(ii) If the wages per day in each category are increased by 60%; what is the new mean wage?
(iii) If the number of workers in each category is doubled and the wages per day per worker are reduced by 40%. What would be the new mean wage?
Solution:
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q10.2
(i) Mean remains the same if the number of workers in each catagory is doubled.
∴ Mean = 80.
(ii) Mean will be increased by 60% if the wages per day per worker is increased by 60%.
∴ New mean = 80 x \(\frac { 160 }{ 100 }\)= 128
(iii) No change in the mean if the number of worker is doubled but if wages per worker is reduced by 40%, then
New mean = 80 x \(\frac { 60 }{ 100 }\)= 48

Question 11.
The contents of 100 match boxes were checked to determine the number of matches they contained.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q11.1
(i) Calculate, correct to one decimal place, the mean number of matches per box.
(ii) Determine how many extra matches would have to be added to the total contents of the 100 boxes to bring the mean up to exactly 39 matches. [1997]
Solution:
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q11.2
(ii) In the second case,
New mean = 39 matches
∴ Total contents = 39 x 100 = 3900
But total no of matches already given = 3813
∴ Number of new matches to be added = 3900 – 3813 = 87

Question 12.
If the mean of the following distribution is 3, find the value of p.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q12.1
Solution:
Mean = 3
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q12.2
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q12.3

Question 13.
In the following table, Σf= 200 and mean = 73. Find the missing frequencies f1 and f2.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q13.1
Solution:
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q13.2
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q13.3

Question 14.
Find the arithmetic mean (correct to the nearest whole-number) by using step-deviation method.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q14.1
Solution:
Let the Assumed mean = 30
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q14.2
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q14.3

Question 15.
Find the mean (correct to one place of decimal) by using short-cut method.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q15.1
Solution:
Let the Assumed mean A = 45
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q15.2
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A Q15.3

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 24 Measures of Central Tendency Ex 24A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A

Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A

These Solutions are part of Selina Concise Mathematics Class 10 ICSE Solutions. Here we have given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A

Other Exercises

Question 1.
Which of the following sequences are in arithmetic progression?
(i) 2, 6, 10, 14, …….
(ii) 15, 12, 9, 6,…….
(iii) 5, 9, 12, 18, ……
(iv) \(\frac { 1 }{ 2 } ,\frac { 1 }{ 3 } ,\frac { 1 }{ 4 } ,\frac { 1 }{ 5 } \),…..
Solution:
(i) 2, 6, 10, 14,
Here, d = 6 – 2 = 4
10 – 6 = 4
14 – 10 = 4
∴ In each case (d) is same.
∴It is an arithmetic progression.
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q1.1
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q1.2
∴d is not the same
∴It is not an arithmetic progression

Question 2.
The nth term of a sequence is (2n – 3), find its fifteenth term.
Solution:
Tn = 2n – 3
T15 = 2 x 15 – 3
= 30 – 3
= 27

Question 3.
If the pth term of an A.P. is (2p + 3); find the A.P.
Solution:
Tp = 2p + 3
T1 = 2 x 1 + 3 = 2 + 3 = 5
T2 = 2 x 2 + 3 = 4 + 3 = 7
T3 = 2 x 3 + 3 = 6 + 3 = 9
∴A.P. is 5, 7, 9,…..

Question 4.
Find the 24th term of the sequence : 12, 10, 8, 6,…….
Solution:
A.P. is 12, 10, 8, 6,……
Here a = 12, d = 10 – 12 = – 2
Tn = a + (n – 1)d
T24 = 12 + (24 – 1) x ( – 2)
= 12 + 23 x ( – 2)
= 12 – 46
= – 34

Question 5.
Find the 30th term of the sequence :
\(\\ \frac { 1 }{ 2 } \), 1, \(\\ \frac { 3 }{ 2 } \),….
Solution:
\(\\ \frac { 1 }{ 2 } \), 1, \(\\ \frac { 3 }{ 2 } \),….
Here a = \(\\ \frac { 1 }{ 2 } \), d = \(1- \frac { 1 }{ 2 } \)
\(\\ \frac { 1 }{ 2 } \)
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q5.1

Question 6.
Find the 100th term of the sequence :
√3, 2√3, 3√3,….
Solution:
√3, 2√3, 3√3,….
Here a = √3, d = 2√3 – √3 = √3
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q6.1

Question 7.
Find the 50th term of the sequence :
\(\\ \frac { 1 }{ n } \), \(\\ \frac { n+1 }{ n } \), \(\\ \frac { 2n+1 }{ n } \),……
Solution:
\(\\ \frac { 1 }{ n } \), \(\\ \frac { n+1 }{ n } \), \(\\ \frac { 2n+1 }{ n } \),……
=>\(\\ \frac { 1 }{ n } \), \(1+ \frac { 1 }{ n } \), \(2+ \frac { 1 }{ n } \),…..
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q7.1

Question 8.
Is 402 a term of the sequence :
8, 13, 18, 23,…?
Solution:
In sequence 8, 13, 18, 23,…..
a = 8 and d = 13 – 8 = 5
Let 402 be the nth term, then
402 = a + (n – 1)d = 8 + (n – 1) x 5
\(\\ \frac { 402-8 }{ 5 } \) = n – 1
=> \(\\ \frac { 394 }{ 5 } \) = n – 1
394 is not exactly divisible by 5,
∴ 402 is not its term.

Question 9.
Find the common difference and 99th term of the arithmetic progression :
\(7 \frac { 3 }{ 4 } \), \(9 \frac { 1 }{ 2 } \), \(11 \frac { 1 }{ 4 } \),…..
Solution:
\(7 \frac { 3 }{ 4 } \), \(9 \frac { 1 }{ 2 } \), \(11 \frac { 1 }{ 4 } \),…..
here a = \(7 \frac { 3 }{ 4 } \)
= \(\\ \frac { 31 }{ 4 } \)
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q9.1
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q9.2

Question 10.
How many terms are there in the series:
(i) 4, 7, 10, 13,…..148 ?
(ii) 0.5, 0.53, 0.56,…..1.1 ?
(iii) \(\\ \frac { 3 }{ 4 } \), 1, \(1 \frac { 1 }{ 4 } \),….3 ?
Solution:
(i) 4, 7, 10, 13,…..148 ?
Here a = 4, d = 7 – 4
= 3
Let 148 be the nth term, then
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q10.1
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q10.2

Question 11.
Which term of the A.P. 1 + 4 + 7 + 10 +……is 52 ?
Solution:
A.P. is 1, 4, 7, 10,……is 52
Here a = 1, d = 4 – 1 = 3
Let 52 be the nth term, then
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q11.1

Question 12.
If 5th and 6th terms of an A.P. are respectively 6 and 5, find the 11th term of the A.P.
Solution:
5th term (T5) = 6
=> 6 = a + 4d
and T6 = 5
=> 5 = a + 5d
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q12.1

Question 13.
If tn represents nth term of an A.P., t2 + t5 – t3 = 10 and t2 + t9 = 17, find its first term and its common difference.
Solution:
Let first term of an A.P. be a
and common difference = d
Then Tn is the nth term
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q13.1

Question 14.
Find the 10th term from the end of the A.P. 4, 9, 14,…. 254.
Solution:
We know that rth term from the end
= (n – r + 1)th from the beginning
Here, a = A, d = 9 – 4 = 5,
nth term = 254
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q14.1

Question 15.
Determine the arithmetic progression whose 3rd term is 5 and 7th term is 9.
Solution:
Let a be the first term and d be the common difference, then
T3 = a + 2d – 5
T7 = a + 6d = 9
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q15.1

Question 16.
Find the 31st term of an A.P. whose 10th term is 38 and 16th term is 74.
Solution:
Let a be the first term and d be the common difference, then
T10 = a + 9d =38
and T16 = a + 15d = 74
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q16.1

Question 17.
Which term of the series :
21, 18, 15, is – 81 ?
Can any term of this series be zero ? If yes, find the number of term.
Solution:
21, 18, 15, 1….. – 81
Here a = 21,d = 18 – 21 = – 3,
nth term = – 81
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q17.1

Question 18.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find the 31st term.
Solution:
Given : An A.P. consists of 60 terms
a = 7
and a60 = 125
=> a + (60 – 1 )d = 125
=> 7 + 59 d = 125
=> 59d= 125 – 7
=> d = \(\\ \frac { 118 }{ 59 } \) = 2
now, a31 = a + (n – 1)d
= 7 + (31 – 1) x 2
= 7 + 30 x 2
= 67

Question 19.
The sum of the 4th and the 8th terms of an A.P. is 24 and the sum of the sixth term and the tenth term is 34. Find the first three terms of the A.P.
Solution:
In an A.P.
T4 + T8 = 24
T6 + T10 =34
Let a be the first term and d be the common difference
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q19.1
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q19.2

Question 20.
If the third term of an A.P. is 5 and the seventh terms is 9, find the 17th term
Solution:
Let the first term of an A.P. = a
and the common difference of the given A.P. = d
As, we know that,
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q20.1
Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A Q20.2

Hope given Selina Concise Mathematics Class 10 ICSE Solutions Chapter 10 Arithmetic Progression Ex 10A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4

RD Sharma Class 8 Solutions Chapter 21 Mensuration II (Volumes and Surface Areas of a Cubiod and a Cube) Ex 21.4

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4

Other Exercises

Question 1.
Find the length of the longest rod that can be placed in a room 12 m long, 9 m broad and 8 m high.
Solution:
Length of room (l) = 12m
Breadth (b) = 9 m
Height (h) = 8 m
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 1
Longest rod to be kept in the room
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 2

Question 2.
If V is the volume of the cuboid of dimensions a, b, c and S its the surface area then prove that
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 3
Solution:
∵ a, b, c are the dimensions of a cuboid
∴ Volume (V) = abc
Surface area (S) = 2(ab + bc + ca)
Now
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 4

Question 3.
The areas of three adjacent faces of a cuboid are .v, y and z. If the volume is V1 prove that V2 = xyz.
Solution:
Let length of cuboid = l
Breadth = b
and height = h
Volume = Ibh
∴ x = lb,y = bh and z = hl
Now x.y.z = lb.bh.hl
= l2 b2 h2 = (Ibh)2 = V2
∴ V2 = xyz Hence proved

Question 4.
A rectangular water reservoir contains 105 m3 of water. Find the depth of the water in the reservoir if its base measures 12 m by 3.5 m.
Solution:
Volume of the water in reservoir = 105 m2
Length (l)= 12 m
and breadth (b) = 3.5 m
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 5

Question 5.
Cubes A, B, C having edges 18 cm, 24 cm and 30 cm respectively are melted and moulded into a new cube D. Find the edge of the bigger cube D.
Solution:
Edge of cube A = 18 cm
∴ Volume = a2 = (18)3 cm3 = 5832 cm3
Edge of cube B = 24 cm
∴ Volume = (24)3 = 13824 cm3
Edge of cube C = 30 cm
∴Volume = (30)3 = 27000 cm3
Volume of A, B, C cubes
= 5832+ 138-24+ 27000 = 46656 cm3
Volume of cube D = 46656 cm3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 6

Question 6.
The breadth of a room is twice its height, one half of its length and the volume of the room is 512 cu.dm. Find its dimensions.
Solution:
Volume of room = 512 cu.dm
Let height of the room (h) = x
Then breadth (b) = 2x
and length (l) = 2x x 2 = 4x.
∴ Volume = l x b x h = 4x x 2x x x = 8×3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 7

Question 7.
A closed iron tank 12 m long, 9 m wide and 4 m deep is to be made. Determine the cost of iron sheet used at the rate of Rs 5 per metre sheet, sheet being 2 m wide.
Solution:
Length of iron tank (l) = 12 m
Breadth (b) = 9 m
Depth (h) = 4 m
∴ Surface area of the tank = 2(l x b + b x h + h x l)
= 2(12 x 9 + 9 x 4 + 4 x 12) m2
= 2(108 + 36 + 48) = 2 x 192 m2
= 384 m2
Width of sheet used = 2 m
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 8

Question 8.
A tank open at the top is made of iron sheet 4 m wide. If the dimensions of the tank are 12 m x 8 m x 6 m, find the cost of iron sheet at Rs 17.50 per metre.
Solution:
Dimensions of the open iron tank = 12mx 8m.x 6m
∴ Surface area (without top)
= 2(1 x b) x h + lb
= 2(12 + 8) x 6+12 x 8m2
= 2 x 20 x 6 + 96 = 240 + 96 m2 = 336 m2
Width of sheet used = 4 m
∴ Length of sheet = \(\frac { Area }{ b }\) = \(\frac { 336 }{ 4 }\) m = 84 m b 4
Rate of sheet = Rs 17.50 per m.
∴ Total cost = Rs 17.50 x 84 = Rs 1470

Question 9.
Three equal cubes are placed adjacently in a row. Find the ratio of the total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.
Solution:
Let edge of each equal cubes = x
Then, surface area of one cube = 6x2
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 9
and surface area of three cubes = 3 x 6x2 = 18x2
By placing the cubes in a row,
The length of newly formed cuboid (l) = 3x
Breadth (b) = x
and height (h) = x
∴ Surface area of the cuboid so formed
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 10

Question 10.
The dimensions of a room are 12.5 m by 9 m by 7 m. There are 2 doors and 4 windows in the room; each door measures 2.5 m by 1.2 m and each window 1.5 m by 1 m. Find the cost of painting the walls at Rs 3.50 per square metre.
Solution:
Dimensions of a room = 12.5 m x 9 m x 7 m
∴ Total surface area of the walls = 2(1 + b) x h = 2(12.5 + 9) x 7 m2
= 2 x 21.5 x 7 = 301 0 m2
Area of 2 doors = 2 x (2.5 x 1.2) m2 = 2 x 3.00 = 6 m2
Area of 4 windows = 4 x (1.5 x 1) m2
4 x 1.5 = 6 m2
∴ Remaining area of the walls = 301 -(6 + 6) m2
= 301 – 12 = 289 m2
∴ Rate of painting the walls = Rs 3.50 per m2
∴ Total cost = Rs 3.50 x 289 = Rs 1011.50

Question 11.
A field is 150 m long and 100 m wide. A plot (outside the field) 50 m long and 30 m wide is dug to a depth of 8 m and the earth taken out from the plot is spread evenly in the field. By how much the level of field is raised ?
Solution:
Length of the plot (l) = 50 m
Width (b) = 30 m
and depth (h) = 8 m
∴ Volume of the earth dug out = l x b x h = 50 x 30 x 8 = 12000 m3
Length of the field = 150 m
and breadth = 100 m
∴ Height of the earth spread out on the field
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 11

Question 12.
Two cubes, each of volume 512 cm3 are joined end to end, find the surface area of the resulting cuboid.
Solution:
Volume of each cube = 512 cm3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 12
Now by joining the two equal cubes of side 8 cm, the length of so formed cuboid (l)
= 2 x 8 = 16 cm
Breadth (b) = 8 cm
and height (h) = 8 cm
∴ Surface area = 2( l x b + b x h + h x l)
= 2(16 X 8 + 8 X 8 + 8X16) cm2
= 2(128 + 64 + 128) cm2
= 2 x 320 = 640 cm2
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 13

Question 13.
Three cubes whose edges measure 3 cm, 4 cm and 5 cm respectively are melted to form a new cube. Find the surface area of the new cube formed.
Solution:
Edge of first cube = 3 cm
∴ Volume = a3 = (3)3 27 cm3
Edge of second cube = 4 cm
∴Volume = a3 = (4)3 = 64 cm3
Edge of third cube = 5 cm
∴ Volume = a3 = (5)3 = 125 cm3
Volume of three cubes together = 27 + 64+ 125 = 216 cm3
∴ Volume of the new cube = 216 cm3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 14

Question 14.
The cost of preparing the’walls of a room 12 m long at the rate of Rs 1.35 per square metre is Rs 340.20 and the cost of matting the floor at 85 paise per square metre is Rs 91.80. Find the height of the room.
Solution:
Length of the room (l) = 12 m
Rate of matting the floor = 85 paise per m2
Total cost of matting = Rs 91.80
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 15

Question 15.
The length of a hall is 18 m and width 12 m. The sum of the areas of the floor and the flat roof is equal to the sum of the areas of the four walls. Find the height of the wall.
Solution:
Length of hall (l) = 18 m
and breadth (b) = 12 m
∴ Area of floor = l x b = 18 x 12 = 216 m2
and area of roof = 216 m2
Total area of floor and roof
= (216 + 216) m2 = 432 m2
∴ Area of four walls = 432 m2
But area of 4 walls = 2(l + b) x h
∴ 2h (l + b) = 432
⇒ 2h (18 + 12) = 432
⇒ 2h x 30 = 432 432
⇒ h = \(\frac { 432 }{ 60 }\) = 7.2m
∴ Height of the wall = 7.2 m

Question 16.
A metal cube of edge 12 cm is melted and formed into three smaller cubes. If the edges of the two smaller cubes are 6 cm and 8 cm, find the edge of the third smaller cube.
Solution:
Edge of metal bigger cube = 12 cm
∴ Volume = (12)3 = 1728 cm3
∴ Sum of volumes of 3 smaller cubes = 1728 cm3
Edge of first smaller cube = 6 cm
∴ Volume = (6)3 = 216 cm3
Edge of second smaller cube = 8 cm
∴ Volume = (8)3 = 512 cm3
Sum of volumes of two smaller cubes = 216+ 512 = 728 cm3
∴ Volume of third smaller cube = 1728-728 cm3 = 1000 cm3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 16

Question 17.
The dimensions of a cinema hall are 100 m, 50 m and 18 m. How many persons can sit in the hall if each person requires 150 m3 of air ?
Solution:
Length of cinema hall (l) = 100 m
Breadth (b) = 50 m
and height (h) = 18 m
∴ Volume of air of the hall = l x b x h
= 100 x 50 x 18 m3
= 90000 m3
Each person requires air = 150 m3
∴ Number of persons = \(\frac { 90000 }{ 150 }\)= 600

Question 18.
The external dimensions of a closed wooden box are 48 cm, 36 cm, 30 cm. The box is made of 1.5 cm thick wood. How many bricks of size 6 cm x 3 cm x 0.75 cm can be put in this box ?
Solution:
Outer dimensions of a closed wooden box = 48 cm x 36 cm x 30 cm
Thickness of wood = 1.5 cm.
∴ Inner length (l) = 48 – 2 x 1.5 cm = 48 – 3 = 45 cm
Breadth(b) = 36-2 x 1.5 = 36-3 = 33 cm
Height (h) = 30 – 2 x 1.5 = 30 – 3 = 27 cm
∴ Volume of inner box = l x b x h = 45 x 33 x 27 cm3 = 40095 cm3
Volume of one brick of size 6 cm x 3 cm x 0.75 cm
= 6 x 3 x 0.75 = 6 x 3 x \(\frac { 3 }{ 4 }\) cm3 = \(\frac { 27 }{ 2 }\) cm3
∴ Number of bricks = \(\frac { 40095 x 2 }{ 27 }\)
= 1485 x 2 = 2970 bricks

Question 19.
The dimensions of a rectangular box are in the ratio of 2 : 3 : 4 and the difference between the cost of covering it with sheet of paper at the rates of Rs 8 and Rs 9.50 per m2 is Rs 1,248. Find the dimensions of the box.
Solution:
Ratio in the dimensions of a box =2:3:4
Difference in total cost = Rs 1,248
Difference in rates = Rs 9.50 – Rs 8 = Rs 1.50
Let length (l) = 2x
Then breadth (b) = 3x
and height (h) = 4x
∴ Surface area = 2 (l x b + b x h + h x l)
= 2(2x 3x  + 3x x 4x + 4x x 2x)
= 2(6x2 + 12x2 + 8 x2) = 2 x 26x2 = 52x2
First rate of paper = Rs 9.50 per m2
and second rate = 8.00 per m2
∴ First cost = Rs 52x2 x 9.50
and second cost = Rs 52x2 x 8
∴ 52x2 x 9.50 – 52x2 x 8= 1248
⇒ 52x2 (9.50 – 8) = 1248
⇒ 52x2(1.50) = 1248
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 17

Hope given RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.4 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5C.

Other Exercises

Question 1.
Solution:
(i) \(\\ \frac { 2 }{ 3 } \)
= \(\\ \frac { 2X2 }{ 3X2 } \)
= \(\\ \frac { 4 }{ 6 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 1.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 1.2
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 1.3
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 1.4

Question 2.
Solution:
(i) In \(\\ \frac { 5 }{ 6 } \) and \(\\ \frac { 20 }{ 24 } \)
\(\\ \frac { 5 }{ 6 } \) = \(\\ \frac { 20 }{ 24 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 2.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 2.2
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 2.3
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 2.4

Question 3.
Solution:
Equivalent fraction of \(\\ \frac { 3 }{ 5 } \) having
(i) Denominator = 30 and 30 = 5 x 6
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 3.1

Question 4.
Solution:
(i) Denominator = 54, and 54 = 9 x 6
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 4.1

Question 5.
Solution:
Equivalent fraction of \(\\ \frac { 6 }{ 11 } \) having
(i) Denominator = 77 and 77 = 11 = 7
\(\\ \frac { 6 }{ 11 } \)
= \(\\ \frac { 6X7 }{ 11X7 } \)
= \(\\ \frac { 42 }{ 77 } \)
(ii) Numerator = 60 and 60 = 6 x 10
\(\\ \frac { 6 }{ 11 } \)
= \(\\ \frac { 6X10 }{ 11X10 } \)
= \(\\ \frac { 60 }{ 110 } \)

Question 6.
Solution:
Let \(\\ \frac { 24 }{ 30 } \) = \(\\ \frac { 4 }{ x } \)
In order to get 4, divide 24 by 6,
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 6.1

Question 7.
Solution:
Equivalent fraction of \(\\ \frac { 36 }{ 48 } \), with
(i) Numerator 9 and 9 = 36 + 4
\(\frac { 36 }{ 48 } =\frac { 36\div 4 }{ 48\div 4 } =\frac { 9 }{ 12 } \)
(ii) Denominator = 4 and 4 = 48 ÷ 12
\(\frac { 36 }{ 48 } =\frac { 36\div 12 }{ 48\div 12 } =\frac { 3 }{ 4 } \)

Question 8.
Solution:
Equivalent fraction of \(\\ \frac { 56 }{ 70 } \) with
(i) Numerator 4 and = 56 ÷ 14
\(\frac { 56 }{ 70 } =\frac { 56\div 14 }{ 70\div 14 } =\frac { 4 }{ 5 } \)
(ii) Denominator =10 and 10 = 70 ÷ 7
\(\frac { 56 }{ 70 } =\frac { 56\div 7 }{ 70\div 7 } =\frac { 8 }{ 10 } \)

Question 9.
Solution:
(i) In \(\\ \frac { 9 }{ 15 } \), HCF of 9 and 15 = 3
Now, dividing each term by 3, we get:
\(\frac { 9 }{ 15 } =\frac { 9\div 3 }{ 15\div 3 } =\frac { 3 }{ 5 } \)
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 9.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 9.2
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 9.3

Question 10.
Solution:
We know that a fraction is in its simplest form if its HCF of numerator and denominator is 1.
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 10.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 10.2

Question 11.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 11.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5C 11.2

Hope given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5C are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5B.

Other Exercises

Question 1.
Solution:
We know that, a fraction is proper if its denominator is greater than its numerator. Therefore,
\(\\ \frac { 1 }{ 2 } \), \(\\ \frac { 3 }{ 5 } \) and \(\\ \frac { 10 }{ 11 } \) are proper fractions. Ans.

Question 2.
Solution:
We know that a fraction is improper if its denominator is less than its numerator
Therefore,
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 2.1
are improper fractions. Ans.

Question 3.
Solution:
Six improper fractions with denominator 5 can be
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 3.1

Question 4.
Solution:
Six improper fraction with denominator 13 can be
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 4.1

Question 5.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 5.1

Question 6.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 6.1
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 6.2
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 6.3

Question 7.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 7.1

Question 8.
Solution:
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5B 8.1

Hope given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5B are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3

RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3

Other Exercises

Question 1.
Find the surface area of a cuboid whose :
(i) length = 10 cm, breadth = 12 cm and height = 14 cm
(ii) length = 6 dm, breadth = 8 dm, height = 10 dm
(iii) length = 2 m, breadth = 4 m and height = 5 m
(iv) length = 3.2 m, breadth = 30 dm, height = 250 cm.
Solution:
(i) Length of cuboid (l) = 10 cm
Breadth (b) = 12 cm
Height (h) = 14 cm
∴ Surface area = 2(1 × b + b × h + h × l)
= 2(10 x 12 + 12 x 14 + 14 x 10) cm2
= 2(120+ 168 + 140) cm2
= 2 x 428 = 856 cm2
(ii) Length of cuboid (l) = 6 dm
Breadth (b) = 8 dm
Height (h) = 10 dm
∴ Surface area = 2 ( l × b + b x h + h× l)
= 2(6 x 8 + 8 x 10 + 10 x 6) dm2
= 2(48 + 80 + 60) dm2 = 2 x 188 = 376 dm2
(iii) Length of cuboid (l) = 2 m
Breadth (b) = 4 m
Height (h) = 5 m
∴ Surface area = 2(l × b + b × h + h × l)
= 2(2 x 4 + 4 x 5 + 5 x 2) m2
= 2(8 + 20 + 10) m2 = 76 m2
(iv) Length of cuboid (l) = 3.2 m = 32 dm
Breadth (b) = 30 dm
Height (h) = 250 cm = 25 dm
∴ Surface area = 2(1 x b + b x h + h x l)
= 2(32 x 30 + 30 x 25 + 25 x 32) dm2
= 2(960 + 750 + 800) dm2
= 2 x 2510 = 5020 dm2

Question 2.
Find the surface area of a cube whose edge is
(i) 1.2 m
(ii) 27 cm
(iii) 3 cm
(iv) 6 m
(v) 2.1m
Solution:
(i) Edge of the cube (a) = 1.2 m
∴ Surface area = 6a2= 6 x (1,2)2 m2
= 6 x 1.44 = 8.64 m2
(ii) Edge of cube (a) = 27 cm
∴ Surface area = 6a2 = 6 x (27)2 m2
= 6 x 729 = 4374 m2
(iii) Edge of cube (a) = 3 cm
Surface area = 6a2 = 6 x (3)2 m2
= 6×9 cm2 = 54 cm2
(iv) Edge of cube (a) = 6 m
∴ Surface area = 6a2 = 6 x (6)2 m2
= 6 x 6 x 6 = 216 m2
(v) Edge of the cube (a) = 2.1 m
∴ Surface area = 6a2 = 6 x (2.1)2 m2
= 6 x 4.41 = 26.46 m2

Question 3.
A cuboidal box is 5 cm by 5 cm by 4 cm. Find its surface area.
Solution:
Length of cuboid box (l) = 5 cm
Breadth (b) = 5 cm
and height (h) = 4 cm
∴ Surface area = 2 (l x b + b x h + h x l)
= 2 (5 x 5 + 5 x 4 + 4 x 5) cm2
= 2 (25 + 20 + 20)
= 2 x 65 cm2
= 130 cm2

Question 4.
Find the surface area of a cube whose volume is :
(i) 343 m3
(ii) 216 dm3.
Solution:
(i) Volume of a cube = 343 m3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3 1

Question 5.
Find the volume of a cube whose surface area is
(i) 96 cm2
(ii) 150 m2.
Solution:
(i) Surface area of a cube = 96 cm2
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3 2

Question 6.
The dimensions of a cuboid are in the ratio 5:3:1 and its total surface area is 414 m2. Find the dimensions.
Solution:
Ratio in .dimensions = 5 : 3 : 1
Let length (l) = 5x
breadth (b) = 3x
and height (h) = x
∴ Surface area = 2(1 x b + b x h + h x l)
= 2(5x x 3x + 3x x x + x x 5x)
= 2(15×2 + 3×2 + 5×2) = 2 x 23×2 = 46×2
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3 3

Question 7.
Find the area of the cardboard required to make a closed box of length 25 cm, 0.5 m and height 15 cm.
Solution:
Length of cardboard (l) = 25 cm
Breadth (b) = 0.5 m = 50 cm
Height (h)= 15 cm.
∴ Surface area of cardboard = 2 (l x b + b x h + h x l)
= 2(25 x 50 + 50 x 15 + 15 x 25) cm2
= 2(1250+ 750+ 375) cm2
= 2(2375)
= 4750 cm2

Question 8.
Find the surface area of a wooden box whose shape is of a cube and if the edge of the box is 12 cm.
Solution:
Edge of cubic wooden box = 12 cm
∴ Surface area = 6a2 = 6(12)2 cm2
= 6 x 144 = 864 cm2

Question 9.
The dimensions of an oil tin are 26 cm x 26 cm x 45 cm. Find the area of the tin sheet required for making 20 such tins. If 1 square metre of the tin sheet costs Rs 10, find the cost of the tin sheet used for these 20 tins.
Solution:
Length of tin (l) = 26 cm = 0.26 m
Breadth (b) = 26 cm = 0.26 m
Height (h) = 45 cm = 0.45 m
∴ Surface area = 2(l x b + b x h +h xl)
= 2(0.26 x 0.26 + 0.26 x 0.45 + 0.45 x 0.26) m2
= 2(0.0676 + 0.117 + 0.117) m2
= 2(0.3016) = 0.6032 m2
Sheet required for such 20 tins
= 0.6032 x 20= 12.064 m2
Cost of 1 m2 tin sheet = 10 m
∴ Total cost = Rs 12.064 x 10 = Rs 120.64
and area of sheet = 12.064 m2 = 120640 cm2

Question 10.
A classroom is 11 m long, 8 m wide and 5 m high. Find the sum of the areas of its floor and the four walls (including doors, windows etc.)
Solution:
Length of room (l) = 11 m
Width (b) = 8 m
and height (h) = 5 m
Area of floor = l x b = 11 x8 = 88m2
Area of four walls = 2 (l + b) x h
= 2(11 + 8) x 5 m2 = 2 x 19×5 = 190 m2
∴ Total area = 88 m2 + 190 m2 = 278 m2

Question 11.
A swimming pool is 20 m long, 15 m wide and 3 m deep. Find the cost of repairing the floor and wall at the rate of Rs 25 per square metre.
Solution:
Length of pool (l) = 20 m
Breadth (b) = 15 m
and Depth (h) = 3 m.
Area of floor = l x b = 20 x 15 = 300 m2
and area of its walls = 2(l + b) x h
= 2(20 + 15) x 3 = 2 x 35 x 3 m2 = 210 m2
∴ Total area = 300 + 210 = 510 m2
Rate of repairing it = Rs 25 per sq. metre
∴ Total cost = Rs 25 x 510 = Rs 12750

Question 12.
The perimeter of a floor of a room is 30 m and its height is 3 m. Find the area of four walls of the room.
Solution:
Perimeter of floor = 30 m
i.e. 2(1 + b) = 30 m
Height = 3 m
∴ Area of four walls = Perimeter x height = 30 x 3 = 90 m2

Question 13.
Show that the product of the areas of the floor and two adjacent walls of a cuboid is the square of its volume.
Solution:
Let length of the room = l
and breadth = b
and height = h
Volume = l x b x h
Area of floor = l x b = lb.
Area of two adjacent walls = hl x bh.
∴ Product of areas of floor and two adjacent walls of the room = lb (hi x bh)
= l2b2h2 = (l.b.h)2 = (Volume)2
Hence proved

Question 14.
The walls and ceiling of a room are to be plastered. The length, breadth and height of the room are 4.5, 3m and 350 cm, respectively. Find the cost of plastering at the rate of Rs 8 per square metre.
Solution:
Length of room (l) = 4.5 m
Width (b) = 3 m
and height (h) = 350 cm = 3.5 m
∴ Area of walls = 2(l + b) x h
= 2(4.5 + 3) x 3.5 m2 = 2 x 7.5 x 3.5 m2 = 52.5 m2
Area of ceiling = l x b = 4.5 x 3 = 13.5 m2
∴ Total area = 52.5 + 13.5 m2 = 66 m2
Rate of plastering = Rs 8 per sq. m
∴ Total cost = Rs 8 x 66 = Rs 528

Question 15.
A cuboid has total surface area of 50 m2 and lateral surface area its 30 m2. Find the area of its base.
Solution:
Total surface area of cuboid = 50 m2
Lateral surface area = 30 m2
∴ Area of floor and ceiling = 50 – 30 = 20 m2
But area of floor = area of ceiling
∴ Area of base (floor) = \(\frac { 20 }{ 2 }\) = 10 m2

Question 16.
A classroom is 7 m long, 6 m broad and 3.5 m high. Doors and windows occupy an area of 17 m2. What is the cost of white-washing the walls at the rate of Rs 1.50 per m2.
Solution:
Length of room (l) = 7 m
Breadth (b) = 6 m
and height (h) = 3.5 m
∴ Area of four walls = 2(1 + b) x h
= 2(7 + 6) x 3.5 m2 = 2 x 13 x 3.5 = 91 m2
Area of doors and windows = 17 m2
∴ Remaining area of walls = 91 – 17 = 74 m2
Rate of whitewashing = Rs 1.50 per m2
∴ Total cost = 74 x Rs 1.50 = Rs 111

Question 17.
The central hall of a school is 80 m long and 8 m high. It has 10 doors each of size 3 m x 1.5 m and 10 windows each of size 1.5 m x l m. If the cost of the white-washing the walls of the hall at the rate of Rs 1.20 per m2 is Rs 2385.60, find the breadth of the hall.
Solution:
Length of hall (l) = 80 m
Height (h) = 8 m
Size of each door = 3 m x 1.5 m
∴ Area of 10 doors = 3 x 1,5 x 10 m2
= 45 m2
A size of each windows = 1.5 m x 1 m
∴ Area of 10 windows = 1.5 m x 1 x 10= 15 m2
Total cost of whitewashing the walls = Rs 2385.60
Rate of whitewashing = Rs 1.20 per m2
∴ Area of walls which are whitewashed
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3 4

Hope given RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.3 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A

RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5A.

Other Exercises

Question 1.
Solution:
(i) \(\\ \frac { 3 }{ 4 } \)
(ii) \(\\ \frac { 1 }{ 4 } \)
(iii) \(\\ \frac { 2 }{ 3 } \)
(iv) \(\\ \frac { 3 }{ 10 } \)
(v) \(\\ \frac { 4 }{ 9 } \)
(vi) \(\\ \frac { 3 }{ 8 } \)

Question 2.
Solution:
In the figure, \(\\ \frac { 4 }{ 9 } \) is shaded
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A 2.1

Question 3.
Solution:
In the figure, whole rectangle is not divided into four equal parts.

Question 4.
Solution:
(i) Three-fourths = \(\\ \frac { 3 }{ 4 } \)
(ii) Four-sevenths = \(\\ \frac { 4 }{ 7 } \)
(iii) Two-fifths = \(\\ \frac { 2 }{ 5 } \)
(iv) Three-tenths = \(\\ \frac { 3 }{ 10 } \)
(v) One-eighth = \(\\ \frac { 1 }{ 8 } \)
(vi) three-tenths = \(\\ \frac { 5 }{ 6 } \)
(vii) five-sixths = \(\\ \frac { 8 }{ 9 } \)
(vii) seven-twelfths = \(\\ \frac { 7 }{ 12 } \)

Question 5.
Solution:
(i) In \(\\ \frac { 4 }{ 9 } \), numerator is 4 and denominator is 9.
(ii) In \(\\ \frac { 6 }{ 11 } \), numerator is 6 and denominator is 11.
(iii) In \(\\ \frac { 8 }{ 15 } \), numerator is 8 and denominator is 15.
(iv) In \(\\ \frac { 12 }{ 17 } \), numerator is 12 and denominator is 17.
(v) \(\\ \frac { 5 }{ 1 } \) , numerator is 5 and denominator is 1.

Question 6.
Solution:
(z) Numerator = 3, Denominator = 8, then fraction = \(\\ \frac { 3 }{ 8 } \).
(ii) Numerator = 5, Denominator = 12, then fraction = \(\\ \frac { 5 }{ 12 } \)
(iii) Numerator = 7, Denominator = 16, then fraction = \(\\ \frac { 7 }{ 16 } \).
(iv) Numerator = 8, Denominator = 15, then fraction = \(\\ \frac { 8 }{ 15 } \)

Question 7.
Solution:
(i) \(\\ \frac { 2 }{ 3 } \) = two-thirds
(ii) \(\\ \frac { 4 }{ 9 } \) = four-ninths
(iii) \(\\ \frac { 2 }{ 5 } \) = two-fifths
(iv) \(\\ \frac { 7 }{ 10 } \) = seven-tenths
(v) \(\\ \frac { 1 }{ 3 } \) = one-thirds
(vi) \(\\ \frac { 3 }{ 4 } \) = three-fourth
(vii) \(\\ \frac { 3 }{ 8 } \) = three-eighths
(viii) \(\\ \frac { 9 }{ 14 } \) = nine-fourteenths
(ix) \(\\ \frac { 5 }{ 11 } \) = five-elevanths
(x) \(\\ \frac { 6 }{ 15 } \) = six-fifteenths

Question 8.
Solution:
24 minutes is the fraction of 1 hour i.e.,
60 minutes = \(\\ \frac { 24 }{ 60 } \)

Question 9.
Solution:
Natural number between 2 to 10 are 2, 3, 4, 5, 6, 7, 8, 9, 10 = 9
Out of these prime number are 2, 3, 5, 7 = 4
Fraction = \(\\ \frac { 4 }{ 9 } \)

Question 10.
Solution:
(i) \(\\ \frac { 2 }{ 3 } \) of 15 pens = \(\\ \frac { 2 }{ 3 } \) x 15 = 2 x 5 = 10 pens.
(ii) \(\\ \frac { 2 }{ 3 } \) of 27 balls = \(\\ \frac { 2 }{ 3 } \) x 27 = 2 x 9 = 18 balls.
(iii) \(\\ \frac { 2 }{ 3 } \) of 36 balloons = \(\\ \frac { 2 }{ 3 } \) x 36 = 2 x 12 = 24 balloons. Ans.

Question 11.
Solution:
(i) \(\\ \frac { 3 }{ 4 } \) of 16 cups = \(\\ \frac { 3 }{ 4 } \) x 16 = 3 x 4
= 12 cups.
(ii) \(\\ \frac { 3 }{ 4 } \) of 28 rackets = \(\\ \frac { 3 }{ 4 } \) x 28 = 3 x 7
= 21 rackets.
(iii) \(\\ \frac { 3 }{ 4 } \) of 32 books = \(\\ \frac { 3 }{ 4 } \) x 32 = 3 x 8
= 24 books. Ans.

Question 12.
Solution:
Total number of pencils Neelam has = 25
No. of pencils given to Meena
= \(\\ \frac { 4 }{ 5 } \) of 25
= \(\\ \frac { 4 }{ 5 } \) x 25 – 20
No. of pencils left with Neelam = 25 – 20 = 5

Question 13.
Solution:
(i) \(\\ \frac { 3 }{ 8 } \)
Take a line segment OA = one unit of length
Divide it into 8 equal parts and take 3 parts at P, then P represents \(\\ \frac { 3 }{ 8 } \).
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A 13.1
(ii) \(\\ \frac { 5 }{ 9 } \)
(a) Take a line segment OA = one unit of length.
(b) Divide it into nine equal parts and take 5 parts at P, then P represents \(\\ \frac { 5 }{ 9 } \).
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A 13.2
(iii) \(\\ \frac { 4 }{ 7 } \)
(a) Take a line segment OA = one unit of length.
(b) Divide it into 7 equal parts and take 4 parts at P then P represents \(\\ \frac { 4 }{ 7 } \).
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A 13.3
(iv) \(\\ \frac { 2 }{ 5 } \)
(a) Take a line segment OA = 1 unit of length.
(b) Divide it with 5 equal parts and take 2 parts and P then P represents \(\\ \frac { 2 }{ 5 } \).
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A 13.4
(v) \(\\ \frac { 1 }{ 4 } \)
(a) Take a line segment OA = 1 unit of length.
(b) Divide it with 4 equal parts and take 1 parts and P then P represents \(\\ \frac { 1 }{ 4 } \).
RS Aggarwal Class 6 Solutions Chapter 5 Fractions Ex 5A 13.5

Hope given RS Aggarwal Solutions Class 6 Chapter 5 Fractions Ex 5A are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2

RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2

These Solutions are part of RD Sharma Class 8 Solutions. Here we have given RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2

Other Exercises

Question 1.
Find the volume in cubic metres (cu.m) of each of the cuboids whose dimensions are :
(i) length = 12 cm, breadth = 10 m, height = 4.5 m
(ii) length = 4 m, breadth = 2.5 m, height = 50 cm
(iii) length = 10 m, breadth = 25 dm, height = 25 cm.
Solution:
(i) Length of cuboid (l) = 12 m
Breadth (b) = 10m
and height (h) = 4.5 m
∴Volume = l x b x h = 12 x 10 x 4.5 m3
= 540 m3
(ii) Length of cuboid (l) = 4 m
Breadth (b) = 2.5m
Height (h) = 50 cm = 0.5 m
∴ Volume = l x b x h = 4 x 2.5 x 0.5 = 5 m3
(iii) Length of cuboid (l) = 10 m
Breadth (b) = 25 dm = 2.5 m
Height (h) = 25 cm 0.25 m
∴ Volume = l x b x h = 10 x 2.5 x 0.25 m3 = 6.25 m3

Question 2.
Find the volume in cubic decimetre of each of the cubes whose side is
(i) 1.5 m
(it) 75 cm
(iii) 2 dm 5 cm
Solution:
(i) Side of cube (a) = 1.5 m
∴ Volume = a3 = (1.5)3 m3
= 1.5 x 1.5 x 1.5 m3 = 3.375 m3
= 3.375 x 1000 = 3375 dm3
(ii) Side of cube (a) = 75 cm = 7.5 dm
∴ Volume = a3 = (7.5)3 dm3
= 421.875 dm3
(iii) Side of cube (a) = 2 dm 5 cm = 2.5 dm
∴ Volume = (a)3 = (2.5)3 dm3
= 15.625 dm3

Question 3.
How much clay is dug out in digging a well measuring 3m by 2m by 5m?
Solution:
Length of well (l) = 3m
breadth (b) = 2 m
and height (depth) (h) = 5 m
Volume of earth dug out = l x b x h = 3 x 2 x 5 = 30m3

Question 4.
What will be the height of a cuboid of volume 168 m3, if the area of its base is 28 m2 ?
Solution:
Volume of a cuboid = 168 m3
Area of its base l.e., l x b = 28 m3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 1

Question 5.
A tank is 8 m long, 6 m broad and 2 m high. How much water can it contain ?
Solution:
Length of tank (l) = 8 m
Breadth (b) = 6 m
Height (h) = 2 m
∴ Volume of water in the tank = l x b x h = 8 x 6 x 2 = 96 m3
= 96 x 1000 = 96000litres (∵1m3 = 1000litre)

Question 6.
The capacity of a certain cuboidal tank is 50000 litres of water. Find the breadth of the tank if its height and length are 10 m and 2.5 m respectively.
Solution:
Capacity of water in the tank = 50000 litres
∴ Volume of water = 50000 x \(\frac { 1 }{ 1000 }\) = 50 m3 (1000 l = 1 m3)
Height of tank (h)= 10 m
and length (l) = 2.5 m
Volume 50
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 2

Question 7.
A rectangular diesel tanker is 2 m long, 2 m wide and 40 cm deep. How many litres of diesel can it hold ?
Solution:
Length of tanker (l) = 2 m
Breadth (b) = 2m
Depth (h) = 40 cm = 0.4 m
∴ Volume = l x bx h = 2 x 2 x 0.4=1.6m3
Quantity of diesel = 1.6 x 1000 litres (1 m3= 1000 l)
= 1600 litres

Question 8.
The length, breadth and height of a room are 5 m, 4.5 m and 3 m, respectively. Find the volume of the air it contains.
Solution:
Length of room (l) = 5 m
Breadth (6) = 4.5 m
and height (h) = 3 m
∴ Volume of air it contains
= l x b x h = 5 x 4.5 x 3 m3
= 67.5 m3

Question 9.
A water tank is 3 m long, 2 m broad and 1 m deep. How many litres of water can it hold ?
Solution:
Length of tank (l) = 3 m
Breadth (b) = 2 m
and depth (h) = 1 m
∴ Volume of tank = l x b x h
= 3 x 2 x 1 = 6 m3
∴ Quantity of water it can contains
= 6 x 1000 litres = 6000 litres (1 m3= 1000 litres)

Question 10.
How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick ?
Solution:
Length of wooden block (l) = 6 m
Width (b) = 75 cm = 0.75 m
Thickness (h) = 45 cm = 0.45 m
∴ Volume = l x b x h = 6 x 0.75 x 0.45 m3
Length of plank (l) = 3 m
Breadth (b) = 15 cm = 0.15 m
Thickness (h) = 5 cm = 0.05 m
∴ Volume = 3 x 0.15 x 0.05 m3
Number of planks
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 3

Question 11.
How many bricks each of size 25 cm x 10 cm x 8 cm will be required to build a wall 5 m long, 3 m high and 16 cm thick assuming that the volume of sand and cement used in the construction is negligible ?
Solution:
Size of one brick = 25 cm x 10 cm x 8 cm
∴ Volume of one brick = 25 x 10 x 8 cm3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 4
Length of wall (l) = 5 m
Width (b) = 0.16 m
Height (h) = 3 m
∴ Volume of wall = l x b x h
= 5 x 0.16 x 3 m3 = 2.4 m3
∴ Number of bricks required
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 5

Question 12.
A village, having a population of 4000 requires 150 litres water per head per day. It has a tank which is 20 m long, 15 m broad and 6 m high. For how many days the water of this tank will last ?
Solution:
Total population of a village = 4000
Water required for each person for one day = 150 litres
∴ Water required for 4000 persons for one day = 150 x 4000 = 600000 litres
Length of tank (l) = 20 m
Breadth (b) = 15 m
Height (h) = 6 m
∴ Volume of tank = l x b x h = 20 x 15 x 6 m3 = 1800 m3
Capacity of water in the tank = 1800 x 1000 l= 1800000l (1 m3 = 1000 l)
∴ Number of days, the water will last
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 6

Question 13.
A rectangular field is 70 m long and 60 m broad. A well of dimensions 14 m x 8 m x 6 m is dug outside the field and the earth dugout from this well is spread evenly on the field. How much will the earth level rise ?
Solution:
Length of well (l) = 14 m
Breadth (A) = 8m
Depth (A) = 6m
∴ Volume of earth dugout = l x bx h
= 14 x 8 x 6 = 672 m3 Length of field = 70 m
and breadth = 60 m
Let h be the height of earth spread over
Then 70 x 60 x h = 672
⇒ h = \(\frac { 672 }{ 70×60 }\) = 0.16m
∴ Height of earth = 0.16 m = 16 cm

Question 14.
A swimming pool is 250 m long and 130 m wide. 3250 cubic metres of water is pumped into it. Find the rise in the level of water.
Solution:
Volume of water = 3250 m3
Length of pool (l) = 250 m
Breadth (b)= 130 m
∴ Height of water level
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 7

Question 15.
A beam 5 m long and 40 cm wide contains 0.6 cubic metres of wood. How thick is the beam?
Solution:
Volume of wood of the beam = 0.6 m3 = 600000
Length of beam (l) = 5 m = 500 cm
Breadth (b) = 40 cm
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 8

Question 16.
The rainfall on a certain day was 6 cm. How many litres of water fell on 3 hectares of field on that day ?
Solution:
Area of the field = 3 hectares
= 3 x 10000 square metres
= 30000 square metres
Height of rainfall = 6 cm = m3
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 9

Question 17.
An 8 m long cuboidal beam of wood when sliced produces four thousand 1 cm cubes and there is no wastage of wood in this process. If one edge of the beam is 0.5 m, find the third edge.
Solution:
Length of cuboidal beam (l) = 8 m = 800 cm
Number of cubical sliced = 4000
Edge of each cube = 1 cm
Volume of beam = 4000 (1)3 cm3 = 4000 cm3
One edge of the beam = 0.5 m = 50 cm.
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 10

Question 18.
The dimensions of a metal block are 2.25 m by 1.5 m by 27 cm. It is melted and recast into cubes, each of the side 45 cm. How many cubes are formed ?
Solution:
Dimensions of metal block = 2.25 m x 1.5 m x 27 cm
∴ Volume = 2.25 x 1.5 x 0.27 m3
= 225 x 150 x 27 cm3 = 911250 cm3
Side of each cube (a) = 45 cm
∴ Volume of one cube = a3 = (45)3 cm3 = 91125 cm3
∴ Number of cubes = \(\frac { 911250 }{ 91125 }\) = 10

Question 19.
A solid rectangular piece of iron measures 6 m by 6 cm by 2 cm. Find the weight of this piece if 1 cm3 of iron weighs 8 gm.
Solution:
Dimensions of a piece of rectangular iron = 6m x 6cm x 2cm
∴ Volume = 600 x 6 x 2 cm3 = 7200 cm3
Weight of 1 cm3 = 8 gm
∴ Total weight of the piece = 7200 x 8 gm
= 57600 gm = \(\frac { 57600 }{ 1000 }\) kg = 57.6 kg

Question 20.
Fill in the blanks in each of the following so as to make the statement true :
(i) 1 m3 = ……… cm3
(ii) 1 litre = …….. cubic decimetre
(iii) 1 kl = …… m3
(iv) The volume of a cube of side 8 cm is …….. .
(v) The volume of wooden cuboid of length 10 cm and breadth 8 cm is 4000 cm3. The height of the cuboid is …….. cm
(vi) 1 cu.dm = …….. cu.mm
(vii) 1 cu.km = ……cu.m
(viii) 1 litre =…….. cu.cm
(ix) 1 ml = ……… cu.cm
(x) 1 kl = ……… cu.dm = ……. cu.cm.
Solution:
(i) 1 m3 = 1000000 or 10cm3
(ii) 1 litre = 1 cubic decimetre
(iii) 1 kl = 1 m3
(iv) The volume of a cube of side 8 cm is 512 cm3 (V = a3 = 8 x 8 x 8 = 512 cm3)
(v) The volume of a wooden cuboid of length 10 cm and breadth 8 cm is 4000 cm3. The height of the cuboid is 50 cm
RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 11
(vi) 1 cu.dm = 1000000 cu mm = 106 cu.mm
(vii) 1 cu.km = 1000 x 1000 x 1000 cu.m = 109 cu.m
(viii) 1 litre = 1000 cu.cm = 103 cu.cm
(ix) 1 ml = 1 cu.cm
(x) 1 kl = 1000 cu.dm = 100 x 100 x 100 cu.cm = 106 cu.cm

Hope given RD Sharma Class 8 Solutions Chapter 21 Mensuration II Ex 21.2 are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

RS Aggarwal Class 6 Solutions Chapter 4 Integers Ex 4F

RS Aggarwal Class 6 Solutions Chapter 4 Integers Ex 4F

These Solutions are part of RS Aggarwal Solutions Class 6. Here we have given RS Aggarwal Solutions Class 6 Chapter 4 Integers Ex 4F.

Other Exercises

OBJECTIVE QUESTIONS
Tick the correct answer in each of the following :

Question 1.
Solution:
(b) Because – 4 < – 3.

Question 2.
Solution:
Because – 3 – 2 = – 5.

Question 3.
Solution:
(c) Because 4 + ( – 5) = – 1.

Question 4.
Solution:
(a) Because – 7 – 2 = – 9.

Question 5.
Solution:
(b) Because 7 + | – 3| = 7 + 3 = 10.

Question 6.
Solution:
(c) Because – 42 + ( – 35) = – 42 – 35 = – 77.

Question 7.
Solution:
(b) Because ( – 37) + 6 = – 31.

Question 8.
Solution:
(c) Because 49 + ( – 27) = 49 – 27 = 22.

Question 9.
Solution:
(c) Because successor of – 18 = – 18 + 1 = – 17.

Question 10.
Solution:
(b) Because predecessor of – 16 is = – 16 – 1 = – 17.

Question 11.
Solution:
(a) Because additive inverse of – 5 is = – ( – 5) = 5.

Question 12.
Solution:
(b) Because – 12 – ( – 5) = – 12 + 5 = – 7

Question 13.
Solution:
(b) Because 5 – ( – 8) = 5 + 8 = 13.

Question 14.
Solution:
(c) Because other – 25 – 30 = – 55.

Question 15.
Solution:
(a) Because other 20 – ( – 5) = 20 + 5 = 25.

Question 16.
Solution:
(b) Because other – 13 – 8 = – 21.

Question 17.
Solution:
(b) Because 0 – ( – 8) = 0 + 8 = 8

Question 18.
Solution:
(c) Because 8 + ( – 8) = 8 – 8 = 0.

Question 19.
Solution:
(c)Because- 6 + 4 – ( – 3) = – 6 + 4 + 3 = 7 – 6 = 1.

Question 20.
Solution:
(c) Because 6 – ( – 4) = 6 + 4 = 10.

Question 21.
Solution:
(a) Because ( – 7) + ( – 9) + 12 + ( – 16) = – 7 – 9 + 12 – 16 = – 32 + 12 = – 20.

Question 22.
Solution:
(c) Because – 4 – (8) = – 4 – 8 = – 12.

Question 23.
Solution:
(c) Because – 6 – ( – 9) = – 6 + 9 = 3.

Question 24.
Solution:
(c) Because 10 – ( – 5) = 10 + 5 = 15.

Question 25.
Solution:
(b) Because ( – 6) x 9 = 54.

Question 26.
Solution:
(a) Because ( – 9) x 6 + ( – 9) x 4
= – 54 – 36 = – 90.

Question 27.
Solution:
(b) Because 36 + ( – 9) = \(\\ \frac { 36 }{ -9 } \) = – 4.

Hope given RS Aggarwal Solutions Class 6 Chapter 4 Integers Ex 4F are helpful to complete your math homework.

If you have any doubts, please comment below. Learn Insta try to provide online math tutoring for you.

Class 12 Economics 1 Mark Questions Chapter 3 Liberalisation, Privatisation and Globalisation: An Appraisal

Here we are providing 1 Mark Questions for Economics Class 12 Chapter 3 Liberalisation, Privatisation and Globalisation: An Appraisal are the best resource for students which helps in class 12 board exams.

One Mark Questions for Class 12 Economics Chapter 3 Liberalisation, Privatisation and Globalisation: An Appraisal

Question 1.
When were economic reforms introduced in India?
Answer:
Economic reforms were introduced in India in 1991. Economic reforms refer to all those measures that aim at rendering the economy more efficient, competitive and developed.

Question 2.
List any two reasons which led to economic reforms in India.
Answer:
The reasons which led to economic reforms in India include:
(i) Unfavourable Balance of Payment
(ii) Inflation
(iii) Falling foreign exchange reserves

Question 3.
What are the three broad components of New Economic Policy, 1991?
Answer:
The three broad components of New Economic Policy are:
(i) Liberalisation
(ii) Privatisation
(iii) Globalisation

Question 4.
Define liberalisation.
Answer:
Liberalisation means liberating the trade and industry of an economy from unnecessary restrictions and making the industries more competitive.

Question 5.
State any two reforms introduced under liberalisation.
Answer:
The reforms introduced under liberalisation include:
(i) Deregulation of industrial sector
(ii) Trade and investment policy reforms
(iii) Tax reforms

Question 6.
What is fiscal policy?
Answer:
It refers to the revenue and expenditure policy of the government to achieve balanced development in the economy.

Question 7.
Define direct tax. Give two examples.
Answer:
Direct taxes are those taxes levied immediately on the property and income of persons, and are paid directly by the consumers to the state. For example, income tax, property tax.

Question 8.
Define indirect tax. Give two examples.
Answer:
Indirect tax is a tax collected by an intermediary (seller) from the person who bears tne ultimate economic burden of the tax (buyer). For example, excise duty, sales tax.

Question 9.
What was the consequence of devaluation of rupee?
Answer:
Devaluation of rupee led to huge inflow of foreign exchange in India.

Question 10.
List the aims of trade policy reforms.
Answer:
The aims of trade policy reforms were:
(i) Removal of quantitative restrictions
(ii) Reduction in tariff rates
(iii) Removal of import licensing

Question 11.
For what categories of products was industrial licensing not abolished?
Answer:
Industrial licensing was not abolished for product categories such as alcohol, cigarettes, hazardous chemicals, industrial explosives, electronics, aerospace and drugs and pharmaceuticals.

Question 12.
Define privatisation.
Answer:
Privatisation means the induction of private management and control in the public sector enterprises.

Question 13.
What is disinvestment?
Answer:
Disinvestment involves selling a part of the Public Sector Undertaking’s equity to the public to promote privatisation.

Question 14.
State the purpose for undertaking disinvestment.
Answer:
Disinvestment was undertaken:
(i) to maintain fiscal discipline; and
(ii) to facilitate modernisation.

Question 15.
Define globalisation.
Answer:
Globalisation means unification or integration of the domestic economy with the world economy.

Question 16.
What is outsourcing?
Answer:
It is the practice of hiring external sources, mostly from other countries, for regular services.

Question 17.
List a few services which are being outsourced by companies in developed countries to India.
Answer:
A few services which are being outsourced by companies in developed countries to India are:
(i) Record keeping
(ii) Accountancy
(iii) Banking services
(iv) Music recording
(v) Film editing
(vi) Clinical advice

Question 18.
How are WTO and GATT related?
Answer:
GATT was established in 1948. WTO was founded in 1995 as the successor organisation to GATT.

Question 19.
Where is the headquarters of WTO?
Answer:
The headquarters of WTO is in Geneva.

Question 20.
What has been the impact of economic reforms on GDP?
Answer:
The overall GDP growth has increased as a result of economic reforms.

Question 21.
List the areas which were ignored during the reform period.
Answer:
The sectors which were ignored during the reform period are:.
(i) Agriculture
(ii) Industry
(iii) Employment
(iv) Infrastructure
(v) Fiscal management

Question 22.
Name the sector that benefited the most with the introduction of economic reforms in India.
Answer:
Service (tertiary) sector benefitted the most with the introduction of economic reforms in India

Question 23.
Define GST.
Answer:
GST (Goods and Services Tax) is an indirect tax for the whole nation, which will make India one unified common market.

Question 24.
Why is GST implemented?
Answer:
(i) GST will create a simpler tax system.
(ii) It increases overall transparency and compliance.

Question 25.
When was GST implemented in India?
Answer:
1st July 2017

Question 26.
Who is the head of the GST Council?
Answer:
Finance Minister

Question 27.
Which constitutional amendment is done to pass the GST bill?
Answer:
101 st

Question 28.
What type of goods are not covered under the GST bill?
Answer:
(i) Cooking gas
(ii) Liquor
(iii) Petrol

Question 29.
List the main categories of GST.
Answer:
(i) CGST
(ii) SGST
(iii) I GST

Question 30.
What is demonetisation?
Answer:
Demonetisation is the act of stripping a currency unit of its status as legal tender.

Question 31.
When did demonetisation take place in India?
Answer:
8th November, 2016

Question 32.
What was main motive behind demonetisation?
Answer:
To curb black money, terror funding and to stop the use of fake currency available in the market

Question 33.
When did demonetisation take place in India for the first time in history?
Answer:
In 1946

Question 34.
Which currency notes were affected due to demonetisation in November 2016?
Answer:
₹ 500 & ₹ 1,000 notes
(Liberalisation, Privatisation and Globalisation: An Appraisal)

Question 35.
Which currency notes were newly implemented after demonetisation in November 2016?
Answer:
X 200 & X 2,000 notes

Question 36.
What was the last date of tendering old currency?
Answer:
30th December, 2016

Question 37.
State one positive effect of demonetisation in India?
Answer:
Over fake currency